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Abstract
Tumours consist of heterogeneous populations of cells. The sub-populations can have
different features, including cell motility, proliferation and metastatic potential. The
interactions between clonal sub-populations are complex, from stable coexistence to
dominant behaviours. The cell–cell interactions, i.e. attraction, repulsion and align-
ment, processes critical in cancer invasion and metastasis, can be influenced by the
mutation of cancer cells. In this study, we develop a mathematical model describing
cancer cell invasion and movement for two polarised cancer cell populations with
different levels of mutation. We consider a system of non-local hyperbolic equations
that incorporate cell–cell interactions in the speed and the turning behaviour of can-
cer cells, and take a formal parabolic limit to transform this model into a non-local
parabolic model. We then investigate the possibility of aggregations to form, and per-
form numerical simulations for both hyperbolic and parabolic models, comparing the
patterns obtained for these models.

Keywords Cancer cells · Non-local hyperbolic model · Parabolic limit ·
Cell–cell interactions · Alignment · Aggregation patterns

Mathematics Subject Classification 35R09 · 35Q92 · 92C15 · 92C17 · 92-08

1 Introduction

Collective cellmovement can be observed inmany types of cells and plays an important
role in many physiological processes, including wound healing, embryonic develop-
ment and metastasis of cancer cells (Friedl andWolf 2003; Rørth 2009). Cancer cells’
movement and aggregations are influenced by external factors (e.g. concentration of
nutrients), as well as internal factors, such as the social forces among cells (i.e. attrac-
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tion, repulsion and polarisation). These internal factors lead to self-organised cell
aggregation and the formation of a wide variety of patterns, playing a crucial role
in cell movement. Experimental studies (Omelchenko et al. 2003; Rørth 2012) have
shown that alignment (polarisation) has been reported as the initial cellular response
in wound healing and cancer invasion. By alignment, we mean the process where cells
turn to adapt their orientation to that of their neighbours, which leads to a polarised
group of cells having the same orientation in space and travelling large distances
together. In contrast, there are non-polarised groups in which all cells move individu-
ally, while the group as a whole can remain stationary or drift slowly (Lutscher 2002;
Firtel andMeili 2000). Cells interact with their neighbours and change their shape and
direction of movement as a result of this collective movement and a process known
as contact inhibition of locomotion (CIL) (Vicente-Manzanares and Sánchez-Madrid
2000), which plays a crucial role in cancer invasion and metastasis. During this pro-
cess, cells alter their direction of movement when contact other cells in order to avoid
collision.

Although the exact mechanism that makes the cells cooperate with each other and
migrate collectively in one direction is not fully clear, it has been observed that “leader”
cells at the front of outgrowths (e.g. an epithelial cell at the edge of an epithelial
sheet that adopts a fibroblast-like morphology extending a wide lamellipodium) are
accompanied by many “follower” cells along the sides, both migrating to distant sites
(Haga et al. 2005; Omelchenko et al. 2003). As cells move in a collective manner,
only the cells in the free edge will produce lamellipodia, while cells inside the group
will form smaller protrusions or no protrusion. Although CIL process will lead to a
change in the direction of movement of the cells in the edges, the whole group of
cells will follow this movement as a result of cell–cell interactions, ending up in the
realignment of the cell populations (Mayor and Carmona-Fontaine 2010). Moreover,
recent experimental results showed that the polarisation and migration of cells within
an epithelial monolayer are coordinated over spatial distances greater than ten cell
diameters (Angelini et al. 2010; Petitjean et al. 2010; Das et al. 2015).

In the mathematical literature, there are various models that consider the effect
of non-local social interactions on the collective movement of cells and animals. A
large number of models for the collective movement of animals consider the inter-
play between all three social interactions: repulsion, attraction and alignment (Canizo
et al. 2010; Cavagna et al. 2010; Gautrais et al. 2012; Huth andWissel 1992; Kunz and
Hemelrijk 2003; Lukeman et al. 2010). Some of these models consider non-local turn-
ing rates and constant speeds (see, e.g. Buono and Eftimie 2015; Fetecau 2011). Other
models investigate the effect of social interactions also on animals speed (Fetecau and
Eftimie 2010; Topaz et al. 2006). In regard to the models for the collective movement
of cells, the majority of these models focus on attractive–repulsive interactions (Arm-
strong et al. 2006; Bitsouni et al. 2017, 2018; Domschke et al. 2014; Painter et al.
2015; Sherratt et al. 2009). Very few non-local models incorporate cell alignment [see,
for instance, Mogilner and Edelstein-Keshet (1995)]. Therefore, it is very important
to develop non-local models that consider cell polarisation and describe the way that
all three social forces affect the velocity and the turning behaviour of cells.

In this paper, we introduce a newmodel describing the interplay between cell polar-
isation and cell repulsive–attractive interactions. In contrast to the models mentioned
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in the previous paragraph, here we consider both non-local speed and turning rates.
To this end, we derive a model of nonlinear non-local first-order hyperbolic equations
describing the dynamics of polarised early- and late-stage cancer cell populations. In
addition to cell movement and cell turning behaviours (which depend on repulsive,
attractive andpolarising forces),we also considermutation andproliferation.We inves-
tigate numerically the patterns generated by this hyperbolicmodel—by focusing on the
effect of the following parameters: (i) magnitude of repulsive/attractive/polarisation
(alignment) interactions; (ii) turning rates; (iii) proliferation rates; and (iv) baseline
speed. Since the majority of papers describing collective movement of cells are of
parabolic type, in this paper we also take a parabolic limit to investigate the preserva-
tion of patterns in this limit.

To keep the model as simple as possible, we focus only on the effect of attrac-
tion/repulsion/alignment on cell–cell interactions [while ignoring the interactions
between cells and the extracellular matrix (ECM)]. This is consistent with other math-
ematical approaches in the literature of collective movement of cells [see, e.g. the
individual-based models in Arboleda-Estudillo et al. (2010), Chang et al. (2013),
Hirashima et al. (2013), Méhes and Vicsek (2014) and Woods et al. (2014)]. We
emphasise here that in contrast to these studies that develop discrete models (which
are difficult to be investigated analytically), here we present a continuous model where
we apply analytical and computational techniques to understand pattern formation in
cellular aggregations.

This paper is organised as follows. In Sect. 2, we present a model of non-local
nonlinear hyperbolic equations describing the dynamics of two sub-populations of
polarised cancer cells, with different levels of mutation. In Sect. 3, we derive the
parabolic limit of this hyperbolic model. In Sect. 4, we perform linear stability anal-
ysis of both hyperbolic and limiting parabolic models to investigate the ability of
these models to form cell aggregation. In Sect. 5, we investigate numerically the spa-
tiotemporal patterns obtained by the hyperbolic model and compare the results with
the patterns obtained by the limiting parabolic model. We conclude in Sect. 6 with a
discussion of the results.

2 A Non-local Hyperbolic Model for Cancer Cell Polarisation

In this section, we introduce a new non-local model that incorporates the tendency of
cancer cells to align with other cells that are within a range (alignment range). The
model describes the movement of two cancer cell populations, an early- and a late-
stage population. Here, we assume that the movement of cancer cells is governed by
directedmotility in response to cell–cell interactions, choosing to ignore the cell–ECM
interactions.

Let Ω ⊂ R be a bounded interval. Let IT = [0,∞) be the time interval. We denote
by u+

1 (t, x) (u−
1 (t, x)) the density of early-stage cancer cells at (t, x) that move to the

right (left), and, respectively, by u+
2 (t, x) (u−

2 (t, x)) the density of late-stage cancer
cells at (t, x) that move to the right (left). The total cancer cell population density is
given by the relation u1 = u+

1 + u−
1 for the early-stage cancer cell population and,

respectively, by u2 = u+
2 + u−

2 for the late-stage cancer cell population. For compact
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notation, we define the vector u (t, x) = (u1 (t, x) , u2 (t, x))T.We also define the cell
population flows by υi = u+

i − u−
i , i = 1, 2, for early-stage (i = 1) and late-stage

(i = 2) cancer cells. Thus, we derive the following hyperbolic system of conservation
laws that describe the evolution of densities of left-moving and right-moving early-
and late-stage cancer cells:

∂u+
1

∂t
+ ∂

∂x

(
u+
1 Γ + [

u
]) = −λ+

u1

[
u+
1 , u−

1 , u+
2 , u−

2

]
u+
1 + λ−

u1

[
u+
1 , u−

1 , u+
2 , u−

2

]
u−
1

− Mu+
1 + r1

u1
2

(1 − u1 − u2) , (1a)

∂u−
1

∂t
− ∂

∂x

(
u−
1 Γ − [

u
]) = λ+

u1

[
u+
1 , u−

1 , u+
2 , u−

2

]
u+
1 − λ−

u1

[
u+
1 , u−

1 , u+
2 , u−

2

]
u−
1

− Mu−
1 + r1

u1
2

(1 − u1 − u2) , (1b)

∂u+
2

∂t
+ ∂

∂x

(
u+
2 Γ + [

u
]) = −λ+

u2

[
u+
1 , u−

1 , u+
2 , u−

2

]
u+
2 + λ−

u2

[
u+
1 , u−

1 , u+
2 , u−

2

]
u−
2

+ M
u1
2

+ r2
u2
2

(1 − u1 − u2) , (1c)

∂u−
2

∂t
− ∂

∂x

(
u−
2 Γ − [

u
]) = λ+

u2

[
u+
1 , u−

1 , u+
2 , u−

2

]
u+
2 − λ−

u2

[
u+
1 , u−

1 , u+
2 , u−

2

]
u−
2

+ M
u1
2

+ r2
u2
2

(1 − u1 − u2) , (1d)

u±
i (0, x) = u±

i0
(x) ≥ 0, i = 1, 2, in Ω, (1e)

whereΓ ± [
u
]
are thedensity-dependent speeds andλ+

ui (λ
−
ui ) are thedensity-dependent

turning rates for the cancer cells initially moving to the right (left) which then turn to
the left (right). We denote by M the mutation rate of cancer cells and by ri , i = 1, 2,
the proliferation rate of population ui . Note that we consider a non-dimensionalised
model, where the cancer cell densities ui , i = 1, 2, are non-dimensionalised by the
carrying capacity for the cells, ku , leading to logistic growth functionswith unit-valued
carrying capacity for the cells. A non-dimensionalisation of the model and two tables
with the model variables and parameters are presented in “Appendix A”.

The turning rates are functions of the cell–cell interactions, y± [
u+
1 , u−

1 , u+
2 , u−

2

]
,

described as in Eftimie et al. (2007):

λ±
ui

[
u+
1 , u−

1 , u+
2 , u−

2

] := λri + λbi p
(
y± [

u+
1 , u−

1 , u+
2 , u−

2

])

= λri + λbi
(
0.5 + 0.5 tanh

(
y± [

u+
1 , u−

1 , u+
2 , u−

2

] − 2
))

, (2)

where the constants λri and λbi , i = 1, 2, represent a baseline random turning rate and a
biased turning rate, respectively. The dimensionless functionals y± [

u+
1 , u−

1 , u+
2 , u−

2

]

(see “AppendixA.1”) of the densities of right-moving, u+
i , and left-moving, u−

i , cancer
cells incorporate non-local interactions between the two sub-populations of polarised
cells and can be described by the following relation:
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y± [
u+
1 , u−

1 , u+
2 , u−

2

] = y±
a

[
u+
1 , u−

1 , u+
2 , u−

2

] − y±
r

[
u+
1 , u−

1 , u+
2 , u−

2

]

+ y±
al

[
u+
1 , u−

1 , u+
2 , u−

2

]
, (3)

where y±
j

[
u+
1 , u−

1 , u+
2 , u−

2

]
, j = a, r , al, denote the attraction, repulsion and align-

ment functionals, respectively, which influence the likelihood of a cancer cell to turn
to the left (+) or to the right (–). We note here that stronger interaction forces lead to
higher turning rates. Let us define Rs > 0 to be the cells sensing radius, i.e. the max-
imum range over which cells can detect other surrounding cells, which biologically
represent the extent of the cell protrusions (e.g. filopodia) (Armstrong et al. 2006). The
attraction and repulsion interactions are described by the following non-local terms
(Buono and Eftimie 2015; Colombi et al. 2015, 2017):

y±
a,r

[
u
] = qa,r

Rs

∫ Rs

0
Ka,r (s)

(
u1 (t, x ± s) + u2 (t, x ± s) − u1 (t, x ∓ s)

− u2 (t, x ∓ s)

)
ds, (4)

with qa and qr describing the magnitudes of attractive and repulsive interactions,
respectively, and Ka (x) and Kr (x) describe the spatial ranges over which these inter-
actions take place.We denote by K (x) := qaKa(x)−qrKr(x) the attraction–repulsion
kernel, assuming that it is attractive at medium/long ranges (i.e. at the edges of the
cell, and over the neighbouring cells) and repulsive at very short ranges (i.e. over the
cell surface).

The non-local alignment term is given by the relation (Buono and Eftimie 2015):

y±
al

[
u+
1 , u−

1 , u+
2 , u−

2

] = qal
Rs

∫ Rs

0
Kal (s)

(
u∓
1 (t, x ∓ s) + u∓

1 (t, x ± s)

+ u∓
2 (t, x ∓ s) + u∓

2 (t, x ± s) − u±
1 (t, x ∓ s)

− u±
1 (t, x ± s) − u±

2 (t, x ∓ s) − u±
2 (t, x ± s)

)
ds, (5)

with qal describing themagnitude of alignment and Kal (x) describing the spatial range
over which alignment takes place.

Let us now focus on the density-dependent speeds Γ ± [
u
]
. Here, we choose the

non-local speeds of the two-population cancer cells to be described by non-negative,
bounded and increasing functionals of the attractive-repulsive cell–cell interactions.
Thus Γ ± [

u
]
are given by the following relations

Γ ± [
u
] = γ

(
1 + tanh

(
y±
a

[
u
] − y±

r

[
u
]))

, (6)

where γ is a constant baseline speed describing the behaviour of the cancer cell
populations in the absence of cell–cell interactions (see Fetecau and Eftimie 2010).
We denote by g

[
u
] := tanh

(
y+ [

u
])
. Since function tanh (·) is an odd function, then

for qal = 0 relation (6) becomes:
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Γ ± [
u
] = γ

(
1 ± g

[
u
])

. (7)

For the non-local terms, we choose translated Gaussian kernels

K j (x) = 1
√
2πm2

j

e
− (x−s j)

2

2m2
j , j = a, r , al, (8)

with s j representing half the length of the interaction ranges and m j = s j/8 rep-
resenting the widths of the interaction kernels [the constants m j , j = a, r , al, are
chosen such that the support of more than 98% of the mass of the kernels is inside
the interval [0,∞) (Eftimie et al. 2007)]. Note that other studies used discontinuous
Morse-type repulsion–attraction kernels (Fetecau and Eftimie 2010), which have a
more realistic shape (with highest repulsion at x = 0), but which can cause density
blow-up [a different class of repulsion–attraction kernels in higher dimensions, which
are also discontinuous at the origin where they have the highest density, but which are
always positive (in contrast to the more classical Morse kernels that can be positive
and/or negative depending on parameter values), was recently discussed by Carrillo
et al. (2016)]. To avoid this type of unrealistic aggregation behaviour, we have chosen
translated Gaussian kernels (8).

We study the hyperbolicmodel (1) on a finite domain of length L , that is, x ∈ [0, L],
with wrap-around boundary conditions for the non-local social interactions. Thus, we
have a problem with a discrete spectrum, where for L large we can approximate the
process of pattern formation on an unbounded domain. To complete the model, we
have to impose boundary conditions. Note that since system (1) is hyperbolic, we have
to follow the characteristics of the system when imposing these boundary conditions.
For this reason, u+

i , i = 1, 2, are prescribed only at x = 0, while u−
i , i = 1, 2 are

prescribed only at x = L . For this model, we choose periodic boundary conditions,
where the cancer cells move on a circular domain, leaving the domain at one end and
entering it again at the other end. The boundary conditions are described by:

u+
i (t, 0) = u+

i (t, L) and u−
i (t, L) = u−

i (t, 0) , i = 1, 2. (9)

3 Parabolic Limit for Non-local Interactions

In this section, we take a formal parabolic limit to investigate the connection between
the hyperbolic model (1) and other published non-local parabolic models for collective
cell dynamics, which have density-dependent speed (see, e.g. Domschke et al. 2014;
Painter et al. 2015 and the references therein). To study the parabolic limit of our
hyperbolic model, we assume that there is no alignment, i.e. qal = 0. The main
reason for choosing to ignore alignment is that we aim to obtain closed-form parabolic
equations for the total densities of cancer cells (u1,2), and the alignment terms (for
qal �= 0) incorporate left- and right-moving cancer cells (which would lead to terms
depending on the flow v1,2).
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Recent experimental results on cancer cell motility have shown that there are differ-
ences in terms of speed and directional persistence between 2D and 3D cell migrations
(Wu et al. 2014). Moreover, while cells have been observed to move persistently in 2D
at short time scales (i.e. their behaviour corresponding to hyperbolic dynamics), they
displayed correlated random walk at long time scales (i.e. their behaviour correspond-
ing to parabolic dynamics). We can explain the experimental behaviour observed on
short and long time scales by taking the parabolic limit of the hyperbolic model (1).
As discussed in Hillen and Painter (2013), there are two approaches for this parabolic
limit: (i) an appropriate scaling of space and time and (ii) large turning rates and large
speeds. Since the two approaches are equivalent (Hillen and Painter 2013), throughout
this study we chose to focus on the scaling of the turning rates and speeds.

To transform model (1) into a parabolic model, we follow the classical approach
in (Kac 1974; Hillen and Stevens 2000) and differentiate with respect to t and x
the sum and difference of Eqs. (1a)–(1b) and also Eqs. (1c)–(1d). After eliminating
the equations for the cell fluxes (v1 = u+

1 − u−
1 and v2 = u+

2 − u−
2 ), we are left

with two equations for the total densities of cancer cells (u1,2 = u+
1,2 + u−

1,2)—see
Eqs. (51) and (52) in “Appendix B” (as well as the details of the calculations shown
in “Appendix B”).

Next, we rescale the turning rates and speeds, by assuming that the cancer cells
move very fast and change direction even faster [with respect to other normal cells
in the tissue; see also the experimental study in Tzvetkova-Chevolleau et al. (2008)].
Moreover, since it makes sense to assume that high speeds and high turning rates lead
also to a reduced sensitivity to the environment (and implicitly to other neighbouring
cells), we consider also a scaling of the density-dependent components of the speed
[i.e. the term g[u] that appears in Γ ±[u] = γ (1± g[u])] and of the turning rates (i.e.
the term p(y±[u]) that appears in λ±

u1,2 ) [see also the approach in Buono and Eftimie
(2015)].

With these assumptions, we introduce a small dimensionless parameter ε > 0 and
use it for the following rescaling

(i) λri = λ̄ri

ε2
, λbi = λ̄bi

ε2
, i = 1, 2,

(ii) γ = γ̄

ε
,

(iii) g
[
u
] = ε ḡ

[
u
]
,

(iv) p
(
y± [

u
]) = ε p̄

(
y± [

u
])
.

We denote by fi
[
u
] = λ−

ui

[
u+
1 , u−

1 , u+
2 , u−

2

]−λ+
ui

[
u+
1 , u−

1 , u+
2 , u−

2

]
and hi

[
u
] =

λ−
ui

[
u+
1 , u−

1 , u+
2 , u−

2

] + λ+
ui

[
u+
1 , u−

1 , u+
2 , u−

2

]
. This reduction in the sensitivity in the

environment leads to the following rescaling

• fi
[
u
] = λ̄bi f̄

[
u
]

ε
, with f̄

[
u
] = p̄

(
y− [

u
]) − p̄

(
y+ [

u
])

, i = 1, 2, (10)

• hi
[
u
] = 2λ̄ri + 2λ̄bi εh̄

[
u
]

ε2
, with h̄

[
u
] = p̄

(
y− [

u
]) + p̄

(
y+ [

u
])

, i = 1, 2.

(11)
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We then substitute these rescaled parameters and functions into a reduced system
for the total cell densities u1,2 = u+

1,2 + u−
1,2, which was obtained from model (1);

see Eqs. (51)–(52) in “Appendix B”. This approach has been previously described in
detail in Hillen and Levine (2003) and Hillen and Stevens (2000). As we then take the
limit ε → 0 in this simplified system, we obtain the following parabolic equations

∂u1
∂t

= Du1
∂2u1
∂x2

− γ λb1

2λr1

∂

∂x

(
u1 f

[
u
]) − γ

∂

∂x

(
u1g

[
u
]) − Mu1 + R1

(
u
)
, (12a)

∂u2
∂t

= Du2
∂2u2
∂x2

− γ λb2

2λr2

∂

∂x

(
u2 f

[
u
]) − γ

∂

∂x

(
u2g

[
u
]) + Mu1 + R2

(
u
)
, (12b)

where Dui = (γ )2

2λri
, i = 1, 2, are the diffusion coefficients, and Ri

(
u
) =

ri ui (1 − u1 − u2), the growth functions. Here, the initial conditions are given by
the functions ui (0, x) = ui0 (x) ≥ 0, i = 1, 2.

To fully define the parabolic model (12), we need to impose boundary conditions.
To be consistent with the hyperbolic model (1), we impose again periodic boundary
conditions on a finite domain of length L:

u1 (t, 0) = u1 (t, L) and u2 (t, 0) = u2 (t, L) . (13)

We note that, since we assumed qal = 0, the non-local terms f
[
u
]
and g

[
u
]
now

depend only on the repulsive and attractive interactions.

4 Linear Stability Analysis

In this section, we investigate the possibility of pattern formation for models (1) and
(12) via linear stability analysis. To this end, we focus on model parameters, including
the magnitudes of social forces (i.e. attraction, repulsion, alignment) between cancer
cells, and their role on pattern formation.

4.1 Linear Stability Analysis of the Hyperbolic Model

We start with the linear stability analysis of the hyperbolic model (1). First, we look for
the spatially homogeneous steady states u±,∗

i , i = 1, 2, assuming that cancer cells are
spread evenly over the domain.We denote the constant total density of the populations
by u∗

i , i = 1, 2. From the right-hand side of Eqs. (1a)–(1d), we have the following
system:

−Mu∗
1 + r1u

∗
1

(
1 − u∗

1 − u∗
2

) = 0, (14a)

Mu∗
1 + r2u

∗
2

(
1 − u∗

1 − u∗
2

) = 0, (14b)
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which has the solutions
(
u∗
1, u

∗
2

) = (0, 0) and
(
u∗
1, u

∗
2

) = (0, 1). Note that, for biolog-
ical realism, we consider only non-negative solutions. If we consider the states where
both cell populations are evenly spread in both directions over the domain, then these

states
(
u+,∗
1 , u−,∗

1 , u+,∗
2 , u−,∗

2

)
are given by

(0, 0, 0, 0) and (0, 0, 0.5, 0.5) . (15)

If we consider populations that are evenly spread over the domain, but where more
individuals are facing one direction compared to the other direction (i.e. u+,∗

2 �= u−,∗
2 ),

then the steady states are given by

(0, 0, 0, 0) and
(
0, 0, u+,∗

2 , 1 − u+,∗
2

)
, (16)

for 0 ≤ u+,∗
2 ≤ 1.

Now that we know the steady states, we proceed with the study of the local stability
of these solutions under small perturbations caused by spatially non-homogeneous
terms. We let u±

1 = u±,∗
1 + A±

u1e
ikx+λt and u±

2 = u±,∗
2 + A±

u2e
ikx+λt with

|A±
u1 |, |A±

u2 | � 1, where k and λ are the wave number and frequency, respectively.
Due to the finite domain (with wrap-around boundary conditions), we have that the
wave number, k, takes only discrete values k j = 2pj/L, j = 1, 2, 3, . . . . Let
K̂±

j , j = a, r , al, be the Fourier transform of the interaction kernel K j , given by
the following relation

K̂±
j (k) =

∫ ∞

−∞
K j (s) e

±iks j ds, j = a, r , al. (17)

We denote by K̂ s (k) = K̂+ (k) − K̂− (k) = qa K̂ s
a (k) − qr K̂ s

r (k) the Fourier sine
transform of kernel K , and, respectively, by K̂ c

al (k) = K̂+
al (k) + K̂−

al (k) the Fourier
cosine transform of kernel Kal. Throughout this study, we will consider translated
Gaussian kernels given by relation (8). Then, the Fourier transform of these kernels is
given by

K̂±
j (k) = exp

(
±iks j − k2m2

j/2
)

, j = a, r , al, (18)

and the Fourier sine and cosine transforms are given by

K̂ s
j (k) = exp

(
−k2m2

j/2
)
sin

(
ks j

)
, and K̂ c

j (k) = exp
(
−k2m2

j/2
)
cos

(
ks j

)
.

(19)

To simplify the results of this section (using the fact that u+,∗
1 = u−,∗

1 = 0), we set
the following parameter values:
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L±
i = λri + 0.5λbi + 0.5λbi tanh

(±Q∗ − 2
)
, i = 1, 2,

Q∗ = 2qal
Rs

(
u−,∗
2 − u+,∗

2

)
,

f (u) = 0.5 tanh (u) ,

f ′ (u) = 0.5 − 2 f 2 (u) ,

B = u+,∗
2 f ′ (Q∗ − 2

) + u−,∗
2 f ′ (−Q∗ − 2

)
,

Y (k) = −2kγ

Rs
K̂ s (k) ,

W± (k) = Bλb2

Rs

[
i K̂ s (k) ∓ qal K̂ c

al (k)
]
. (20)

Substituting now the expressions u±
j = u±,∗

j + A±
u j
eikx+λt , j = 1, 2, into the

system (1) and using the above relations, we obtain the following dispersion relations:

– For the steady state (0, 0, 0, 0), we have:

(
λ2 + λD1 (k) + E1 (k)

)
·
(
λ2 + λD2 (k) + E2 (k)

)
= 0 (21)

with

D1 (k) = L+
1 + L−

1 + 2M − r1, (22)

E1 (k) = k2γ 2 − (
L+
1 − L−

1

)
ikγ

+ (
L+
1 + L−

1 + M − r1
)
M − (

L+
1 + L−

1

)
r1, (23)

and

D2 (k) = L+
2 + L−

2 − r2, (24)

E2 (k) = k2γ 2 − (
L+
2 − L−

2

)
ikγ − (

L+
2 + L−

2

)
r2. (25)

– For the steady state
(
0, 0, u+,∗

2 , 1 − u+,∗
2

)
, we have:

(
λ2 + λD3 (k) + E3 (k)

)
·
(
λ2 + λD4 (k) + E4 (k)

)
= 0 (26)

with

D3 (k) = L+
1 + L−

1 + 2M, (27)

E3 (k) = k2γ 2 − (
L+
1 − L−

1

)
ikγ + (

L+
1 + L−

1 + M
)
M, (28)

and

D4 (k) = L+
2 + L−

2 + r2 + W+ (k) − W− (k) + Y (k) , (29)
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as      and       increaseλ λ1
r

2
r

as      increasesγ

2as r   and r   increase1

(a)

(d)(c)

(b)

Fig. 1 The dispersion relation (21) for the steady state (0, 0, 0, 0). a Plot of the larger eigenvalues λl (k) =(
−Dl (k) +

√
D2
l (k) − 4El (k)

)
/2, l = 1, 2, obtained by dispersion relations (21) for D1, E1 (blue)

and D2, E2 (red); b the effect of γ on the graph of Re (λ2 (k)); c the effect of r2 on the graph of Re (λ2 (k));
d the effect of λr2 on the graph of Re (λ2 (k)). The continuous curves represent the Re(λ(k)), while the
dotted curves represent the Im(λ(k)). The model parameters are given in Table 2. The diamonds on the
x-axis represent the discrete wave numbers k j = 2π j/L, j = 1, 2, . . . (Color figure online)

E4 (k) = k2γ 2 −
(
L+
2 − L−

2 + W+ (k) + W− (k) +
(
2u+,∗

2 − 1
)
Y (k)

)
ikγ

+ (
L+
2 + L−

2 + W+ (k) − W− (k)
)
(Y (k) + r2) . (30)

Equations (21) and (26) show that the steady states are unstable, i.e. Re (λ (k)) > 0,
when Dl (k) < 0 or El (k) < 0, l = 1, . . . , 4. Examples of such dispersion relations
are shown in Figs. 1a and 2a. There is a range of k-values for which Re (λ (k)) is
positive, and thus, aggregation can arise from spatial perturbations of the steady states
(0, 0, 0, 0) (see Fig. 1a) and (0, 0, 0.5, 0.5) (see Fig. 2a). Note that similar results

(not shown here) are obtained for any steady state
(
0, 0, u+,∗

2 , 1 − u+,∗
2

)
, with 0 ≤

u+,∗
2 ≤ 1.

The effect of the parameters on the stability of the steady states We now use the
dispersion relations (21) and (26) to study the effect of the key parameters on pattern
formation. We investigate the stability of the spatially homogeneous steady states
(0, 0, 0, 0) and (0, 0, 0.5, 0.5) by increasing (or decreasing) the parameters connected
to the dispersion relations. Precisely, we show the effect of the parameters on the graph
of the eigenvalue with the maximum real part, i.e. Re (λ2 (k)) and Re (λ4 (k)) of the
dispersion relations (21) and (26), respectively. However, we note that the effect of
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(d)

(b)

(f)

as q   increasesr

1as r   and r    increase2

(a)

(c)

(e)

as q   increasesa

as      increasesγ

Fig. 2 The dispersion relation (26) for the steady state (0, 0, 0.5, 0.5). a Plot of the larger eigenvalues

λl (k) =
(

−Dl (k) +
√
D2
l (k) − 4El (k)

)
/2, l = 3, 4, obtained by dispersion relations (26) for D3, E3

(blue) and D4, E4 (red); b the effect of γ on the graph of Re (λ4 (k)); c the effect of r2 on the graph of
Re (λ4 (k)); d the effect of λr2 on the graph of Re (λ4 (k)); e the effect of qa on the graph of Re (λ4 (k)); f
the effect of qr on the graph of Re (λ4 (k)). The continuous curves represent the Re(λ(k)), while the dotted
curves represent the Im(λ(k)). The model parameters are given in Table 2. The diamonds on the x-axis
represent the discrete wave numbers k j = 2π j/L, j = 1, 2, . . . (Color figure online)

the parameters (e.g. λr1 and r1, and the rest parameters) is similar on the graphs of
Re (λ1 (k)) and Re (λ3 (k)).

For the tumour-free steady state (0, 0, 0, 0), we can see from the dispersion relation
(21) that its stability does not depend on the magnitudes of cell interactions, although
these magnitudes are crucial in the nonlinear interactions that control cell aggregation
patterns. In Fig. 1b, c, d, we see that the stability of this steady state depends mainly
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on the baseline speed, the proliferation rates and the baseline random turning rates,
with the latter not having a significant impact on the instability of the steady state.
Precisely, for zero proliferation rates (r1 = r2 = 0) the steady state is stable (see Fig.
1c), while an increase in them or in the baseline random turning rates (λr1,2) results in
a shift to the right of the wave number that will emerge. Note also that an increase in
the baseline speed (γ ) has an inverse result in the dispersion relation, with a shift to
the left of the wave number that will emerge.

For the steady state (0, 0, 0.5, 0.5), there aremore parameters that affect the stability
properties and as it can be seen by relations (29) and (30) the stability of this steady
state depends on the magnitudes of cell interactions as well. We can see in Fig. 2b,
c that the baseline speed and the proliferation rates have an opposite effect on the
stability changes of (0, 0, 0.5, 0.5), compared to that on the cancer-free steady state.
In Fig. 2e, f we see that a decrease in the magnitude of attraction leads to the change in
the stability of this steady state, while an increase in the magnitude of repulsion leads
to the shift of the critical wave numbers to the right. Note that although the magnitude
of alignment does not seem to affect the stability wave number, it is crucial though in
the pattern formation, as we will see in the following section.

Remark 1 We should mention here that the effect of the mutation rate, M , on the
dispersion relation is not significant. Precisely, as M appears only on the functions
D1, E1 and D3, E3, any changes in the values of M will not lead to stability change,
but only to a reduction on the eigenvalues λ1 and λ3 (up to below zero) as M increases.
Note that we always refer to the greater eigenvalues of Eqs. (21) and (26), given by

the relation λl (k) =
(

−Dl (k) +
√
D2
l (k) − 4El (k)

)
/2, l = 1, . . . , 4.

To investigate the effect of the scaling parameter ε on the dispersion relation, in
Fig. 3a, b we show the stability of the steady states (0, 0, 0, 0) and (0, 0, 0.5, 0.5),
respectively, after applying the rescaling given in Sect. 3 and taking qal = 0. Although
the wave numbers k j = 2π j/L, j = 1, 2, . . . are discrete (represented by diamond-
shaped points in x-axis of Figs. 1 and 2), here they are plotted as a continuous axis to
show clearly the effect of ε on the imaginary part of the dispersion relation described
by dotted curves. We see in Fig. 3b that for ε = 1 there are wave numbers for which
we can have Re

(
λ

(
k j

))
> 0 and Im

(
λ

(
k j

))
> 0, giving rise to travelling patterns.

As ε decreases (e.g. ε = 0.5), we note that Im
(
λ

(
k j

)) = 0 at some wave numbers
where Re

(
λ

(
k j

))
> 0, and thus stationary pulses are expected to be obtained. As

ε → 0, the imaginary part of the eigenvalues will be always zero, and numerically we
expect to observe stationary patterns.

4.2 Linear Stability Analysis of the Parabolic Model

Next, we investigate the conditions under which aggregations can arise for the limiting
parabolic model (12). We first calculate the spatially homogeneous steady states of the
parabolic model. We see from Eqs. (12a)–(12b) that the ODE model associated with
system (12) is described by system (14), which has the solutions

(
u∗
1, u

∗
2

) = (0, 0)
and (0, 1) (considering again only non-negative solutions).
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0

0

(a)

ε

ε

(b)

Fig. 3 Plot of the eigenvalue with the maximum real part, after parabolic scaling, of a relation (21) for the
s.s. (0, 0, 0, 0) for qal = 0; b relation (26) for the s.s. (0, 0, 0.5, 0.5) for qal = 0. The continuous curves
represent the Re(λ(k)), while the dotted curves represent the Im(λ(k)). The rest of the model parameters
are given in Table 2. For graphical purposes, the discrete wave numbers has been omitted (Color figure
online)

Proceeding with the linear stability analysis of the spatial system (12), we apply
small spatial perturbations to the homogeneous steady states: u1 = u∗

1 + Au1e
ikx+λt

and u2 = u∗
2+ Au2e

ikx+λt with |Au1 |, |Au2 | � 1. Substituting these terms into system
(12), using the parameter values (20) and replacing u∗

1 = 0, yields the following
dispersion relation:

[
− k2Du1 − M + r1

(
1 − u∗

2

) − λ
]

·
[

− k2Du2 + Y (k)

(
λb2 f

′ (−2)

2λr2
− 1

)
u∗
2

+ r2
(
1 − 2u∗

2

) − λ

]
= 0. (31)

Therefore, for the steady state (0, 0) we have the solutions:

λ1 = −k2Du1 − M + r1 and λ2 = −k2Du2 + r2, (32)
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(b)(a)

Fig. 4 Plot of the eigenvalues obtained by dispersion relation (31). a λ1 (k) = −k2Du1 − M + r1 (blue)
and λ2 (k) = −k2Du2 + r2 (red) for the steady state (0, 0); b λ1 (k) = −k2Du1 − M (blue) and λ2 (k) =
−k2Du2 + Y (k)

(
λb2 f

′ (−2) /(2λr2) − 1
)

− r2 (red), for the steady state (0, 1). The model parameters are

given in Table 2. The continuous curves represent the Re (λ(k)), as the imaginary part of the eigenvalues is
zero (represented by dotted lines) in the case of the parabolic model [see relations (31)–(33)]. The diamonds
on the x-axis represent the discrete wave numbers k j = 2π j/L, j = 1, 2, . . . (Color figure online)

(a)
as        increasesλ

r
2

(b)
ras q   increases

Fig. 5 The dispersion relation (31) for the steady state (0, 1). a The effect of λr2 on the graph of Re (λ2 (k));
b the effect of qr on the graph of Re (λ2 (k)); the rest of the model parameters are given in Table 2. The
diamonds on the x-axis represent the discrete wave numbers k j = 2π j/L, j = 1, 2, . . . (Color figure
online)

and for the steady state (0, 1), the solutions:

λ1 = −k2Du1 − M < 0 and λ2 = −k2Du2 + Y (k)

(
λb2 f

′ (−2)

2λr2
− 1

)

− r2.

(33)

As in the case of the hyperbolic model, we see in Fig. 4 that there is a range of k-values
for which Re (λ (k)) > 0, and thus, aggregation can arise from spatial perturbations of
the steady states (0, 0) and (0, 1) of the parabolic model. However, taking into account
that we have qal = 0 and all eigenvalues have zero imaginary part, we expect that the
numerical simulations will show stationary patterns.

Figures 1a and 4a, as well as Figs. 2a and 4b, are similar, and the effect of the
key parameters on the dispersion relation is the same. In Fig. 5, we only include the
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parameters which seem to have a slightly different effect on the dispersion relation for
the steady state (0, 1) of the parabolic model, compared to the one of the hyperbolic
model for the steady state (0, 0, 0.5, 0.5). Although in Fig. 2d the effect of λr2 on the
stability of the steady state is not very clear, in Fig. 5a we can see that a decrease in λr2
leads to a shift of the graph below and a change in stability for very low λr2. Moreover,
when we increase qr (see qr = 1.1 in Fig. 5b), the steady state becomes stable and we
do not expect to have aggregation.

Remark 2 Note that k = 0 is unstable for the trivial steady states [see Figs. 1 and 4a; a
similar behaviour being observed in other non-local hyperbolic models (Eftimie et al.
2017)] and stable for the non-trivial states (see Figs. 2 and 4b; this behaviour is similar
to the classical Turing-type instability).

5 Numerical Results

To understand the behaviour of systems (1) and (12), we investigate them numerically.
The aim of this section is to study the effect of the cell–cell interactions, baseline speed,
proliferation and turning rates on the pattern formation for bothmodels. The numerical
results presented in this section are based on the investigation of the parameter sets
that lead to pattern formation, i.e. predicted unstable wave numbers, as shown in
the context of the linear stability analysis presented in the previous section. Note that
similar patterns for different parameter sets or different initial conditions are not shown
here for a better flow of this paper.

We use a time-splitting approach to discretise our model. We discretise the space–
time plane choosing a time step 
t = 0.001 and a space step 
x = 0.01. We use
a Crank–Nicolson scheme to propagate the solution of the diffusion terms for the
parabolic equations (12), obtained with the formal parabolic limit of Eqs. (1). For
the time propagation of the advection terms in both models (1) and (12), we use
the Nessyahu–Tadmor scheme (Nessyahu and Tadmor 1990). Finally, for the time
propagation of the reaction terms in (1) and (12), we use a fourth-order Runge–Kutta
algorithm, where the integrals are further discretised using the Simpson’s rule. All
simulations are performed on a domain of length L = 10 with periodic boundary
conditions (introduced to approximate the dynamics on an infinite domain). To deal
with the integrals at the boundaries of the domain, we wrap them around the domain.
The simulations ran for times up to t = 2000, but we show the dynamics for time
that the patterns are more clear. The parameters used in the numerical simulations are
listed in Table 2 in “Appendix A”.

5.1 Pattern Formation for the Non-local Hyperbolic Model

Let us focus first on the numerical simulations for the non-local hyperbolic model
(1). The initial conditions for the cancer cell populations are either small random
perturbations of spatially homogeneous steady states

u±
i (0, x) = u±,∗

i + rand(0, 10−4), i = 1, 2, (34)

123



Non-local Parabolic and Hyperbolic Models for Cell…

or small random perturbations of rectangular-shaped aggregations located in the mid-
dle of the domain

u±
i (0, x) =

{
0.1 + rand(0, 10−4), x ∈ (L/2 − 1, L/2 + 1),

0, everywhere else.
(35)

To begin we first run numerical simulations for small random perturbations of the
steady states (0, 0, 0, 0) and (0, 0, 0.5, 0.5). As stated in the context of linear stability
analysis in the previous section, the mutation rate, M , does not have any significant
effect on the stability of the steady states. The numerical simulations obtained for
M = 0.05 show similar patterns (not shown here) with those for M = 0.0002, but
with u1 population vanishing much faster and population u2 reaching greater density
values.

The effect of proliferation rate on cancer cell movement and aggregationAs one of the
key parameters of the stability of the steady state (0, 0, 0, 0) is the proliferation rate,
in Fig. 6 we see that as the proliferation rates increase, e.g. r1 = 0.3 and r2 = 0.4 (see
Fig. 6a’, b’) the u1 and u2 exhibit larger number of smaller rotating waves, as it was
expected from the increased number of critical wave number shown in linear stability
analysis (see Fig. 1c). Increasing further the proliferation rates r1,2 (e.g. up to 0.7)
leads to more aggregation waves. Choosing now the same proliferation rate for the
twopopulations, e.g. r1 = r2 = 0.1,we see in Fig. 6a”, b” an interesting effect of clonal
competition, with population u1 dominating the dynamics. This could be explained by
the very low mutation rate and an equal competitive effect (i.e.−r1u1u2 = −r2u1u2).
Note that similar behaviours (where u1 dominates the dynamics) have been observed
for other sets of parameters with equal cell proliferation rates: e.g. r1 = r2 = 0.6 or
0.7 (not shown here).

The effect of turning rates on cancer cell movement and aggregation If we increase the
baseline random turning rates, from λri = 0.2 to λri = 0.4, i = 1, 2, we see in Fig. 7
that the cancer cell populations change their movement from rotating waves (panels a,
b) to a combination of rotating waves and stationary pulses that are connected through
splitting/merging behaviours that result from high random cell turning rates (panels
a’, b’). However, if we reduce the baseline random turning rates, from λr1,2 = 0.2 to
λr1,2 = 0.1, the rotating waves persist (not shown here). This behaviour was obtained
for both steady states.

The effect of baseline speed on cancer cell movement and aggregation To investigate
the effect of the baseline speed on pattern formation, we focus on the random initial
conditions (34) and any of the two steady states (since perturbations of both states give
rise to similar patterns). First we observe in Fig. 7a, b, a”, b” that an increase in cells’
speed (from γ = 0.1 to γ = 1) leads to a change in cells’ movement from rotating
waves (panels a, b) to standing waves (panels a”, b” shown only for 495 < t < 500
to improve the clarity of the figures). Moreover, we note that a reduction in the values
of the baseline speed, γ , leads to the spread of populations over the whole domain.
An example of such behaviour [for γ = 0.01 and pulse-like initial conditions (35)] is
shown in Fig. 10.
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Fig. 6 Patterns exhibited by the hyperbolic model (1). The initial conditions for the two cancer cell popula-
tions are described by small random perturbations of the steady state (0, 0, 0, 0) [see (34)]. a, bTotal density
of u1 = u+

1 + u−
1 and u2 = u+

2 + u−
2 for r1 = 0.1 and r2 = 0.2; a’, b’ total density of u1 = u+

1 + u−
1

and u2 = u+
2 + u−

2 for r1 = 0.3 and r2 = 0.4; a”, b” total density of u1 = u+
1 + u−

1 and u2 = u+
2 + u−

2
for r1 = r2 = 0.1. The rest of model parameters are given in Table 2 (Color figure online)

The effect of attraction and repulsion on cancer cell movement and aggregation Con-
sider again the random initial conditions (34) applied to the steady state (u+,∗

1 , u−,∗
1 ,

u+,∗
2 , u−,∗

2 ) = (0, 0, 0.5, 0.5) [note that similar results have been obtained also for
the steady state (0, 0, 0, 0)—not shown here]. To investigate the effect of attraction
and repulsion on pattern formation, we focus on two different cases: (i) qal = 3 and
qa = 6  qr = 0.1 and (ii) qal = 3 and qa = 1.2 � qr = 6.5. We see in Fig. 8a,
b that the increase in cell–cell attraction leads to a (relatively) small number of large
stationary cell aggregations. In contrast, the increase in cell–cell repulsion leads to the
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Fig. 7 Patterns exhibited by the hyperbolic model (1). The initial conditions for the two cancer cell popula-
tions are described by small random perturbations of the steady state (0, 0, 0, 0) [see (34)]. a, bTotal density
of u1 = u+

1 + u−
1 and u2 = u+

2 + u−
2 for λr1,2 = 0.2 and γ = 0.1; a’, b’ total density of u1 = u+

1 + u−
1

and u2 = u+
2 + u−

2 for λr1,2 = 0.4 and γ = 0.1; a”, b” total density of u1 = u+
1 + u−

1 and u2 = u+
2 + u−

2
for λr1,2 = 0.2 and γ = 1. The rest of model parameters are given in Table 2 (Color figure online)

formation of a much larger number of smaller stationary cell aggregations (see Fig.
8a’, b’).

The effect of alignment on cancer cell movement and aggregationNext we investigate
the effect of alignment on collective cell movement and aggregation. In Fig. 9, we
show the numerical results when qal = 0.5 and λr1,2 = 0.1, for initial conditions
consisting of a rectangular pulse [see (35)]. The left-moving and right-moving cancer
cell populations seem to exhibit a semi-zigzag pattern, characterised by a periodic
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Fig. 8 Patterns exhibited by the hyperbolic model (1). The initial conditions for the two cancer cell popu-
lations are described by small random perturbations of the steady state (0, 0, 0.5, 0.5) [see (34)]. a, b Total
density of u1 = u+

1 + u−
1 and u2 = u+

2 + u−
2 for qa = 6, qr = 0.1 and qal = 3; a’, b’ total density of

u1 = u+
1 + u−

1 and u2 = u+
2 + u−

2 for qa = 1.2, qr = 6.5 and qal = 3. The rest of model parameters are
given in Table 2 (Color figure online)

transition between two different types of sub-patterns: stationary aggregations and
travelling aggregations—see the first two columns in Fig. 9. This periodic transition
seems to be similar to a heteroclinic connection. However, due to the complexity of
the theory behind these heteroclinic connections in infinite-dimensional dynamical
systems, it is beyond the purpose of this study to investigate them further. This will
be the subject of future research.

We note here that increasing the magnitude of alignment to qal = 3 leads again to
rotating waves, while decreasing it to qal = 0 leads to standing waves or stationary
aggregations. In both cases, the patterns are similar to those shown in previous figures,
and thus not included.

Finally, we investigate the combined effect of two parameters: cell alignment (qal)
and cell baseline speed (γ ). In contrast to the previous simulations, we now consider
small speeds (i.e. γ = 0.01) and slightly larger turning rates (i.e. λr1,2 = 0.2). We see
in Fig. 10a, b that when alignment is absent (qal = 0), the u1 cells form stationary
aggregations (which eventually vanish due to the mutation term) and the u2 cells
spread throughout the whole domain.

When alignment is present (qal > 0), we see in Fig. 10a’, b’ that some sub-
populations of u1 and u2 cells move quickly to the left and to the right, reaching
the domain boundaries. As in the previous case, the u1 cells are eventually eliminated,
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Fig. 9 Patterns exhibited by the hyperbolic model (1) for qal = 0.5 and λr1,2 = 0.1. The rest of model
parameters as given in Table 2. The initial conditions for the two cancer cell populations consist of a
rectangular pulse [see (35)]. a–d show the density of right-moving cancer cells u+

1 (a, b) and u+
2 (c, d).

a’–d’ show the density of left-moving cancer cells u−
1 (a’, b’) and u−

2 (c’, d’). a”–d” show the total density
of cancer cells u1 (a”, b”) and u2 (c”, d”) (Color figure online)

while the u2 cells spread throughout the whole domain. Note that similar results were
obtained also with the random initial conditions (34)—not shown here.

Remark 3 To ensure that the cell aggregation patterns shown above did not depend on
the boundary conditions, or on the numerical scheme used for discretisation, we also
ran numerical simulations for the cases shown in Figs. 7a”, b” and 8a’, b’ when we
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Fig. 10 Patterns exhibited by the hyperbolic model (1) showing the cancer cell density for γ = 0.01. The
initial conditions for the two cancer cell populations consist of a rectangular pulse [see (35)]. a, b Total
density of u1 and u2 for qal = 0; a’, b’ total density of u1 and u2 for qal = 10. The rest of model parameters
are given in Table 2 (Color figure online)

doubled the domain size and refined the grid mesh. In all of these cases, the results
showed no significant differences.

5.2 Pattern Formation for the Limiting Parabolic Model

In this section, we run simulations for the limiting parabolic model given by (12).
As in the hyperbolic model (1), we choose the initial conditions for the cancer cell
populations to be small random perturbations of the spatially homogeneous steady
states (0, 0) and (0, 1) (see Sect. 4.2)

ui (0, x) = u∗
i + rand(0, 10−4), i = 1, 2, (36)

or small random perturbations of rectangular-shaped aggregations located in the mid-
dle of the domain

ui (0, x) =
{
0.2 + rand(0, 10−4), x ∈ (L/2 − 1, L/2 + 1)

0, everywhere else.
(37)
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Fig. 11 The spatiotemporal patterns obtained with the hyperbolic model (1) for qal = 0 after scaling, and
the parabolic model (12). a, b Standing waves obtained by (1) after scaling for ε = 1; a’, b’ stationary
pulses obtained by (1) after scaling for ε = 0.5; a”, b” stationary pulses obtained by (12) when ε → 0.
The initial conditions for the two cancer cell populations are described by small random perturbation of the
steady state (0, 0, 0.5, 0.5), for the rescaled hyperbolic model, and (0, 1), for the parabolic model [see (34)
and (36)]. The rest of model parameters are given in Table 2 (Color figure online)

First, we assume that qal = 0 and investigate how the travelling and stationary
patterns predicted by the unstable wave numbers in the linear stability analysis of
the hyperbolic model (1) (see Fig. 3), are preserved in the limit to the macroscopic
parabolic model. If we consider small random perturbations of the hyperbolic steady
state (0, 0, 0.5, 0.5), we see in Fig. 11a, b that for ε = 1 we obtain standing waves,
and as ε decreases to 0.5, the cancer cells exhibit stationary pulses (Fig. 11a’, b’), as
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Fig. 12 Patterns exhibited by the parabolic model (12). The initial conditions for the two cancer cell
populations are described by small random perturbations of the steady state (0, 1) [see (36)]. Total density
of u1 and u2 for qa = 6, qr = 0.1 and qal = 0. The rest of the model parameters are given in Table 2 (Color
figure online)
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Fig. 13 Patterns exhibited by the parabolic model (12) showing the cancer cell density for γ = 0.01. The
initial conditions for the two cancer cell populations consist of a rectangular pulse [see (37)]. a, b Total
density of u1 and u2 for qa = 1.2, qr = 0.1 and qal = 0. The rest of model parameters are given in Table 2
(Color figure online)

expected by the linear stability analysis results. Assume now ε → 0, and focus on
the parabolic model (12). For initial conditions that are small random perturbations of
the steady state (0, 1), we obtain stationary pulses (Fig. 11a”, b”) that are similar to
the ones for the rescaled hyperbolic model when ε = 0.5 (see Fig. 11a’, b’). Similar
pattern formation results are obtained for the hyperbolic steady state (0, 0, 0, 0) (and
for the state (0, 0) corresponding to the parabolic model) for the case λr1,2 = 0.1. If
we increase the random turning rates to λr1,2 = 0.2, we obtain stationary pulses for
every 0 < ε ≤ 1 in the rescaled hyperbolic model and for ε → 0 in the parabolic
model, which was expected also from the linear stability analysis (see Fig. 3, where
Im

(
λ

(
k j

)) = 0 at the wave numbers where Re
(
λ

(
k j

))
> 0).

Finally, since we expect that the repulsive–attractive interactions could affect also
the dynamics of the parabolic model, in Fig. 12 we investigate the effect of increasing
the attraction strength to qa = 6 (same as in Fig. 8a, b, but here qal = 0). We see
that the parabolic model exhibits a large number of small stationary pulses, similar to
those obtained by the hyperbolic model in Fig. 8.
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Reducing now the speed (and assuming pulse-like initial conditions (37), as for the
hyperbolic model), we notice that the patterns displayed in Fig. 13a, b are similar to
those obtained for the hyperbolic model presented in Fig. 10a, b.

From the numerical simulations of both models, we conclude that the hyperbolic
model can exhibit both moving and stationary behaviours, in contrast to the parabolic
model that can exhibit only stationary behaviours.

6 Conclusion and Discussion

In this paper, we introduced a one-dimensional non-local hyperbolic model describing
the interactions betweenheterogeneous cancer cells.Wedeveloped amodelwhere non-
local turning rates are included and incorporate all three social interactions: attraction,
repulsion and alignment, that play a crucial role in cell movement and aggregation.We
assumed that a cell changes itsmovement direction only afterweighing the information
received from left and right, speeding up and slowing down to catch up with the
surrounding cells, or to avoid collisions. The mutation terms and the proliferation
terms are chosen to take into account the movement of cells in opposite directions. We
should emphasise that we assumed that cancer cells can detect cells that are in front
and behind them.

Then, we reduced our non-local hyperbolic model to a non-local parabolic model
for cellular aggregations, since parabolic models have been commonly used in the
study of the formation and movement of cell and animal aggregations. To this end, we
considered a formal parabolic limit which assumed very large turning rates and very
large speeds.

Linear stability analysis of both hyperbolic and parabolic model was used to exam-
ine the possibility of cell aggregations to form (as a result of spatial perturbations of
the steady states). The results showed that for the hyperbolic model, the dispersion
relation had nonzero imaginary part (hence it was possible to have Hopf bifurcations,
in addition to real bifurcations). In contrast, the dispersion relation for the parabolic
model had zero imaginary part (hence aggregations could arise only via real bifurca-
tions). Finally, we ran simulations for the hyperbolic and the related parabolic model
and compared the results: the hyperbolic model was more rich in patterns, showing
moving cell aggregations, while the parabolic model exhibited mainly stationary cell
aggregations. These numerical results are consistentwith the linear results obtained via
stability analysis, emphasising the more complex behaviour of the hyperbolic model.

Themodel presented in this paper focussedmainly on the interactions between cells,
excluding the important role of ECMon cellular adhesion, movement and aggregation.
A straightforward future research direction is to include ECM density in this non-local
model that incorporates cell alignment.
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Appendix A: Non-dimensionalisation and Parameter Values

A.1 Non-dimensionalisation of theModel

To obtain the non-dimensional system (1), we use the following quantities:

t̃ = t

τ
, x̃ = x

L0
, ũ±

i = u±
i

ku
, ũi = ui

ku
, i = 1, 2, R̃s = Rs

L0
, s̃ = s

L0
. (38)

The length scale, L0, is in the range of 0.1–1 cm and is defined as the maximum
invasion distance of the cancer cells at the early stage of invasion (Anderson et al.
2000). The time scale is defined as τ := L2

0/Dτ , where Dτ is a reference chemical
diffusion coefficient, e.g. ∼ 10−6cm2 s−1 (Bray 2001). Furthermore, we rescale the
cancer cells with ku . Here, ku is the carrying capacity of the cancer cell populations
and it is taken to be ∼ 6.7 · 107cell volume−1 (Domschke et al. 2014). For the ker-
nels K j (s) , j = a, r , al, we define (as in Domschke et al. 2014) the dimensionless
functions K̃ j (s̃) , i = 1, 2, given by

K̃ j (s̃) := L0K j (L0s̃) = L0K j (s) , j = a, r , al.

The non-dimensionalisation of the model is straightforward, and we obtain the
following dimensionless parameters:

q̃ j = ku
L0

q j , j = a, r , al, γ̃ = τ

L0
γ, λ̃ri = τλri ,

λ̃bi = τλbi , M̃ = τM, r̃i = τri , i = 1, 2. (39)

After dropping the tildes for notation convenience, we obtain the non-dimensionalised
hyperbolic model (1).

Note that we assume that both populations u1 and u2 proliferate in a logistic manner
to describe the observed slow down in tumour growth following the loss of nutrients
(Laird 1964). The growth functionsG1 andG2 for populations u1 and u2, respectively,
are then given by the following relations

Gi
(
u
) = ri

ui
2

(
1 − u1 + u2

ku

)
, i = 1, 2, (40)

which after the non-dimensionalisation lead to the logistic growth functions with unit-
valued carrying capacity for the cells that appear in model (1).
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Table 1 A list of model variables with their units

Variable Description Dimensional units

u+
1 Right-moving early-stage cancer cell density cell/length

u−
1 Left-moving early-stage cancer cell density cell/length

u1 Total early-stage cancer cell density cell/length

u+
2 Right-moving late-stage cancer cell density cell/length

u−
2 Left-moving late-stage cancer cell density cell/length

u2 Total late-stage cancer cell density cell/length

Since we are in 1D, length and volume coincide and we express the variables in terms of domain length

A.2 Summary of Model Variables and Parameters

We present here two tables with the model variables and parameters. In Table 1, we
list the model variables with their units. In Table 2, we list the parameters of our model
and their corresponding units and non-dimensional values used in the simulations.

Parameter estimation

– The sensing radius was based on the range of values given in Armstrong et al.
(2006) and Gerisch and Chaplain (2008). In this study, we choose R̃s = 1.

– Attraction, repulsion and alignment ranges, s j , j = a, r , al, were chosen to be
smaller or equal to sensing radius, with sr < sal < sa (Green et al. 2010).

– Experimental studies (Cillo et al. 1987; Hill et al. 1984; Mareel et al. 1991)
have shown that the mutation rate ranges between 10−8/ cell/generation and
10−5/ cell/generation. We assume an average growing cell population of ≈ 104

cells/generation, a 1-day generation of cells (since the doubling time is about
1.2 days) (den Breems and Eftimie 2016). Thus, the mutation rate will range
between M = 10−4/day and M = 0.1/day, which for τ = 105 s corresponds to a
non-dimensional value of the mutation rate ranging between M̃ = 0.000116 and
M̃ = 0.116 (for highly aggressive tumours). In this study, we choose M̃ = 0.0002.

– Various experimental studies (Cunningham and You 2015; Morani et al. 2014)
have shown that doubling times for tumour cells range from 1 to 10 days. This
corresponds to growth rates between ln (2) /10 = 0.07 (days)−1 and ln (2) /1 =
0.7 (days)−1. We choose τ = 105 s; thus, r̃i ∈ (0.081, 0.81) , i = 1, 2. In this
study, we assume that r̃1 = 0.1 and r̃2 = 0.2.
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Appendix B: Derivation of the Parabolic Model

Here, we present in detail the derivation of the parabolic model (12). The technique
used to reduce our non-local hyperbolic model to a non-local parabolic model has been
described previously in various other papers (see, for instance, Hillen andLevine 2003;
Hillen and Stevens 2000).

As mentioned in Sect. 3, we add and subtract Eqs. (1a)–(1b) for population u1, and
similarly Eqs. (1c)–(1d) for population u2, to obtain the following system:

∂u1
∂t

+ γ
∂υ1

∂x
+ γ

∂

∂x

(
u1g

[
u
]) = −Mu1 + R1

(
u
)
, (41a)

∂υ1

∂t
+ γ

∂u1
∂x

+ γ
∂

∂x

(
υ1g

[
u
]) = f1

[
u
]
u1 − h1

[
u
]
υ1 − Mυ1, (41b)

∂u2
∂t

+ γ
∂υ2

∂x
+ γ

∂

∂x

(
u2g

[
u
]) = Mu1 + R2

(
u
)
, (41c)

∂υ2

∂t
+ γ

∂u2
∂x

+ γ
∂

∂x

(
υ2g

[
u
]) = f2

[
u
]
u2 − h2

[
u
]
υ2, (41d)

where

Ri
(
u
) = ri ui (1 − u1 − u2) , (42)

fi
[
u
] = λ−

ui

[
u+
1 , u−

1 , u+
2 , u−

2

] − λ+
ui

[
u+
1 , u−

1 , u+
2 , u−

2

]
, (43)

hi
[
u
] = λ−

ui

[
u+
1 , u−

1 , u+
2 , u−

2

] + λ+
ui

[
u+
1 , u−

1 , u+
2 , u−

2

]
, i = 1, 2. (44)

Next, we differentiate Eqs. (41a) and (41c) with respect to t , and Eqs. (41b) and (41d)
with respect to x , to obtain:

∂2u1
∂t2

+ γ
∂2υ1

∂t∂x
+ γ

∂2

∂t∂x

(
u1g

[
u
]) = −M

∂u1
∂t

+ ∂

∂t
R1

(
u
)
, (45)

∂2υ1

∂x∂t
+ γ

∂2u1
∂x2

+ γ
∂2

∂x2
(
υ1g

[
u
]) = ∂

∂x

(
u1 f1

[
u
]) − υ1

∂

∂x
h1

[
u
]

− (
h1

[
u
] + M

) ∂υ1

∂x
, (46)

∂2u2
∂t2

+ γ
∂2υ2

∂t∂x
+ γ

∂2

∂t∂x

(
u2g

[
u
]) = M

∂u1
∂t

+ ∂

∂t
R2

(
u
)
, (47)

∂2υ2

∂x∂t
+ γ

∂2u2
∂x2

+ γ
∂2

∂x2
(
υ2g

[
u
]) = ∂

∂x

(
u2 f2

[
u
]) − υ2

∂

∂x
h2

[
u
]

− h2
[
u
] ∂υ2

∂x
. (48)

We eliminate the terms ∂2υ1
∂t∂x and ∂2υ2

∂t∂x from Eqs. (45)–(46) and (47)–(48), respec-
tively. Moreover, we assume that the flows υi , i = 1, 2, are zero at the boundaries.
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Using Eqs. (41a) and (41c), we replace υi , i = 1, 2, with

υi =
∫ x (

− 1

γ

∂ui
∂t

− ∂

∂x

(
ui g

[
u
]) + (−1)i

M

γ
u1 + 1

γ
Ri

(
u
))

ds, (49)

and
∂υi

∂x
, i = 1, 2, with

∂υi

∂x
= − 1

γ

∂ui
∂t

− ∂

∂x

(
ui g

[
u
]) + (−1)i

M

γ
u1 + 1

γ
Ri

(
u
)
. (50)

Therefore, we obtain the following second-order equations

∂2u1
∂t2

− γ 2 ∂2u1
∂x2

+ γ
∂

∂x

(
u1 f1

[
u
]) + γ

∂2

∂t∂x

(
u1g

[
u
]) + M

∂u1
∂t

− ∂

∂t

(
R1

(
u
))

+
(

−γ
∂2

∂x2
g

[
u
] − ∂

∂x
h1

[
u
])( ∫ x (

− ∂u1
∂t

− γ
∂

∂x

(
u1g

[
u
])

− Mu1 + R1
(
u
)
)
ds

)

+
(

−2γ
∂

∂x
g

[
u
] − h1

[
u
] − M

)(
−∂u1

∂t
− γ

∂

∂x

(
u1g

[
u
]) − Mu1 + R1

(
u
))

− γ g
[
u
] ∂

∂x

(
−∂u1

∂t
− γ

∂

∂x

(
u1g

[
u
]) − Mu1 + R1

(
u
)
)

= 0, (51)

∂2u2
∂t2

− γ 2 ∂2u2
∂x2

+ γ
∂

∂x

(
u2 f2

[
u
]) + γ

∂2

∂t∂x

(
u2g

[
u
]) − M

∂u1
∂t

− ∂

∂t

(
R2

(
u
))

+
(

−γ
∂2

∂x2
g

[
u
] − ∂

∂x
h2

[
u
]) (∫ x (

− ∂u2
∂t

− γ
∂

∂x

(
u2g

[
u
])

+ Mu1 + R2
(
u
) )

ds

)

+
(

−2γ
∂

∂x
g

[
u
] − h2

[
u
])(

−∂u2
∂t

− γ
∂

∂x

(
u2g

[
u
]) + Mu1 + R2

(
u
))

− γ g
[
u
] ∂

∂x

(
−∂u2

∂t
− γ

∂

∂x

(
u2g

[
u
]) + Mu1 + R2

(
u
)) = 0. (52)

We introduce now a small dimensionless parameter ε > 0 and consider the follow-
ing parameter scaling (see Sect. 3):

(i) λri = λ̄ri

ε2
, λbi = λ̄bi

ε2
, i = 1, 2,

(ii) γ = γ̄

ε
,

(iii) g
[
u
] = ε ḡ

[
u
]
,

(iv) p
(
y± [

u
]) = ε p̄

(
y± [

u
])
,
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and the rescaled functionals fi
[
u
]
and hi

[
u
]
described in relations (10) and (11),

respectively.
Substituting these rescaled parameters and functions into Eqs. (51)–(52) and multi-

plying with ε2, taking the limit as ε → 0 and dropping the bars (for simplicity), leads
to the following parabolic equations

∂u1
∂t

= Du1
∂2u1
∂x2

− γ λb1

2λr1

∂

∂x

(
u1 f

[
u
]) − γ

∂

∂x

(
u1g

[
u
])

− Mu1 + R1
(
u
)
, (53a)

∂u2
∂t

= Du2
∂2u2
∂x2

− γ λb2

2λr2

∂

∂x

(
u2 f

[
u
]) − γ

∂

∂x

(
u2g

[
u
])

+ Mu1 + R2
(
u
)
, (53b)

where Dui = (γ )2

2λri
, i = 1, 2, are the diffusion coefficients.
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