32 research outputs found

    Turning with the others: novel transitions in an SPP model with coupling of accelerations

    Full text link
    We consider a three dimensional, generalized version of the original SPP model for collective motion. By extending the factors influencing the ordering, we investigate the case when the movement of the self-propelled particles (SPP-s) depends on both the velocity and the acceleration of the neighboring particles, instead of being determined solely by the former one. By changing the value of a weight parameter s determining the relative influence of the velocity and the acceleration terms, the system undergoes a kinetic phase transition as a function of a behavioral pattern. Below a critical value of s the system exhibits disordered motion, while above it the dynamics resembles that of the SPP model. We argue that in nature evolutionary processes can drive the strategy variable s towards the critical point, where information exchange between the units of a system is maximal.Comment: 13 pages, 9 figures, submitted to Phys Rev

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    How Group Size Affects Vigilance Dynamics and Time Allocation Patterns: The Key Role of Imitation and Tempo

    Get PDF
    In the context of social foraging, predator detection has been the subject of numerous studies, which acknowledge the adaptive response of the individual to the trade-off between feeding and vigilance. Typically, animals gain energy by increasing their feeding time and decreasing their vigilance effort with increasing group size, without increasing their risk of predation (‘group size effect’). Research on the biological utility of vigilance has prevailed over considerations of the mechanistic rules that link individual decisions to group behavior. With sheep as a model species, we identified how the behaviors of conspecifics affect the individual decisions to switch activity. We highlight a simple mechanism whereby the group size effect on collective vigilance dynamics is shaped by two key features: the magnitude of social amplification and intrinsic differences between foraging and scanning bout durations. Our results highlight a positive correlation between the duration of scanning and foraging bouts at the level of the group. This finding reveals the existence of groups with high and low rates of transition between activies, suggesting individual variations in the transition rate, or ‘tempo’. We present a mathematical model based on behavioral rules derived from experiments. Our theoretical predictions show that the system is robust in respect to variations in the propensity to imitate scanning and foraging, yet flexible in respect to differences in the duration of activity bouts. The model shows how individual decisions contribute to collective behavior patterns and how the group, in turn, facilitates individual-level adaptive responses

    A hierarchy of heuristic-based models of crowd dynamics

    Get PDF
    International audienceWe derive a hierarchy of kinetic and macroscopic models from a noisy variant of the heuristic behavioral Individual-Based Model of Moussaid et al, PNAS 2011, where the pedestrians are supposed to have constant speeds. This IBM supposes that the pedestrians seek the best compromise between navigation towards their target and collisions avoidance. We first propose a kinetic model for the probability distribution function of the pedestrians. Then, we derive fluid models and propose three different closure relations. The first two closures assume that the velocity distribution functions are either a Dirac delta or a von Mises-Fisher distribution respectively. The third closure results from a hydrodynamic limit associated to a Local Thermodynamical Equilibrium. We develop an analogy between this equilibrium and Nash equilibia in a game theoretic framework. In each case, we discuss the features of the models and their suitability for practical use

    Are general circulation models obsolete?

    No full text
    International audienceTraditional general circulation models, or GCMs—that is, three-dimensional dynamical models with unresolved terms represented in equations with tunable parameters—have been a mainstay of climate research for several decades, and some of the pioneering studies have recently been recognized by a Nobel prize in Physics. Yet, there is considerable debate around their continuing role in the future. Frequently mentioned as limitations of GCMs are the structural error and uncertainty across models with different representations of unresolved scales and the fact that the models are tuned to reproduce certain aspects of the observed Earth. We consider these shortcomings in the context of a future generation of models that may address these issues through substantially higher resolution and detail, or through the use of machine learning techniques to match them better to observations, theory, and process models. It is our contention that calibration, far from being a weakness of models, is an essential element in the simulation of complex systems, and contributes to our understanding of their inner workings. Models can be calibrated to reveal both fine-scale detail and the global response to external perturbations. New methods enable us to articulate and improve the connections between the different levels of abstract representation of climate processes, and our understanding resides in an entire hierarchy of models where GCMs will continue to play a central role for the foreseeable future

    Crowdsourcing smartphone data for biomedical research:Ethical and legal questions

    Get PDF
    The use of smartphones has greatly increased in the last decade and has revolutionized the way that health data are being collected and shared. Mobile applications leverage the ubiquity and technological sophistication of modern smartphones to record and process a variety of metrics relevant to human health, including behavioral measures, clinical data, and disease symptoms. Information processed by mobile applications may have significant utility for increasing biomedical knowledge, both through conventional research and emerging discovery paradigms such as citizen science. However, the ways in which smartphone-collected data may be used in nontraditional modes of biomedical discovery are not well understood, such as using data to train artificially intelligent algorithms and for product development purposes. This paper argues that the use of mobile health data for algorithm training and product development is (a) likely to become a prominent fixture in medicine, (b) likely to raise significant ethical and legal challenges, and (c) warrants immediate scrutiny by policymakers and scholars. We introduce the concept of "smartphone-crowdsourced medical data," or SCMD, and set out a broad research agenda for addressing concerns associated with this new and potentially momentous practice. We conclude that SCMD for algorithm training raises a number of ethical and legal issues which require further scholarly attention to ensure that individual interests are protected and that emerging health information sources can be used in ways that maximally, and safely, promote medical innovation.</p
    corecore