609 research outputs found

    Phototauntomerism of o-nitrobenzyl compounds: o-quinonoid aci-nitro species studied by matrix isolation and DFT calculations

    Get PDF
    Photolyses of 2-nitrobenzyl methyl ether and 2-nitrotoluene with 254 nm light have been investigated in Ar and N2 matrices at 12 K, and have been found to give o-quinonoid aci-nitro species as the primary photoproducts, along with other products. The o-quinonoid species have UV absorptions at relatively long wavelengths (λmax at 385–430 nm) and undergo facile secondary photolysis when irradiated in these absorption bands. By means of this selective photolysis, fairly complete IR spectra of the o-quinonoids have been obtained. Comparison of the matrix IR spectra of these species with simulated spectra computed using density functional theory (DFT) has confirmed the identity of these reactive intermediates. Moreover, detailed analysis of the fit between the computed and experimental IR spectra has allowed the specific stereoisomers generated to be identified with reasonable confidence. Computations have also been made of the relative energies of the starting compounds, intermediate o-quinonoid isomers and the possible secondary products, together with the transition states connecting them. The results of these computations indicate that the observed stereoisomer of each of the o-quinonoid species cannot arise by photoinduced H-atom transfer followed by isomerizations on the electronic ground-state surfaces, since the energy barriers for reversion to starting compounds are substantially lower than those for the necessary isomerizations. It is therefore concluded that H-atom transfer and conformational interconversion occur in an electronic excited state

    A derivative of vitamin B3 applied several days after exposure reduces lethality of severely irradiated mice

    Get PDF
    Most, if not all, of the hitherto tested substances exert more or less pronounced pro-survival effects when applied before or immediately after the exposure to high doses of ionizing radiation. In the present study we demonstrate for the first time that 1-methyl nicotinamide (MNA), a derivative of vitamin B3, significantly (1.6 to 1.9 times) prolonged survival of BALB/c mice irradiated at LD30/30 (6.5 Gy), LD50/30 (7.0 Gy) or LD80/30 (7.5 Gy) of γ-rays when the MNA administration started as late as 7 days post irradiation. A slightly less efficient and only after the highest dose (7.5 Gy) of γ-rays was another vitamin B3 derivative, 1-methyl-3-acetylpyridine (1,3-MAP) (1.4-fold prolonged survival). These pro-survival effects did not seem to be mediated by stimulation of haematopoiesis, but might be related to anti-inflammatory and/or anti-thrombotic properties of the vitamin B3 derivatives. Our results show that MNA may represent a prototype of a radioremedial agent capable of mitigating the severity and/or progression of radiation-induced injuries when applied several hours or days after exposure to high doses of ionizing radiation

    Reduction of protein radicals by GSH and ascorbate: potential biological significance

    Get PDF
    The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05±0.05)×105M-1s-1, while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stres

    The effects of 1,4-dimethylpyridine in metastatic prostate cancer in mice

    Get PDF
    BACKGROUND: We previously showed that 1-methylnicotinamide (1-MNA) and its analog 1,4-dimethylpyridine (1,4-DMP) could inhibit the formation of lung metastases and enhance the efficacy of cyclophosphamide-based chemotherapy in the model of spontaneously metastasizing 4T1 mouse mammary gland tumors. In the present study, we aimed to investigate whether the previously observed activity of pyridine compounds pertains also to the prevention and the treatment of metastatic prostate tumors, in a combined chemotherapy with docetaxel. METHODS: Cancer-preventing activity of 1,4-DMP was studied in the model of prostate tumors spontaneously arising in C57BL/6-Tg (TRAMP)8247Ng/J (TRAMP) mice. The efficacy of the combined chemotherapy, comprising simultaneous use of 1,4-DMP and docetaxel, was evaluated in the orthotopic mouse model of human PC-3M-luc2 prostate cancer. The toxicity of the applied treatment was also determined. RESULTS: The development of prostate tumors in TRAMP mice remained unaffected after administration of 1,4-DMP. Similarly, no effect of 1,4-DMP was found on the growth of orthotopically transplanted PC-3M-luc2 tumors. However, when 1,4-DMP was administered along with docetaxel, it enhanced the anticancer activity of the chemotherapy. As a result, in PC-3M-luc2-bearing mice statistically significant inhibition of the tumor growth and lower metastases incidence were observed. The decreased metastatic yield is probably related to the diminished platelet activity observed in mice treated with combined therapeutic regimen. Finally, the combined treatment exhibited lowered side effects accompanying docetaxel administration. CONCLUSIONS: Results presented herein confirm previously published data on the anticancer activity of pyridine compounds and demonstrate that 1,4-DMP may be beneficially implemented into chemotherapy utilizing various cytotoxic agents, directed against multiple metastatic tumor types. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-017-3161-4) contains supplementary material, which is available to authorized users

    Эффективность использования игры скрэбл (Scrabble) для закрепления лексики (английский язык, технический вуз)

    Get PDF
    Rhodobacter capsulatus was used for the phototrophic hydrogen production on effluent solution derived from the thermophilic fermentation of Miscanthus hydrolysate by Thermotoga neapolitana. Pretreatments such as centrifugation, dilution, buffer addition, pH adjustment and sterilization were suggested for the effluent before being fed to the photofermentation. Batch-wise experiments showed that R. capsulatus grows and produces hydrogen on the pretreated effluent solution. Moreover, it was found that the hydrogen yield increased from 0.3 to 1.0 L/L-culture by addition of iron to the effluent solution

    Analysis of Raman modes in Mn-doped ZnO nanocrystals

    Full text link
    Mn-doped ZnO was synthesized using a co-precipitation technique. X-ray diffraction (XRD) measurements and photoluminescence (PL) spectra show that Mn ions are doped into the lattice positions of ZnO. The modes at 202, 330, and 437 cm-1 in the Raman spectrum are assigned as 2E2 (low), E2 (high)-E2 (low), and E2 (high) modes of ZnO base, respectively. The mode at 528 cm-1 is ascribed to a local vibrational mode related to Mn. The mode at 580 cm-1 should be an intrinsic mode of ZnO and assigned to E1 longitudinal optical (LO). Its reinforcement should result from a combination of resonance at the excitation wavelength and impurity-induced scattering.Comment: 4 pages, 4 figure

    Model Protocells from Single-Chain Lipids

    Get PDF
    Significant progress has been made in the construction of laboratory models of protocells. Most frequently the developed vesicle systems utilize single-chain lipids rather than the double-chain lipids typically found in biological membranes. Although single-chain lipids yield less robust vesicles, their dynamic characteristics are highly exploitable for protocellular functions. Herein the advantages of using single-chain lipids in the construction of protocells are discussed
    corecore