80 research outputs found

    A Novel Pzg-NURF Complex Regulates Notch Target Gene Activity

    Get PDF
    The Putzig (Pzg) protein is associated with the NURF nucleosome remodeling complex, thereby promoting Notch target gene expression. Our findings suggest a novel Pzg-NURF complex that is responsible for the epigenetic regulation of Notch target genes

    5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells

    Get PDF
    YesMammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and enhancers at the multi-TAD EDC locus in skin epithelial cells are cell type-specific and involve extensive contacts within TADs as well as between different gene-rich TADs, forming the framework for lineage-specific transcription.This study was supported by the grants 5R01AR064580 and 1RO1AR071727 to VAB, TKS and AAS, as well as by the grants from MRC (MR/ M010015/1) and BBSRC (BB/K010050/1) to VAB

    Plant expression, lyophilisation and storage of HBV medium and large surface antigens for a prototype oral vaccine formulation

    Get PDF
    Current immunisation programmes against hepatitis B virus (HBV) increasingly often involve novel tri-component vaccines containing—together with the small (S-HBsAg)—also medium and large surface antigens of HBV (M- and L-HBsAg). Plants producing all HBsAg proteins can be a source of components for a potential oral ‘triple’ anti-HBV vaccine. The objective of the presented research was to study the potential of M/L-HBsAg expression in leaf tissue and conditions of its processing for a prototype oral vaccine. Tobacco and lettuce carrying M- or L-HBsAg genes and resistant to the herbicide glufosinate were engineered and integration of the transgenes was verified by PCR and Southern hybridizations. M- and L-HBsAg expression was confirmed by Western blot and assayed by ELISA at the level of micrograms per g of fresh weight. The antigens displayed a common S domain and characteristic domains preS2 and preS1 and were assembled into virus-like particles (VLPs). Leaf tissues containing M- and L-HBsAg were lyophilised to produce a starting material of an orally administered vaccine formula. The antigens were distinctly sensitive to freeze-drying conditions and storage temperature, in the aspect of stability of S and preS domains and formation of multimeric particles. Efficiency of lyophilisation and storage depended also on the initial antigen content in plant tissue, yet M-HBsAg appeared to be approximately 1.5–2 times more stable than L-HBsAg. The results of the study provide indications concerning the preparation of two other constituents, next to S-HBsAg, for a plant-derived prototype oral tri-component vaccine against hepatitis B

    Mosquitoes LTR Retrotransposons: A Deeper View into the Genomic Sequence of Culex quinquefasciatus

    Get PDF
    A set of 67 novel LTR-retrotransposon has been identified by in silico analyses of the Culex quinquefasciatus genome using the LTR_STRUC program. The phylogenetic analysis shows that 29 novel and putatively functional LTR-retrotransposons detected belong to the Ty3/gypsy group. Our results demonstrate that, by considering only families containing potentially autonomous LTR-retrotransposons, they account for about 1% of the genome of C. quinquefasciatus. In previous studies it has been estimated that 29% of the genome of C. quinquefasciatus is occupied by mobile genetic elements

    Genetic and molecular analysis of the gypsy chromatin insulator of Drosophila.

    No full text
    corecore