8 research outputs found

    A fractional Brownian motion model for the turbulent refractive index in lightwave propagation

    Full text link
    It is discussed the limitations of the widely used markovian approximation applied to model the turbulent refractive index in lightwave propagation. It is well-known the index is a passive scalar field. Thus, the actual knowledge about these quantities is used to propose an alternative stochastic process to the markovian approximation: the fractional Brownian motion. This generalizes the former introducing memory; that is, there is correlation along the propagation path.Comment: 11 pages, no figures. Submitted and revised for Optics Communication

    Canonical quantization of the boundary Wess-Zumino-Witten model

    Get PDF
    We present an analysis of the canonical structure of the WZW theory with untwisted conformal boundary conditions. The phase space of the boundary theory on a strip is shown to coincide with the phase space of the Chern-Simons theory on a solid cylinder (a disc times a line) with two Wilson lines. This reveals a new aspect of the relation between two-dimensional boundary conformal field theories and three-dimensional topological theories. A decomposition of the Chern-Simons phase space on a punctured disc in terms of the one on a punctured sphere and of coadjoint orbits of the loop group easily lends itself to quantization, providing at the same time a quantization of the boundary WZW model.Comment: 49 pages, latex, 5 figur

    Active and passive fields face to face

    Full text link
    The statistical properties of active and passive scalar fields transported by the same turbulent flow are investigated. Four examples of active scalar have been considered: temperature in thermal convection, magnetic potential in two-dimensional magnetohydrodynamics, vorticity in two-dimensional Ekman turbulence and potential temperature in surface flows. In the cases of temperature and vorticity, it is found that the active scalar behavior is akin to that of its co-evolving passive counterpart. The two other cases indicate that this similarity is in fact not generic and differences between passive and active fields can be striking: in two-dimensional magnetohydrodynamics the magnetic potential performs an inverse cascade while the passive scalar cascades toward the small-scales; in surface flows, albeit both perform a direct cascade, the potential temperature and the passive scalar have different scaling laws already at the level of low-order statistical objects. These dramatic differences are rooted in the correlations between the active scalar input and the particle trajectories. The role of such correlations in the issue of universality in active scalar transport and the behavior of dissipative anomalies is addressed.Comment: 36 pages, 20 eps figures, for the published version see http://www.iop.org/EJ/abstract/1367-2630/6/1/07

    Anisotropy in Turbulent Flows and in Turbulent Transport

    Full text link
    We discuss the problem of anisotropy and intermittency in statistical theory of high Reynolds-number turbulence (and turbulent transport). We present a detailed description of the new tools that allow effective data analysis and systematic theoretical studies such as to separate isotropic from anisotropic aspects of turbulent statistical fluctuations. Employing the invariance of the equations of fluid mechanics to all rotations, we show how to decompose the (tensorial) statistical objects in terms of the irreducible representation of the SO(3) symmetry group. For the case of turbulent advection of passive scalar or vector fields, this decomposition allows rigorous statements to be made: (i) the scaling exponents are universal, (ii) the isotropic scaling exponents are always leading, (iii) the anisotropic scaling exponents form a discrete spectrum which is strictly increasing as a function of the anisotropic degree. Next we explain how to apply the SO(3) decomposition to the statistical Navier-Stokes theory. We show how to extract information about the scaling behavior in the isotropic sector. Doing so furnishes a systematic way to assess the universality of the scaling exponents in this sector, clarifying the anisotropic origin of the many measurements that claimed the opposite. A systematic analysis of Direct Numerical Simulations and of experiments provides a strong support to the proposition that also for the non-linear problem there exists foliation of the statistical theory into sectors of the symmetry group. The exponents appear universal in each sector, and again strictly increasing as a function of the anisotropic degreee.Comment: 150 pages, 26 figures, submitted to Phys. Re

    Quantum matrix algebra for the SU(n) WZNW model

    Full text link
    The zero modes of the chiral SU(n) WZNW model give rise to an intertwining quantum matrix algebra A generated by an n x n matrix a=(a^i_\alpha) (with noncommuting entries) and by rational functions of n commuting elements q^{p_i}. We study a generalization of the Fock space (F) representation of A for generic q (q not a root of unity) and demonstrate that it gives rise to a model of the quantum universal enveloping algebra U_q(sl_n), each irreducible representation entering F with multiplicity 1. For an integer level k the complex parameter q is an even root of unity, q^h=-1 (h=k+n) and the algebra A has an ideal I_h such that the factor algebra A_h = A/I_h is finite dimensional.Comment: 48 pages, LaTeX, uses amsfonts; final version to appear in J. Phys.
    corecore