
Neural Processing Letters manuscript No.
(will be inserted by the editor)

Spiking neural networks: background, recent
development and the NeuCube architecture

Clarence Tan · Marko Šarlija · Nikola
Kasabov

Received: date / Accepted: date

Abstract This paper reviews recent developments in still-off-the-mainstream in-
formation and data processing area of spiking neural networks (SNN) - the third
generation of artificial neural networks. We provide background information about
the functioning of biological neurons, discussing the most important and com-
monly used mathematical neural models. Most relevant information processing
techniques, learning algorithms, and applications of spiking neurons are described
and discussed, focusing on feasibility and biological plausibility of the methods.
Specifically, we describe in detail the functioning and organization of the latest ver-
sion of a 3D spatio-temporal SNN-based data machine framework called NeuCube,
as well as it’s SNN-related submodules. All described submodules are accompa-
nied with formal algorithmic formulations. The architecture is highly relevant for
the analysis and interpretation of various types of spectro-temporal brain data
(STBD), like EEG, NIRS, fMRI, but we highlight some of the recent both STBD-
and non-STBD-based applications. Finally, we summarise and discuss some open
research problems that can be addressed in the future. These include, but are not
limited to: application in the area of EEG-based BCI through transfer learning; ap-
plication in the area of affective computing through the extension of the NeuCube

C. Tan
Knowledge Engineering and Discovery Research Institute, Auckland University of Technology,
Private Bag 92006, Auckland 1010, New Zealand
Tel.: +64-9-921-9512;
E-mail: cltan@aut.ac.nz

M. Šarlija
Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, Zagreb 10000,
Croatia
Tel.: +385-1-6129-521
E-mail: marko.sarlija@fer.hr

N. Kasabov
Knowledge Engineering and Discovery Research Institute, Auckland University of Technology,
Private Bag 92006, Auckland 1010, New Zealand
Tel.: +64-9-921-9506
Fax: +64-9-921-9546
E-mail: nkasabov@aut.ac.nz

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/475654054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Clarence Tan et al.

framework which would allow for a biologically plausible SNN-based integration
of central and peripheral nervous system measures.

Keywords Artificial neural networks · Spiking neural networks · Spike encoding ·
Spike-timing dependent plasticity · Spatio-temporal brain data · NeuCube

1 Introduction

In the parlance of machine learning and artificial intelligence (AI), a neural network
can be defined as a network of neurons that are able to perform computations and
solve problems. Neural networks for learning as seen today, have come a long
way since their discovery in the late 50s by Hubel and Wiesel [1] followed by the
development of Neocognitron, a neural network composed of multiple layers, by
Fukushima in the early 80s [2]. Depending on the type of neurons used, artificial
neural networks (ANNs), as they are referred to, can be thought to belong to three
generations.

First-generation ANNs are composed of neurons that compute a weighted sum
of binary inputs and produce an output of 1 if the sum crosses a pre-defined
threshold, else the output is zero (see Figure 1a). These neurons are also known as
perceptrons [3] or threshold gates. Mathematically, a perceptron can be expressed
as:

y =

{
0,
∑
j wjxj ≤ θ

1, otherwise
(1)

where θ is a threshold parameter.
The second-generation ANNs are composed of artificial neurons, also known

as Sigmoid neurons, which apply a nonlinear activation function f to the sum
of weighted neuron inputs, as shown in Figure 1b. The function f is a sigmoid
function, which is smooth and differentiable. The primary motivation behind using
such functions is to enable the application of backpropagation algorithms, that are
based on error function gradient computation, to train the ANNs.

By stacking more than one layer of neurons, as shown in Figure 1c, and applying
backpropagation to learn multiple layers of representation, deep learning neural
networks can be constructed. Deep-learning neural networks are today capable
of solving problems in diverse areas ranging from speech recognition [4], visual
recognition [5], pedestrian detection [6], recognition of traffic signs [7] to playing
GO [8] and biomedical signal processing [9,10], and can in some cases outperform
humans.

As impressive as this feat may be, the fact remains that biological neurons in
humans and other animals still outperform ANNs in terms of energy and efficiency.
Many deep learning algorithms rely on hundreds of graphical processing units
(GPUs) and central processing (CPUs) to solve problems which a human brain
can solve in a fraction of these resources in terms of energy. To give an example, it
required 1 megawatt (MW) of energy to solve GO challenge using deep learning,
whereas the best human players could achieve similar results in about 20 Watts
[11], which is the power rating of a human brain.

Furthermore, deep learning networks are not biologically plausible. Although
initially inspired by biological neurons, the neurons in deep-learning networks solve

Spiking neural networks: background, development and NeuCube 3

(a) (b) (c)

Fig. 1: Model of a perceptron that uses (a) a step-function to give an output of
1 if the weighted sum of inputs cross a pre-defined threshold and (b) a sigmoid
function to give a continuous output based on the weighted sum of continuous
inputs. A neural network model with one hidden layer is shown in (c)

the learning problem in a fundamentally different manner. Bengio et al. in their
recent work discuss problems that arise regarding the biological plausibility of
backpropagation [12]. For instance, backpropagation algorithms are not biologi-
cally plausible as biological neurons also exhibit nonlinearity, whereas backprop-
agation algorithm is purely a linear operation. Another crucial issue is the bi-
ological implausibility of ANNs themselves, as biological neurons communicate
with each other using discrete spikes known as action potentials and not by con-
tinuous values as seen in the implementation of deep learning algorithms with
second-generation ANNs. These issues gave rise to the present or third generation
of ANNs known as the spiking neural networks (SNNs) [13], which use spiking
neurons as their computational unit. In the remainder of the paper, ANNs will
be used to refer to second-generation ANNs. Accordantly with what is previously
said, off-the-mainstream approaches in neural networks and machine learning for
pattern recognition have been recently encouraged [14] in Neural Processing Let-
ters, with an entire special issue being devoted to various off-the-mainstream fields
in pattern recognition (associative memories, density-related algorithms, etc.). We
believe that the SNNs, being the third-generation of ANNs, as an alternative or
a complement to traditional second-generation ANNs, definitely deserve attention
when considering off-the-mainstream approaches in neural processing.

The paper is organized as follows. Section 2 formally introduces SNNs and
section 3 briefly reviews some of the popular computational models used in SNNs.
Sections 4 and 5 describe information processing and learning algorithms used in
SNNs. Finally, section 6 presents a recently developed 3D SNN architecture for
mapping, learning and understanding of spatio-temporal brain data called Neu-
Cube [15]. In the conclusion (section 7) we discuss potential applications and chal-
lenges in SNNs/NeuCube, and encourage it’s further use and development while
not staying limited to just brain-data-specific applications.

2 Spiking neural networks

The human brain is composed of 1012 neurons and each neuron makes about 10,000
connections, known as synapses. The structure of a neuron can be divided into
three basic parts - 1) Dendrites, 2) Cell body or soma, and 3 Axons. The dendrites

4 Clarence Tan et al.

Fig. 2: Illustration of a pre-synaptic neuron (green) and a post-synaptic neuron
(purple) connected through a synapse. Neurotransmitters (red circles) are released
at the synapses of many dendrites of a post-synaptic neuron, giving rise to post-
synaptic potentials, which are finally summed and a decision to send an action
potential via the axon of post-synaptic neuron is made.

are nerve cell extensions that process input signals to a neuron via synapses and
axon, the thin projection of a neuron, can be thought of as a long process that
carries the output signal away from the neuron. The cell body or soma of a neuron
contains the nucleus and cytoplasm, as with any other cell in the body.

In Figure 2, what is known as a pre-synaptic neuron is carrying an action
potential (AP) or spike through its axon, which causes the release of neurotrans-
mitters at the synapse. The neurotransmitters come in two flavors - excitatory and
inhibitory. If an excitatory neurotransmitter is released, positive ions are released
into the dendrite of the post-synaptic neuron, causing an excitatory post-synaptic
potential (EPSP). If an inhibitory neurotransmitter is released, negative ions flow
into the dendrite of post-synaptic neuron causing an inhibitory post-synaptic po-
tential (IPSP). At the soma of the post-synaptic neuron the IPSPs and EPSPs
from all the pre-synaptic neurons are spatially and/or temporally summed. When
this sum exceeds a threshold, the post-synaptic neuron fires an AP. Thus, the AP
can be thought of as a ”currency” with which neurons exchange information, and
using discrete spikes like APs rather than continuous signals is what makes the
brain energy-efficient. Spiking neural networks (SNNs) are a special class of arti-
ficial neural networks (ANNs), also commonly referred to as the third generation
of ANNs, where the neuronal units communicate using discrete spike sequences,
as exemplified in Figure 3. Analogous to a biological neuron, the inputs to a spik-
ing neuron are discrete spikes, which are then combined to produce an output
spike if a certain threshold is exceeded. Otherwise, the output is zero. Therefore,
SNNs also contain temporal dynamics, which makes them suitable for real-time

Spiking neural networks: background, development and NeuCube 5

Fig. 3: Model of a spiking neuron.

operation, making updates that are purely event- and data-driven, unlike the re-
peated and often redundant process of updating the weights in ANNs, which is
the computational bottleneck for tasks that require real-time interaction with the
environment.

3 Computational models of SNNs

As mentioned previously, SNNs use spiking neurons as their main computational
unit. Numerous mathematical models of a spiking neuron have been proposed in
the literature [16]. Below we briefly review the three most widely used models - 1)
Leaky integrate-and-fire, 2) Izhikevich model and 3) Spike response model (SRM).

3.1 Leaky integrate-and-fire model

In this type of model, first introduced by Lapicque [17,18] over a hundred years
ago, the membrane is characterised by a resistance R and capacitance C. Let
u(t) be the voltage across the membrane at time t and urest be the resting-state
potential. Then, we have the following equation describing an RC-circuit:

i(t) =
u(t)− urest

R
+ C

du(t)

dt
(2)

where i(t) is the membrane current. Rearranging the terms in the above equation,
we can write:

τ
du(t)

dt
= u(t)− urest +Ri(t) (3)

where τ is the membrane time constant. A spike is generated at time tf , when
the membrane potential reaches the threshold, i.e., u(tf) ≥ uthresh . After tf ,
the membrane potential is reset to the resting state value urest and for t > tf
the dynamics are again given by the equation above (3). To make this model
biologically more plausible, an absolute refractory time δref may be included such
that the dynamics are restarted as per the equation 3 after tf + δref rather than
immediately after tf [19].

6 Clarence Tan et al.

3.2 Izhikevich model

The Izhikevich model [20] basically has two variables, u and v that describe mem-
brane voltage and the recovery rate of a neuron. The evolution of the membrane
voltage u is described by a pair of ordinary differential equations (ODEs):

du

dt
= 0.04u2 + 5u+ 140− v − i (4)

τ
dv

dt
= a(bu− v) (5)

After initiating the action potential, the following resetting scheme is used:

u = cv = v + d (6)

when u ≥ 30mV , which is the peak of the spike [21]. The model parameters, a, b,
c and d can be tuned to produce various neural dynamics [20,21]. Briefly,

1. The parameter a describes the time-scale of v.
2. The parameter b describes sensitivity of v to the (subthreshold) fluctuations

in u.
3. The parameter c describes the resetting of u after the initiation of a spike,

which is caused by fast high-threshold K+ conductance.
4. The parameter c describes the resetting of v after the initiation of a spike,

which is caused by slow high-threshold K+ and Na+ conductance.

3.3 SRM

The spike-response model (SRM) is based on kernel function K(·) and described
by a single variable ui, which is the membrane voltage of the i-th neuron. To
describe this model, let us assume that the neuron i is at a resting-state potential
of 0 Volts. Incoming spikes from pre-synaptic neurons will affect ui(t) and after
some time, ui(t) will return to its resting state value. If the net effect of all the
incoming spikes is such that ui(t) crosses the threshold θ, then an output spike
is triggered. Assuming that the neuron i has last fired its spike at time t0, the
dynamics of ui(t) is given by:

ui(t) = η(t−t′i)+
∑
j

wij
∑
f

εij
(
t− t′i, t− t(f)j

) ∫ ∝
0

κ
(
t− t′, s

)
I(t−s)ds (7)

where the function η(·) describes the form of the action potential, i.e., the spike

and I is the external driving current. The term t
(f)
j describes the time of the input

spike of neuron j and wij represents the synaptic weight between neurons i and j.

Spiking neural networks: background, development and NeuCube 7

3.4 Other models

In addition to the three widely used deterministic models in SNNs described above,
several other models of spiking neurons have been proposed and these include
Hodgkin-Huxley model (HH) [22], Wilson model [23], FitzHugh-Nagumo model
[24], Hindmarsh-Rose model [25] and Morris-Lecar model [26] (see [21] for descrip-
tion). The table below shows a comparison of various spiking models in terms of
the number of variables, complexity and biophysical plausibility, which is adapted
and modified from [21].

Table 1: Comparison of different models of spiking neurons

Models No. of variables Complexity Biologically plausible

Leaky integrate-and-fire 1 Very low No
Izhikevich 2 Very low No
SRM 1 Low No
Hodgkin-Huxley 4 Very high Yes
FitzHugh-Nagumo 2 Medium No
Wilson 2 Medium No
Moris-Lecar 3 High Yes

It is important to note that all widely used models discussed in this paper
are deterministic, and as such might have limited applicability for solving more
complex problems in the future. Spiking processes in biological neurons could also
be viewed on as stochastic by nature. For example, spike time could also depend,
besides on the deterministic input signals, on gene and protein expression [27],
on physical connection properties [28], on probabilities of spikes being received
at the synapses, etc. These facts motivated for new ways to enhance the current
SNN models with probabilistic parameters, yielding a recent development of a
probabilistic spiking neuron model (pSNM) [29], that may allow for a broader
range of applications and understanding in the future, but exceeds the scope of
this paper.

4 Information processing in SNNs

The real world data and signals are analogue, continuous. Efficient and successful
encoding of such inputs into discretely timed spike trains is the crucial and initial
step of information processing in SNNs [30]. For this cause, we turn to prevailing
neural coding theories in neuroscience.

Almost a century ago, Adrian and Zoltermann demonstrated that the firing
rate of the stretch receptor in a muscle spindle of a frog increased with the strength
of the stimulus [31], leading to the conclusion that firing rate is the primary ”cur-
rency” of information exchange. This coding scheme is known as rate coding. Since
this seminal study, there have been many other studies that have challenged this
simplistic view of neural coding [32,33,34]. In particular, Thorpe [35] argued that
since neural processing is so fast (for example visual processing is completed un-

8 Clarence Tan et al.

der 100 ms), it must rely on temporal coordination of spikes rather than the firing
rate, which requires more time.

Still, one of the fundamental questions in neuroscience is how neurons encode
and decode information through spikes [36]? Is it through rate coding or spike
coding? This remains a matter of intense debate and below we briefly review some
of the popular theories.

4.1 Rate coding

The rate code model is one of the most commonly used models to describe infor-
mation processing and can use different definitions for the firing rate. The simplest
definition of the firing rate is the temporal average, i.e., the number of spikes di-
vided by the corresponding time interval duration. One can also define the firing
rate in the context of spatial average, where spikes from a population of neurons
within a certain time-interval are averaged. For the third definition of firing rate,
one can consider spikes as random events and the firing rate is given as the av-
erage over several trials, also known as spike density, of the same stimulus for a
single neuron. Although it has been argued that the rate coding scheme based on
spike density is biologically not very accurate [32,35], it is one of the most widely
used/considered coding schemes.

4.2 Temporal spike coding

As opposed to rate coding, temporal coding encodes the information by employing
the exact timing of individual spikes. Such approach to information processing in
SNNs is biologically supported by evidence based on observation of different types
of biological neurons [34], with first successful application in SNN-based supervised
learning demonstrated in [37]. In the following paragraphs we discuss some of the
commonly used coding schemes based on temporal spike coding.

4.2.1 Time-to-first-spike

In this neural coding scheme, information is encoded in the time between the
beginning of the stimulus and the appearance of the first spike (see Figure 4).
Such a scheme is ideal for fast processing of information as it requires only a few
milliseconds after the appearance of a stimulus to convey a decision on a stimulus.

4.2.2 Rank order coding

In the rank order (RO) coding scheme [38], a population of neurons is considered
and the information is encoded in the order in which the neurons spike, as shown
in Figure 5a. This scheme assumes that each neuron in the population fires only
once after the presentation of a stimulus.

Spiking neural networks: background, development and NeuCube 9

Fig. 4: Time-to-first-spike: neuron n1 is the first to spike at δt after the stimulus
onset.

(a) (b)

Fig. 5: Rank order coding (a): information is encoded in the order in which neurons
spike. In this example the order is n1-n3-n2-n5. Latency coding (b): information
is encoded in the spike timing δt1, δt2, δt3 (neurons n3, n2 and n5) relative to n1
which spikes first.

4.2.3 Latency coding

The latency coding scheme depends on the relative timing of spikes (see Figure 5b),
which also has implications on whether a synapse is potentiated or depressed. For
instance, if the relative timing of spikes between the presynaptic and postsynaptic
neuron is less than 20ms, then the long-term potentiation (LTP) occurs, otherwise
long term depression (LTD) occurs.

4.2.4 Phase coding

In this coding scheme (see Figure 6a) it is assumed that neurons spike at different
phases with respect to some referent oscillation and thus the phase of the pulse
concerning the referent oscillation codes the information. Experimental studies
in rats have shown that the information about the spatial location is encoded
in the phase of a spike with respect to the hippocampal oscillation (ref.). Such

10 Clarence Tan et al.

(a) (b)

Fig. 6: Phase coding (a): The internal reference oscillation is depicted as a sinu-
soidal signal and the neurons n1, n2 and n3 spike at the same phase relative to
this oscillation. Synchrony coding (b): neurons n3, n4 and n5 spike almost at the
same time, as opposed to neurons n1 and n2 that are not synchronized in their
spikes.

oscillations, that are due to a population of neurons, are quite common in several
areas of the brain [39].

4.2.5 Synchrony coding

In synchrony coding model, neurons that spike synchronously are believed to en-
code the information. Based on several experimental studies (ref.), it has been
shown that neurons tend to fire synchronously (see Figure 6b) when they repre-
sent the different bits of information on the same object. For example, it was shown
that when the neurons in the visual cortex are activated with a single contour,
they tend to synchronize their discharges, but not when the contour is moving in
different directions (ref.).

5 Learning in SNNs

The learning methods for SNNs fall into two categories: 1) Rate-based learning and
2) Spike-based learning. This naturally arises from the previous section (section 4),
where we have divided information processing approaches in SNNs into rate-based
and spike-based. The following subsections (5.1 and 5.2) provide descriptions of
the two learning categories.

5.1 Rate-based learning

Training deep-SNNs directly using backpropagation is not possible as gradients
cannot be computed for spike inputs. Thus, an indirect approach of training an
ANN with backpropagation and then converting it into an equivalent SNN by
relating the activations of ANN units to firing rates of spiking neurons is used. The
relation between the transfer function (i.e., the input-to-output relationship) of a

Spiking neural networks: background, development and NeuCube 11

spiking neuron and the activation of the rectified linear unit (ReLU) of ANNs, have
been thoroughly described in [40,41]. Given a network of L layers, with weights
Wl, l ∈ 1, ..., L connecting layer l− 1 to l with bli being bias for neuron i in layer l,
and assuming that the number of units in each layer is Nl, the activation in ANN
is given by:

ali := max

0,

Nl−1∑
j=1

W l
ija

l−1
j + bli

 (8)

with initial condition a0 = x as input, which is assumed to be normalized so that
xi ∈ [0, 1]. In case of a SNN, the membrane potential uli(t), is driven by the input
current zli(t):

zli := τ

Nl−1∑
j=1

W l
ijΘ

l−1
j + bli

 (9)

Where Θl−1
j = Θ(uli(t− 1) + zli(t)− θ) is a step function. The spiking neuron

integrates the inputs zli(t) until the membrane potential uli(t) exceeds the threshold
θ.

Given that an input pattern is presented with time step dt, the maximum firing
rate is constrained by 1/dt and the firing rate is given by rli (T) =

∑T
t=1Θ

l
t,i/T

which is simply the number of spikes generated divided by the total time the input
is presented. The ANN-to-SNN conversion proceeds such that the firing rates rli
correlate with activations of ReLU units, ali, such that rli (T)→ ali/dt [42,43]. In
the following subsections we briefly review some of the work that has employed
ANN-to-SNN conversion.

In a study by Merolla et al. [44], a two-layer (484 visible units and 256 hidden
units) restricted Boltzmann machine (RBM) was trained on handwritten digits
from MNIST database and the weights were learned using contrastive divergence
algorithm, achieving an accuracy of 94% when tested on out-of-sample data. After
learning the weights, the 256 hidden units were converted to integrate and fire
neurons and two axons (for excitatory and inhibitory synapse) represented each
of the 484 visible unit. Following a thresholding procedure, continuous weight ma-
trices were converted to binary matrices and spiking RBM neurons, achieving an
accuracy of 89%, which was less than what was achieved by RBM before conver-
sion to spiking version. Using Seigert neurons as computational units, O’Connor
et al. [45] trained each RBM in a time-stepped mode, using CD algorithm for
training, with modification to encourage sparse and receptive fields in the hidden
layer. For the conversion of RBMs to equivalent spiking network with LIF neu-
rons, the firing rates of the Siegert neurons in RBMs are normalized and converted
to activation probabilities. Hunsberger and Eliasmith [46] proposed to transfer a
static convolutional neural network (CNN), modified from [47] to spiking neurons.
They trained the static CNN by using a smoothed version of LIF rate equation,
so that the gradient during backpropagation remains bounded. Furthermore, in
order to simulate variability in filtered spike trains the static CNNs were trained
with noise added to output of each neuron for each training example. The static
CNN was then converted to a SNN by replacing back the soft-LIF model with the
normal LIF spiking model and removing the noise added during training. Esser et

12 Clarence Tan et al.

al. [48] used a training network sharing the same network topology as the deploy-
ment network, TrueNorth neurosynaptic chip (P. A. [49]). The training network
takes data (input and output of neurons, synaptic connections) in a continuous
format, with the constraint that the values are within the range [0, 1], which can
be obtained by re-scaling the pixels of input images. These continuous values can
then be interpreted as a probability of a spike occurring or not when mapping
to the corresponding hardware. The network was trained using backpropagation
methodology and the probability whether a neuron will spike or not was derived
using complementary cumulative distribution of a Gaussian function. The perfor-
mance of SNNs obtained after conversion of ANNs on benchmark tasks is still
lower than what is achieved by state-of-the-art ANNs and to overcome this, Diehl
et al. [42] used ReLUs and mapped the weights from the ReLU network to network
with integrate-and-fire units. Furthermore, bias was fixed to zero throughout the
training with backpropagation. Finally, the key step of weight normalization was
employed, which helped in reducing the errors due to replacing ReLUs with IF
neurons.

The major drawback of rate-based learning, as an indirect learning approach
in SNNs is the fact that, since traditional rate-coding is used in ANNs, processing
times are longer and many spikes are needed to encode the input. Finnaly, we
summarize some of the main challenges in rate-based learning:

1. Negative values Negative values can arise when using ANNs like CNNs for
several reasons:
• Sigmoid function used in CNNs can result in negative outputs.
• Since weights and biases can both be negative, the output which is given

as sum of weights and biases can be negative.
• Preprocessing step of input image or pattern can produce negative values.

Although neurons with negative values can be represented as inhibitory neu-
rons in SNNs, this would require doubling of the neurons. An undesirable con-
sequence of this would be a direct increase in hardware resources and power
consumption. Also, adding inhibitory neurons to SNNs can lead to complicated
interconnections.

2. Bias Representing biases in spiking networks is not a straightforward task and
the biases in each layer can be positive or negative.

3. Max-pooling Max-pooling in SNNs requires more neurons as we need two-
layer neural network with lateral inhibition to implement spatial max-pooling
analogous to what is done in convolutional neural networks.

5.2 Spike-based learning

Spike-based learning is based on spike-timing dependent plasticity (STDP), which
is believed to be the main form of synaptic change in neurons [50] and involved in
learning and memory formation in mammalian visual cortices. Bi and Poo provided
the first evidence based on biological observations, on the importance of relative
timing of the pre- and post-synaptic spikes in modulating the synaptic efficacy
[51]. Interestingly, one of the first spike-timing-dependent learning algorithms was
described by Grestner already in 1993, where it was shown using SRM neurons
that coding by spatio-temporal spike patterns was beneficial over mean firing rate

Spiking neural networks: background, development and NeuCube 13

Fig. 7: The concept of STDP: the function on the right shows the change of the
synaptic connection weight ∆w as a function of the time difference ∆t between a
pre- and a postsynaptic spike arrival time. Positive ∆t (presynaptic spike before
postsynaptic) leads to Long-Term Potentiation (LTP) of the synapse, with negative
∆t (postsynaptic spike before presynaptic) leads to Long-Term Depression (LTD)
of the same synapse. Spike timings within two pre- and postsynaptic spike pairings
are shown on the left: first pairing results with a negative ∆t value and the second
pairing with a positive ∆t value.

[52]. Over the last few decades, evidence of STDP as a learning mechanism has
been established in both in vivo and in vitro studies [53,54,55] and STDP has
been widely used as learning algorithm in the field of AI. In this section we briefly
review the concept of STDP and some works using STDP learning rule for training
SNNs.

According to the STDP learning rule [56], the strength of the synaptic weight
is proportional to the degree of correlation between the spikes in the pre-synaptic
and post-synaptic neuron. As shown in the Figure 7, if a spike occurs in the post-
synaptic neuron shortly (under 20 ms) after the occurrence of spike in pre-synaptic
neuron, the synaptic connection is strengthened and this is known as long-term
potentiation (LTP). On the contrary, if a post-synaptic neuron fires before the pre-
synaptic neuron, long-term depression (LTD) occurs which decreases the synaptic
weight. The STDP rule describing the change in weights ∆w is generally given as:

∆w =

Ae
|tpre−tpost|

τ , tpre − tpost < 0, A > 0

Be
|tpre−tpost|

τ , tpre − tpost > 0, B < 0
(10)

where A andB are learning rates for LTP and LTD, with τ being the time constant.
Generally, we can say that the strenght of a synapse is increased at the moment of
postsynaptic firing by an amount that depends on the value of the trace left by the
presynaptic spike. Similarly, the weight is depressed at the moment of presynaptic
spikes by an amount proportional to the trace left by previous postsynaptic spikes.

It has been demonstrated that by selecting inputs which have low time jitter,
STDP increases the post-synaptic spike time precision [19]. Several strategies for
training SNNs based on STDP learning rule have been proposed. Kheradpisheh
et al. [57] proposed an STDP-based learning approach for SNNs, whose architec-
ture consisted of three convolutional layers comprising nonleaky integrate-and-fire
neurons equipped with STDP and three pooling layers. The first layer uses a dif-
ference of Gaussian (DoG) filter which encodes the contrast strengths in the input

14 Clarence Tan et al.

image to latencies, leading to earlier firing of neurons for higher contrasts and vice-
versa, thus implementing rank-order coding scheme. The neurons in convolutional
layers integrate these spikes and fire if threshold is reached, whereas the pooling
layers provide translational invariance using nonlinear max pooling. Their results
showed that SNNs achieved accuracies of 99.1% on Caltech face/motorbike task
and 98.4% on the MNIST dataset. On the ETH-80 datasets, which consists of im-
ages of various objects taken from different viewpoints, an accuracy of 82.8% was
achieved. Diehl and Cook [42] presented a SNN with two-layers for digit recogni-
tion. In the first-layer, the intensity of each pixel of the input image is converted
to a Poisson-spike whose firing rate is proportional to the intensity. The second
layer comprised excitatory and as many inhibitory neurons, with excitatory neu-
rons being connected to inhibitory neuron in a one-to-one fashion, whereas each
inhibitory neuron being connected to all the excitatory neurons except the one it
received an input from. This arrangement provides lateral inhibition with com-
petition among excitatory neurons. The changes in weights are given by different
STDP-based learning rules that make use of exponential weight dependence. The
demonstrated an accuracy of 95%, achieved on the MNIST benchmark. Tavanaei
et al. [58] trained a SNN consisting of Izhikevich neurons (see section 3.2) for
isolated spoken digit reconstruction. The training is performed using the STDP
learning rule which is a mixture of Hebbian and anti-Hebbian STDP in a super-
vised fashion, using a teacher signal at the output that determines the type of
STDP to be used based on whether the desired output neurons spike (Hebbian)
or not (anti-Hebbian). When tested on the Aurora dataset [59], the overall classi-
fication accuracy was 90.8% without noise and 70.2% under 10dB noise.

6 NeuCube

6.1 From evolving connectionist systems to dynamic evolving SNNs

Evolving connectionist systems (ECOS) are generally modular systems that evolve
both their structure and functionality from incoming information/data, in a way
that is continous, self-organized, on-line, adaptive and interactive [60,61]. Translat-
ing the principles of ECOS to SNNs, neurons are created (evolved) incrementally
clustering the input data in either supervised or unsupervised way. This paradigm
results in what we now call evolving spiking neural networks (eSNN) [61,62] that
can learn patterns within the data by creating (evolving) and merging (connect-
ing) spiking neurons. The dynamic eSNN (deSNN), introduced in [63], combines
rank-order (see section 4.2.2) and temporal (e.g. STDP, see section 5.2) learning
rules. All ECOS-type systems, from simple ones to eSNN and deSNN, are gener-
ally guided by the same main principles (i.e. they have evolving structures; they
learn and partition the problem space locally, allowing for a faster adaptation;
they learn in a continuous, on-line, incremental way [63]). It has been argued that
SNNs are in general most suitable for the creation of a unifying computational
framework for learning and understanding of various spatio- and spectro-temporal
brain data (STBD) [15], such as EEG, fMRI, DTI, MEG, and NIRS, mainly due
to the fact that SNNs use the same computational principle that generates STBD:
spiking information processing, as described in the previous sections of the pa-
per. In the following subsection, we describe the latest version of an implemented

Spiking neural networks: background, development and NeuCube 15

Fig. 8: A schematic representation of the SNN-based NeuCube architecture, con-
sisting of: input data encoding module; 3D SNNr module; output function module
(e.g. for classification or prediction). The gene regulatory networks (GRN) module
is optional and is left out for the purposes of this paper. Adapted from [15].

SNN architecture, called NeuCube, first introduced in [15], with it’s specific input
encoding, STDP learning and deSNN-based output representation. NeuCube is
mainly designed for the creation of models that map, learn and help in the under-
standing of STBD. However, we will discuss some current problems in the area of
brain-computer interface (BCI) and affective computing that could be addressed
through an SNN-based architecture like NeuCube.

6.2 SNN implementation - NeuCube framework

General principles of the NeuCube architecture were first presented in [64], followed
by a detailed description of the entire architecture in [15]. In this paper we focus
on the latest version of the SNN-based part of the NeuCube architecture, depicted
in Figure 8. It consists of the following modules:

• Input module: implements input data encoding
• Representation module: 3D SNN reservoir (SNNr) module
• Output module: implements the output function, i.e. classification

The gene regulatory network (GRN) module, parameter optimisation module, and
visualisation and knowledge extraction module are all optional and are left out
for the purposes of this discussion. The MATLAB-based implementation of the
architecture is shown in Figure 9.

6.2.1 Input module: encoding

The goal of spike encoding (background described in section 4) is the transfor-
mation of continuous input timeseries into sparse spike trains of exciting (+1)
and inhibiting (−1) spikes. The thresholding representation (TR) algorithm is the
most commonly used spike encoding algorithm. It is also called the Address Event

16 Clarence Tan et al.

Representation (AER) method (as in [65]). The method is based on thresholding
the rate of change (x′ in equation (14)) of the same input variable over time, and
is suitable when the input data is a stream (which is mostly the case).

The NeuCube implementation of the TR spike encoding algorithm is based on
the variable threshold value that is calculated for each of the input data channels.
The point of this variable threshold array is for it to be suitable concerning the
specific signal dynamics, that could vary between different applications or even
different input channels of the same application. For each of the input channels,
the variable threshold is calculated based on one scalar input parameter (αTR) in
the following way:

V T (k) =
1

N

N∑
i=1

(µ+ σ · αTR) (11)

µ =
1

T

L−1∑
j=1

x′ (12)

σ =

√∑T−1
j=1 (x′ − µ)2

T − 2
(13)

x′ = |X (j + 1, k, i)−X (j, k, i)| (14)

where N is the number of samples, T is the signal length (number of time points
per data sample), and k goes from 1 to number of channels Ninput. X is a T ×
Ninput × N data matrix, αTR is the spike threshold parameter, and V T is the
resulting variable threshold array. Equation (11) represents the threshold value
for the k-th input channel.

Once we have determined the threshold values for each of the channels (accord-
ing to equation (11)), every signal in the dataset is transformed in the following
way:

• Exciting spike train is a sparse signal of the same length as the input signal,
with a value of 1 at each time step where the positive signal difference (rate of
change) exceeds the variable threshold.
• Inhibiting spike train is a sparse signal of the same length as the input signal,

with a value of 1 at each time step where the negative signal difference (rate
of change) exceeds the variable threshold.
• The two spike trains are subtracted, to get a spike train of values 1, 0 and −1.

These sparse representations are then used as inputs to the spatially located
neurons from the SNNr module (yellow neurons in Figure 9a).

Different spike encoding algorithms have different characteristics when repre-
senting the input data. Therefore, besides the described TR spike encoding algo-
rithm, one can choose to use the Bens Spker Algorithm (BSA) [66], Moving Win-
dow (MW) algorithm, or Step Forward algorithm, as these are all implemented
in the current version of the NeuCube [67], but detailed explanations are here
omitted. Our general recommendation when choosing a proper spike encoding
algorithm, would be to figure out what information the spike trains shall carry
for the original signals. After that, the underlying patterns in the resulting spike

Spiking neural networks: background, development and NeuCube 17

(a) (b)

Fig. 9: Current version of the MATLAB-based software implementation of the
NeuCube architecture: an exemplary classification task with 3-class EEG data. (a)
shows the brain/cube (SNNr) neuron coordinates, with the information regarding
the unsupervised STDP training phase. (b) shows the connectivity of the SNNr
after training (positive connections are represented in blue and negative in red; a
brighter neuron has more connections)

trains will have higher interpretability and will hopefully yield a more successful
SNNr representation. On the other hand, poor/inadequate spike encoding algo-
rithm choice will essentially mean loss of useful information and can introduce
information noise. Hence, spike encoding, being the first link in the processing
chain, is definitely also a highly important one. Algorithm 2 (appendix) sums up
equations 11-13, with the rest of the spike encoding procedure in a compact form.

6.2.2 3D SNNr initialization

The 3D SNN reservoir module, also called the SNNcube (SNNc), is basically a
group of spatially located spiking neurons, usually with known coordinates of the
input neurons. The 3D structure of the neurons and their connections, require a
visualization that goes beyond a traditional 2D connectivity/weight matrix. Fig-
ure 9 shows a 3D SNNc of Ncube = 1471 brainmapped spiking neurons, whoose
coordinates are based on the Talairach Atlas, a human brain template [68]. SNNc
structure (spiking neuron coordinates) can be defined automatically (by specify-
ing how many equally-spaced neurons shall be created for x, y, and z coordinates;
resulting in a cuboid shape), or by loading the coordinates from a file. In our case
(coordinates based on the Talairach Atlas), the resulting shape was brain-like, but
generally the resulting shape of the SNNc can be arbitrary.

The spike trains, obtained after encoding data using the TR algorithm (section
6.2.1), are entered into the SNNc via corresponding brain-mapped input neurons.
The number of input neurons Ninput is usually defined by the number of channels
arising from the loaded dataset. Coordinates of the input neurons (input mapping
locations) are defined either manually, automatically (by graph matching), or from
a file. These should correspond to the locations of the origins where the data
channels was collected (if such locations exists). In Figure 9a, the yellow input
neuron coordinates naturally correspond to specific EEG electrode locations. These

18 Clarence Tan et al.

input neuron coordinates need to be a subset of the SNNc coordinates (usually
Ninput � Ncube).

L2 norm is calculated to get distances between pairs of neurons resulting in
a Ncube × Ncube matrix of distances Ldist. The connections between the neu-
rons in the SNNc are initialized using the small-world connectivity (SWC) ap-
proach, where a radius is defined as a parameter for connecting neurons within
this radius (SWR). This results with an SNNc of sparsely connected neurons.
Another parameter, LDC (long distance connectivity), can be used to initialize
connections beyond the SWR. Generally, the LDC probability parameter would
represent the probability of establishing a connection between two neurons with
Ldist (ij) > SWR. Initially, all connections C(ij) between all neurons in the cube
are set to 1. The connection flag between two neurons is set to zero (disconnected)
if Ldist (ij) > SWR. A connection between a neuron i and a neuron j means that
i is a presynaptic neuron in that connection, and j is postsynaptic. In a situation
where a connection is ’bidirectional’ we make a random choice leaving only one
of the two. After connection initialization, 80% of the weights (matrix W) are
expected to be positive and 20% are expected to be negative:

W(ij) = sgn(rand (1)− 0.2) · rand (1) · 1

Ldist (ij)
(15)

rand (1) generates pseudorandom values drawn from the standard uniform
distribution on the open interval (0, 1). It is also important to note that all input
neurons can only be presynaptic neurons. Algorithm 3 (appendix) sums up the
SNNc initialization procedure described in this section.

6.2.3 3D SNNr STDP-based training

After the input data encoding (section 6.2.1), and connection and weight initial-
ization (section 6.2.2), the SNNr is trained in an unsupervised manner using the
STDP learning rule (introduced in section 5.2), based on the training data. This
step was described in a compact algorithmic form in [69]. Here we provide a more
detailed, precise description of the NeuCube’s implementation of STDP learning.
The algorithm relies on the following parameters:

• D (potential leak rate): rate of passive potential degradation through inactivity
• R (refractory time): determining a period of resting between spikes
• η (STDP rate): learning rate, used for weight updating
• β (firing threshold): potential threshold for generating a spike
• Niter: number of training iterations (passes through the training data)

Parameter that determines the LDC probability (explained in section 6.2.2)
is here omitted, as it’s not crucial for the understanding of NeuCube’s STDP
implementation.

At each timestamp (considering there are T timestamps for each datasample),
Ninput spike states are fed to the corresponding input neurons of the SNNc, and
potential propagations are calculated. Let us consider the (i, j) neuron pair in
which i is the presynaptic and j is the postsynaptic neuron. If a presynaptic
neuron i fires, and neuron j is not in refractory time:

Pj(t) = Pj(t− 1) + W(i,j) (16)

Spiking neural networks: background, development and NeuCube 19

If at any time t, any neuron k exceeds the firing threshold potential β, it
fires and it’s potential Pk (t) is reset to 0. It’s refractory counter Rk is set to R
(refractory time). If at any time t, any neuron k did not exceed the firing threshold
potential β, it’s potential is reduced: Pk(t) = Pk(t − 1) − D, and refractory
counter updates: Rk = Rk − 1.

Following the general STDP rule (section 5.2), if a neuron i as presynaptic fires

at time t and postynaptic j has fired last at tfj , the connection weight is updated:

W(i,j) = W(i,j) − η/(t − tfj + 1) (17)

On the contrary, if a neuron j as postsynaptic fires at time t and a presynaptic
neuron i has fired last at tfi :

W(i,j) = W(i,j) + η/(t − tfi + 1) (18)

At the beginning of each new training iteration niter (of Niter) the learning
rate η is adapted to η√

niter
. It is important to note that all times considered in

the learning algorithm are discrete (meaning t, tfj , tfi , Rk and R are all integers).
Algorithm 4 (appendix) sums up NeuCube’s unsupervised STDP-based procedure
described in this section.

6.2.4 deSNN representation and supervised learning

After the unsupervised training, described in the previous section, the SNNc con-
nectivity (Figure 9b) can be analysed and observed, hopefully yielding a better
interpretability of the data when compared to traditional data processing and
learning methods. This at the same time allows to identify differences in brain ac-
tivity in case of STBD, or to identifiy input channel interactions in cases of other
types of input data. Furthermore, we end up with a trained network that will, once
presented specific input spike sequence, produce an array of spatio-temporal neu-
ron firing events that are a result of the presented input spike sequence nad specific
neuron connections that have emerged from the training data. This array of spatio-
temporal events forms a pattern that can be encoded into a representation that
is generally suitable as input to any traditional supervised learning algorithm (i.e.
SVM, ANN, kNN). The same data that was used for unsupervised STDP-based
training is propagated again through the trained SNNc and a supervised model
is trained to classify the spatio-temporal spiking pattern left in the SNNc into
pre-defined classes. The output module from Figure 8 represents the step where
the SNNc spatio-temporal spiking pattern is transformed to a representation (or
output neurons). The deSNN representation learning used in the NeuCube version
presented in this paper is based on the RO learning rule (principles explained in
section 4.2.2).

The algorithm parameters are:

• α (mod): important for weight update on first spike
• d (drift): used for weight update on subsequent spikes

After propagating a single training sample through the trained SNNc network
results with a sparse T × Ntotal neuron activation matrix representing the tra-
jectories of all neurons spiking states through the time T (which is, as already

20 Clarence Tan et al.

described, a dataset-specific datasample time length). We form a 1×Ntotal array
of output weights Wo, that will practically represent the output representation.
Initially, all weights are zeros. These weights are updated by going through the
T ×Ntotal activation matrix for all neurons, at each timestamp. If a neuron i fires
for the first time we set its weight to:

Wo (i) = αorder (19)

with order being the firing counter. We start at order = 0 and each time a neuron
fires for the first time, the counter is incremented order = order + 1. Otherwise,
if a neuron fires again, the weight is updated by the rule:

Wo (i) = Wo (i) + d. (20)

and if it doesn’t fire, the weight is updated by the rule:

Wo (i) = Wo (i) − d. (21)

Trying to practically interpret the 1×Ntotal representation array Wo: we end
up with a relatively sparse representation where the neurons that fired among the
first, and most often afterwards, contribute mostly to the final position of a data
sample in the 1×Ntotal deSNN representation space. Therefore, the input neuron
activations will contribute most significantly to the final representation for α < 1.

The described algorithm provides a representation for each datasample in the
dataset, including the validation/test data as well, although the SNNc connectivity
is learned from just the training data in an unsupervised manner. With the 1 ×
Ntotal representation, we can further address the problem via classical supervised
learning, corresponding to the final module in the NeuCube schematic (Figure
8). The method used for this part of the algorithm could be chosen arbitrarily,
from one of the many available and widely used supervised learning algorithms.
The current MATLAB-based NeuCube employs a version of the kNN (k-nearest
neighbors) algorithm, but a detailed explanation of the classification module is here
avoided as it exceeds the SNN nature of the paper. Algorithm 5 (appendix) sums
up NeuCube’s deSNN representation algorithm that is described in this section.
A compact summary of the entire NeuCube-based supervised learning chain is
bellow in algorithm 1, where we integrate all previous subsections (6.2.1, 6.2.2,
6.2.3, 6.2.4) and accompanying algorithms (2, 3, 4 and 5).

Spiking neural networks: background, development and NeuCube 21

Algorithm 1 NeuCube-based supervised learning

Require: Xtrain ∈ RT×Ninput , Xtest ∈ RT×Ninput , Ytrain ∈ classes, Ytest ∈ classes
{hyperparameters := encoding pars., SNNc struct. pars., STDP pars., ˆYtest :=
fsupervised(Xtrain, Ytrain, Xtest)}

Ensure: ˆYtest ∈ classes
1: Ntrain ← #(Xtrain) {number of samples in the train dataset}
2: Ntest ← #(Xtest) {number of samples in the test dataset}
3: Strain ← fencode(Xtrain, encoding pars.) {see algorithm 2 and section 6.2.1}
4: Stest ← fencode(Xtest, encoding pars.)
5: W ← finitialize(SNNc struct. pars.) {see algorithm 3 and section 6.2.2}
6: W ← fSTDP (W,Strain, STDP pars.) {see algorithm 4 and section 6.2.3}
7: W̃train ← fdeSNN (W,Strain) {see algorithm 5 and section 6.2.4}
8: W̃test ← fdeSNN (W,Stest)

9: ˆYtest ← fsupervised(W̃train, Ytrain, W̃test) {arbitrary supervised learning algorithm like
kNN gives}

10: performance evaluation by comparing Ytest and ˆYtest

7 Conclusion and future work

In this paper, we describe the development and discuss implementational aspects
of spiking neural networks. The goal is to promote the use of SNN (as the third
generation of ANN) and more specifically - the NeuCube architecture, as an off-
the-mainstream approach in neural network processing. Comparative advantages
of SNNs are clear (like computational speed, power consumption and biological
plausibility), however technical challenges continue to exist. As there is not yet
a robust information theory supporting the design and implementation of SNNs
[67], choice of the network structure (including input neuron locations) and other
hyperparameters for each specific application is still based on heuristic measures
and expert knowledge.

As argued in previous works [15,67], NeuCube’s 3D SNN structure allows for
the integrative modeling of various STBD, thus opening new opportunities for a
better understanding and interpretation of STBD. The feasibility of using Neu-
Cube in solving STBD-based tasks was already demonstrated in various domains,
like EEG-based brain-machine interface for limb movement [70] or EEG-based
classification of activities of daily living (ADL) in neurorehabilitation [71]. The
network structure is relatively intuitive when it comes to STBD-based problems
(brain-like structure shown in Figure 9), but the true challenge is designing the
SNN structure for non-STDB-based classification and pattern recognition tasks.
Successful examples of such efforts exist, like multi-variable-based personalised
early stroke prediction [72] or video-based age classification [67], but still warrant
for further exploration.

Finally, we summarise some open research problems in SNN and NeuCube
applications that we find most promising, some of them already raised in [73]:

1. Integrating in one SNN model STBD multimodal data, such as EEG [74],
audio-visual [75], fMRI and DTI [76].

2. Integrating in one SNN model heterogeneous data, such as: quantum-, molecular-
, brain-, physiological-, environmental information [73].

3. Defining optimal depth and length in both space and time of the knowledge
representation extracted from a trained SNN [73].

22 Clarence Tan et al.

4. Using SNN for the development of new information theories, such as informa-
tion compression [30].

5. Human-machine and machine-machine transfer learning based on a common
structural template for STBD, such as the Talairach Atlas [68] or MNI [77].

6. Learning long spatio-temporal patterns in the context of associative memory.
7. Developing methods for self-optimization of learning in SNN: learning to learn.
8. Building societies of SNN machines for distributed deep learning and transfer

learning.
9. Towards a symbiosis between humans and SNN machines.

Some of the research problems from the list above have been addressed previ-
ously (i.e. 1, 2, 3 and 4), but nevertheless remain open. On the other hand, some
will most probably remain unadressed in the near future (i.e. 7, 8 and 9). Spiking
neural networks and the NeuCube framework are currently at the point where
a vast expansion of work in points 1-5 is expected. Some potential applications
that we find most promising are in the area of sleep stage classification where
huge amounts of data-intensive laboratory-based polysomnography (PSG) record-
ings exist [78], thus allowing for the possibility of having a pre-trained SNNc for
transfer learning EEG-based BCI applications (relates to the research problem 5).
Another highly challenging, but promising application is the area of affective com-
puting where semi-STBD-based datasets are available [79,80]. The main challenge
here would be the integration of pure STBD (EEG), which reflects the central ner-
vous system activity with the peripheral measures of autonomic activity like (but
not limited to) electrocardiography (ECG) and electrodermal activity (EDA) into
a single SNN-based structure (relates to research problems 1 and 2). The ques-
tion is can these peripheral measures of autonomic nervous system (ANS) activity,
be observed as activity within the limbic structures of the brain (i.e. amygdala,
hippocampus, thalamus, hypothalamus), and as such be simultaneously integrated
with STBD data like EEG and NIRS into a single specifically designed SNN struc-
ture? This would also open questions on how to efficiently encode the peripheral
physiological data into spikes suitable for simultaneous processing with spike en-
coded STBD.

The version of NeuCube described in this paper is the so-called Module M1
(official NeuCube modules range from M1-M4 [67]) for research and teaching pur-
poses, and can be found free of charge at http://www.kedri.aut.ac.nz/neucube.
For commercial use or access to the full set of modules, please contact the cor-
responding author directly or via this web page. The NeuCube is PCT patent
protected.

Spiking neural networks: background, development and NeuCube 23

A Appendix: Algorithms

Algorithm 2 NeuCube’s TR spike encoding: fencode : RT×Ninput →
{−1, 0, 1}T×Ninput

Require: Xin ∈ RT×Ninput , {hyperparameters := αTR}
Ensure: W̃train ∈ {−1, 0, 1}T×Ninput
1: N ← #(Xin) {number of data samples in the dataset}
2: for k = 1 to Ninput do
3: V Tk ← 0
4: for i = 1 to N do
5: x← channel k of the i-th sample in Xin
6: x′ ← |δx|
7: µ← mean(x′)
8: σ ← st.dev.(x′)
9: V Tk ← V Tk + (µ+ σ · αTR)

10: end for
11: V Tk ← V Tk

N
12: end for
13: for k = 1 to Ninput do
14: for i = 1 to N do
15: x← channel k of the i-th sample in Xin
16: x′ ← δx
17: xout ← 0T×1

18: for j = 2 to T do
19: if x′j > V Tk then
20: xout(j) ← 1

21: else if x′j < −V Tk then
22: xout(j) ← −1
23: end if
24: end for
25: store spike train xout in Xout for channel k, sample i
26: end for
27: end for

24 Clarence Tan et al.

Algorithm 3 NeuCube’s weight and connection initialization: finitialize

Require: Xbrain ∈ R1×3, Xinput ⊂ Xbrain
{hyperparameters := SWR, p ∈ [0, 1]}

Ensure: C : {0, 1}Ncube×Ncube ,W : RNcube×Ncube
1: Ncube ← #(Xbrain) {number of defined neuron coordinates}
2: Ldist : RNcube×Ncube ← distances between all pairs of neurons
3: Cij ← 1, ∀i, j
4: Wij ← 0, ∀i, j
5: for i = 1 to Ncube do
6: for j = 1 to Ncube do
7: if Ldist(ij) > SWR then
8: Cij ← 0
9: else

10: Wij ← sgn(rand− p) · rand ·L−1
dist(ij)

{rand represents a randomly generated real

number from the interval [0, 1]}
11: if Cij = 1 ∧ Cji = 1 then
12: if rand > 0.5 then
13: Cij ← 0
14: Wij ← 0
15: else
16: Cji ← 0
17: Wji ← 0
18: end if
19: end if
20: end if
21: end for
22: end for

Spiking neural networks: background, development and NeuCube 25

Algorithm 4 NeuCube’s unsupervised SNNc weight learning: fSTDP

Require: Cinit ∈ {0, 1}Ncube×Ncube ,Winit ∈ RNcube×Ncube , Sin ∈ {−1, 0, 1}T×Ninput
{hyperparameters := D,R, η, β,Niter}

Ensure: Wout : RNcube×Ncube
1: N ← #(Xin) {number of samples in the (training) dataset}
2: χ← [1, 2, ..., Ncube] {all neuron indices}
3: Pk, ∀k ∈ χ← 0 {initialize neuron potentials}
4: Rk, ∀k ∈ χ← 0 {initialize neuron refractory time counters}
5: find inputneuron indices ι ⊂ χ
6: for niter = 1 to Niter do
7: η′ ← η√

niter
8: for i = 1 to N do
9: s ← all Ninput channel spikes of the i-th sample in Sin {inhibiting spikes (−1) are

passed to virtual inhibitory neurons that accept only the inhibiting spikes}
10: for t = 1 to T do
11: find firingneuron indices τ = {firingneurons in ι} ∪ {k ∈ χ \ ι, Pk > β}
12: for all j ∈ τ do
13: find post synaptic neuron indices γ
14: for all k ∈ γ and Rk = 0 do
15: Pk ← Pk + wjk {postsynaptic neuron potential update}
16: end for
17: end for
18: Pk ← 0, ∀k ∈ τ {firing neurons reset potential}
19: Rk ← R, ∀k ∈ τ {firing neurons reset refractory counter}
20: Pk ← max(0, Pk −D),∀k ∈ χ \ ι \ τ
21: Rk ← max(0, Rk − 1), ∀k ∈ χ \ ι \ τ
22: for all j ∈ τ do
23: find post synaptic neuron indices γ
24: for all k ∈ γ do

25: wjk ← wjk − η(t− tfk)
26: end for
27: find pre synaptic neuron indices γ
28: for all k ∈ γ do

29: wjk ← wjk + η(t− tfk)
30: end for
31: end for
32: end for
33: end for
34: end for

26 Clarence Tan et al.

Algorithm 5 NeuCube’s deSNN output representation: fdeSNN

Require: W ∈ RNcube×Ncube , Sin ∈ {−1, 0, 1}T×Ninput
{hyperparameters := α, d}

Ensure: W̃ ∈ R1×Ncube

1: W̃ ← 01×Ncube {initialize representation to 0}
2: F ← 01×Ncube {initialize the neuron firing flags}
3: c← 0 {initialize the neuron firing order counter}
4: Scube ← propagate Sin through the SNN defined by W {Scube is a sparse matrix of all

neuron firings through the data sample length period T}
5: for i = 1 to T do
6: for j = 1 to Ncube do
7: if Scube(i, j) = 1 then
8: if F (j) = 0 then
9: {neuron fires for the first time}

10: W̃ (j)← αc

11: F (j)← 1
12: else
13: W̃ (j)← W̃ (j) + d
14: end if
15: c← c+ 1
16: else
17: W̃ (j)← W̃ (j)− d
18: end if
19: end for
20: end for

Spiking neural networks: background, development and NeuCube 27

References

1. D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s striate
cortex,” The Journal of physiology, vol. 148, no. 3, pp. 574–591, 1959.

2. K. Fukushima, “Neural network model for a mechanism of pattern recognition unaffected
by shift in position-neocognitron,” IEICE Technical Report, A, vol. 62, no. 10, pp. 658–665,
1979.

3. F. Rosenblatt, “The perceptron: a probabilistic model for information storage and orga-
nization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

4. A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,
S. Satheesh, S. Sengupta, A. Coates et al., “Deep speech: Scaling up end-to-end speech
recognition,” arXiv preprint arXiv:1412.5567, 2014.

5. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

6. W. Ouyang and X. Wang, “Joint deep learning for pedestrian detection,” in Proceedings
of the IEEE International Conference on Computer Vision, 2013, pp. 2056–2063.

7. D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image
classification,” arXiv preprint arXiv:1202.2745, 2012.

8. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of go
with deep neural networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

9. M. Šarlija, F. Jurǐsić, and S. Popović, “A convolutional neural network based approach to
qrs detection,” in Image and Signal Processing and Analysis (ISPA), 2017 10th Interna-
tional Symposium on. IEEE, 2017, pp. 121–125.

10. N. Ganapathy, R. Swaminathan, and T. M. Deserno, “Deep learning on 1-d biosignals: a
taxonomy-based survey,” Yearbook of medical informatics, vol. 27, no. 01, pp. 098–109,
2018.

11. D. Drubach, The brain explained. Prentice Hall Health Upper Saddle River, NJ, 2000.
12. Y. Bengio, D.-H. Lee, J. Bornschein, T. Mesnard, and Z. Lin, “Towards biologically plau-

sible deep learning,” arXiv preprint arXiv:1502.04156, 2015.
13. W. Maass, “Networks of spiking neurons: the third generation of neural network models,”

Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.
14. E. Trentin, F. Schwenker, N. El Gayar, and H. M. Abbas, “Off the mainstream: Advances in

neural networks and machine learning for pattern recognition,” Neural Processing Letters,
vol. 48, no. 2, pp. 643–648, 2018.

15. N. K. Kasabov, “Neucube: A spiking neural network architecture for mapping, learning
and understanding of spatio-temporal brain data,” Neural Networks, vol. 52, pp. 62–76,
2014.

16. A. V. Herz, T. Gollisch, C. K. Machens, and D. Jaeger, “Modeling single-neuron dynamics
and computations: a balance of detail and abstraction,” science, vol. 314, no. 5796, pp.
80–85, 2006.

17. L. Lapicque, “Recherches quantitatives sur l’excitation electrique des nerfs traitee comme
une polarization,” Journal de Physiologie et de Pathologie Generalej, vol. 9, pp. 620–635,
1907.

18. L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron (1907),”
Brain research bulletin, vol. 50, no. 5-6, pp. 303–304, 1999.

19. W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

20. E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on neural net-
works, vol. 14, no. 6, pp. 1569–1572, 2003.

21. ——, “Which model to use for cortical spiking neurons?” IEEE transactions on neural
networks, vol. 15, no. 5, pp. 1063–1070, 2004.

22. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its
application to conduction and excitation in nerve,” The Journal of physiology, vol. 117,
no. 4, pp. 500–544, 1952.

23. C. Wilson and J. Callaway, “Coupled oscillator model of the dopaminergic neuron of the
substantia nigra,” Journal of neurophysiology, vol. 83, no. 5, pp. 3084–3100, 2000.

24. R. FitzHugh, “Fitzhugh-nagumo simplified cardiac action potential model,” Biophys. J,
vol. 1, pp. 445–466, 1961.

28 Clarence Tan et al.

25. J. L. Hindmarsh and R. Rose, “A model of neuronal bursting using three coupled first
order differential equations,” Proc. R. Soc. Lond. B, vol. 221, no. 1222, pp. 87–102, 1984.

26. C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle fiber,” Biophys-
ical journal, vol. 35, no. 1, pp. 193–213, 1981.

27. S. Katsumata, K. Sakai, S. Toujoh, A. Miyamoto, J. Nakai, M. Tsukada, and H. Kojima,
“Analysis of synaptic transmission and its plasticity by glutamate receptor channel kinetics
models and 2-photon laser photolysis,” in Proc. of ICONIP, 2008.

28. J. R. Huguenard, “Reliability of axonal propagation: The spike doesn’t stop here,” Pro-
ceedings of the National Academy of Sciences, vol. 97, no. 17, pp. 9349–9350, 2000.

29. N. Kasabov, “To spike or not to spike: A probabilistic spiking neuron model,” Neural
Networks, vol. 23, no. 1, pp. 16–19, 2010.

30. N. Sengupta and N. Kasabov, “Spike-time encoding as a data compression technique for
pattern recognition of temporal data,” Information Sciences, vol. 406, pp. 133–145, 2017.

31. E. D. Adrian, “The impulses produced by sensory nerve endings,” The Journal of physi-
ology, vol. 61, no. 1, pp. 49–72, 1926.

32. J. Gautrais and S. Thorpe, “Rate coding versus temporal order coding: a theoretical
approach,” Biosystems, vol. 48, no. 1-3, pp. 57–65, 1998.

33. R. Lestienne, “Spike timing, synchronization and information processing on the sensory
side of the central nervous system,” Progress in neurobiology, vol. 65, no. 6, pp. 545–591,
2001.

34. S. M. Bohte, “The evidence for neural information processing with precise spike-times: A
survey,” Natural Computing, vol. 3, no. 2, pp. 195–206, 2004.

35. S. J. Thorpe, “Spike arrival times: A highly efficient coding scheme for neural networks,”
Parallel processing in neural systems, pp. 91–94, 1990.

36. R. Brette, “Philosophy of the spike: rate-based vs. spike-based theories of the brain,”
Frontiers in systems neuroscience, vol. 9, p. 151, 2015.

37. A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “Method for training a spiking
neuron to associate input-output spike trains,” in Engineering Applications of Neural
Networks. Springer, 2011, pp. 219–228.

38. S. Thorpe and J. Gautrais, “Rank order coding,” in Computational neuroscience.
Springer, 1998, pp. 113–118.

39. G. Buzsaki, Rhythms of the Brain. Oxford University Press, 2006.
40. B. Rueckauer, I.-A. Lungu, Y. Hu, and M. Pfeiffer, “Theory and tools for the conversion of

analog to spiking convolutional neural networks,” arXiv preprint arXiv:1612.04052, 2016.
41. P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-timing-

dependent plasticity,” Frontiers in computational neuroscience, vol. 9, p. 99, 2015.
42. P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-classifying,

high-accuracy spiking deep networks through weight and threshold balancing,” in Neural
Networks (IJCNN), 2015 International Joint Conference on. IEEE, 2015, pp. 1–8.

43. Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks for energy-
efficient object recognition,” International Journal of Computer Vision, vol. 113, no. 1,
pp. 54–66, 2015.

44. P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, “A digital
neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm,” in
Custom Integrated Circuits Conference (CICC), 2011 IEEE. IEEE, 2011, pp. 1–4.

45. P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-time classification
and sensor fusion with a spiking deep belief network,” Frontiers in neuroscience, vol. 7,
p. 178, 2013.

46. E. Hunsberger and C. Eliasmith, “Spiking deep networks with lif neurons,” arXiv preprint
arXiv:1510.08829, 2015.

47. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in neural information processing systems, 2012,
pp. 1097–1105.

48. S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha, “Backpropa-
gation for energy-efficient neuromorphic computing,” in Advances in Neural Information
Processing Systems, 2015, pp. 1117–1125.

49. P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L.
Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A million spiking-neuron integrated
circuit with a scalable communication network and interface,” Science, vol. 345, no. 6197,
pp. 668–673, 2014.

Spiking neural networks: background, development and NeuCube 29

50. W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner, “A neuronal learning rule
for sub-millisecond temporal coding,” Nature, vol. 383, no. 6595, p. 76, 1996.

51. G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hippocampal neurons: de-
pendence on spike timing, synaptic strength, and postsynaptic cell type,” Journal of neu-
roscience, vol. 18, no. 24, pp. 10 464–10 472, 1998.

52. W. Gerstner, R. Ritz, and J. L. Van Hemmen, “Why spikes? hebbian learning and retrieval
of time-resolved excitation patterns,” Biological cybernetics, vol. 69, no. 5-6, pp. 503–515,
1993.

53. S. Cassenaer and G. Laurent, “Hebbian stdp in mushroom bodies facilitates the syn-
chronous flow of olfactory information in locusts,” Nature, vol. 448, no. 7154, p. 709, 2007.

54. V. Jacob, D. J. Brasier, I. Erchova, D. Feldman, and D. E. Shulz, “Spike timing-dependent
synaptic depression in the in vivo barrel cortex of the rat,” Journal of Neuroscience, vol. 27,
no. 6, pp. 1271–1284, 2007.

55. Y. Mu and M.-m. Poo, “Spike timing-dependent ltp/ltd mediates visual experience-
dependent plasticity in a developing retinotectal system,” Neuron, vol. 50, no. 1, pp.
115–125, 2006.

56. S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through spike-
timing-dependent synaptic plasticity,” Nature neuroscience, vol. 3, no. 9, p. 919, 2000.

57. S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “Stdp-based spiking
deep convolutional neural networks for object recognition,” Neural Networks, vol. 99, pp.
56–67, 2018.

58. A. Tavanaei and A. S. Maida, “A spiking network that learns to extract spike signatures
from speech signals,” Neurocomputing, vol. 240, pp. 191–199, 2017.

59. H.-G. Hirsch and D. Pearce, “The aurora experimental framework for the performance
evaluation of speech recognition systems under noisy conditions,” in ASR2000-Automatic
Speech Recognition: Challenges for the new Millenium ISCA Tutorial and Research Work-
shop (ITRW), 2000.

60. N. Kasabov et al., “Evolving fuzzy neural networks-algorithms, applications and biological
motivation,” Methodologies for the conception, design and application of soft computing,
World Scientific, vol. 1, pp. 271–274, 1998.

61. N. K. Kasabov, Evolving connectionist systems: the knowledge engineering approach.
Springer Science & Business Media, 2007.

62. S. G. Wysoski, L. Benuskova, and N. Kasabov, “Evolving spiking neural networks for
audiovisual information processing,” Neural Networks, vol. 23, no. 7, pp. 819–835, 2010.

63. N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, “Dynamic evolving spiking neural
networks for on-line spatio-and spectro-temporal pattern recognition,” Neural Networks,
vol. 41, pp. 188–201, 2013.

64. N. Kasabov, “Neucube evospike architecture for spatio-temporal modelling and pattern
recognition of brain signals,” in IAPR Workshop on Artificial Neural Networks in Pattern
Recognition. Springer, 2012, pp. 225–243.

65. P. Lichtsteiner and T. Delbruck, “A 64x64 aer logarithmic temporal derivative silicon
retina,” in Research in Microelectronics and Electronics, 2005 PhD, vol. 2. IEEE, 2005,
pp. 202–205.

66. N. Nuntalid, K. Dhoble, and N. Kasabov, “Eeg classification with bsa spike encoding
algorithm and evolving probabilistic spiking neural network,” in International Conference
on Neural Information Processing. Springer, 2011, pp. 451–460.

67. N. Kasabov, N. M. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. G.
Doborjeh, N. Murli, R. Hartono et al., “Evolving spatio-temporal data machines based
on the neucube neuromorphic framework: design methodology and selected applications,”
Neural Networks, vol. 78, pp. 1–14, 2016.

68. J. Talairach and P. Tournoux, “Co-planar stereotaxic atlas of the human brain: 3-
dimensional proportional system: an approach to cerebral imaging,” 1988.

69. A. Abbott, N. Sengupta, and N. Kasabov, “Which method to use for optimal structure
and function representation of large spiking neural networks: A case study on the neucube
architecture,” in Neural Networks (IJCNN), 2016 International Joint Conference on.
IEEE, 2016, pp. 1367–1372.

70. D. Taylor, N. Scott, N. Kasabov, E. Capecci, E. Tu, N. Saywell, Y. Chen, J. Hu, and Z.-
G. Hou, “Feasibility of neucube snn architecture for detecting motor execution and motor
intention for use in bciapplications,” in Neural Networks (IJCNN), 2014 International
Joint Conference on. IEEE, 2014, pp. 3221–3225.

30 Clarence Tan et al.

71. J. Hu, Z.-G. Hou, Y.-X. Chen, N. Kasabov, and N. Scott, “Eeg-based classification of
upper-limb adl using snn for active robotic rehabilitation,” in Biomedical Robotics and
Biomechatronics (2014 5th IEEE RAS & EMBS International Conference on. IEEE,
2014, pp. 409–414.

72. M. Othman, N. Kasabov, E. Tu, V. Feigin, R. Krishnamurthi, Z. Hou, Y. Chen, and
J. Hu, “Improved predictive personalized modelling with the use of spiking neural network
system and a case study on stroke occurrences data,” in Neural Networks (IJCNN), 2014
International Joint Conference on. IEEE, 2014, pp. 3197–3204.

73. N. K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial In-
telligence. Springer, 2018.

74. Z. G. Doborjeh, N. Kasabov, M. G. Doborjeh, and A. Sumich, “Modelling peri-perceptual
brain processes in a deep learning spiking neural network architecture,” Scientific reports,
vol. 8, no. 1, p. 8912, 2018.

75. L. Paulun, A. Wendt, and N. K. Kasabov, “A retinotopic spiking neural network system
for accurate recognition of moving objects using neucube and dynamic vision sensors,”
Frontiers in Computational Neuroscience, vol. 12, p. 42, 2018.

76. N. Sengupta, C. B. McNabb, N. Kasabov, and B. R. Russell, “Integrating space, time, and
orientation in spiking neural networks: A case study on multimodal brain data modeling,”
IEEE Transactions on Neural Networks and Learning Systems, no. 99, pp. 1–15, 2018.

77. A. C. Evans, D. L. Collins, S. Mills, E. Brown, R. Kelly, and T. M. Peters, “3d statisti-
cal neuroanatomical models from 305 mri volumes,” in Nuclear Science Symposium and
Medical Imaging Conference, 1993., 1993 IEEE Conference Record. IEEE, 1993, pp.
1813–1817.

78. C. O’reilly, N. Gosselin, J. Carrier, and T. Nielsen, “Montreal archive of sleep studies: an
open-access resource for instrument benchmarking and exploratory research,” Journal of
sleep research, vol. 23, no. 6, pp. 628–635, 2014.

79. S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Ni-
jholt, and I. Patras, “Deap: A database for emotion analysis; using physiological signals,”
IEEE Transactions on Affective Computing, vol. 3, no. 1, pp. 18–31, 2012.

80. M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multimodal database for affect
recognition and implicit tagging,” IEEE Transactions on Affective Computing, vol. 3,
no. 1, pp. 42–55, 2012.

