200 research outputs found

    How molecular advances may improve the diagnosis and management of PTCL patients

    Get PDF
    Peripheral T-cell lymphomas (PTCL) comprised more than 30 rare heterogeneous entities, representing 10 to 15% of adult non-Hodgkin lymphomas. Although their diagnosis is still mainly based on clinical, pathological, and phenotypic features, molecular studies have allowed for a better understanding of the oncogenic mechanisms involved and the refinement of many PTCL entities in the recently updated classifications. The prognosis remains poor for most entities (5-year overall survival < 30%), with current conventional therapies based on anthracyclin-based polychemotherapy regimen, despite many years of clinical trials. The recent use of new targeted therapies appears to be promising for relapsed/refractory patients, such as demethylating agents in T-follicular helper (TFH) PTCL. However further studies are needed to evaluate the proper combination of these drugs in the setting of front-line therapy. In this review, we will summarize the oncogenic events for the main PTCL entities and report the molecular targets that have led to the development of new therapies. We will also discuss the development of innovative high throughput technologies that aid the routine workflow for the histopathological diagnosis and management of PTCL patients

    Extranodal NK/T-Cell Lymphoma: Toward the Identification of Clinical Molecular Targets

    Get PDF
    Extranodal natural killer (NK)/T-cell lymphoma of nasal type (NKTCL) is a malignant disorder of cytotoxic lymphocytes of NK or more rarely T cells associated with clonal Epstein-Barr virus infection. Extranodal NKTCL is rare in Western countries, but in Asia and Central and South America it can account for up to 10% of non-Hodgkin's lymphomas. It is an aggressive neoplasm with very poor prognosis. Although the pathogenesis of extranodal NKTCL remains poorly understood, some insights have been gained in the recent years, especially from genome-wide studies. Based on our own experience and knowledge of the literature, we here review some of the genomic and functional pathway alterations observed in NKTCL that could provide a rationale for the development of innovative therapeutic strategies

    Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas.

    Get PDF
    Angioimmunoblastic T-cell lymphoma (AITL) and other lymphomas derived from follicular T-helper cells (TFH) represent a large proportion of peripheral T-cell lymphomas (PTCLs) with poorly understood pathogenesis and unfavorable treatment results. We investigated a series of 85 patients with AITL (n = 72) or other TFH-derived PTCL (n = 13) by targeted deep sequencing of a gene panel enriched in T-cell receptor (TCR) signaling elements. RHOA mutations were identified in 51 of 85 cases (60%) consisting of the highly recurrent dominant negative G17V variant in most cases and a novel K18N in 3 cases, the latter showing activating properties in in vitro assays. Moreover, half of the patients carried virtually mutually exclusive mutations in other TCR-related genes, most frequently in PLCG1 (14.1%), CD28 (9.4%, exclusively in AITL), PI3K elements (7%), CTNNB1 (6%), and GTF2I (6%). Using in vitro assays in transfected cells, we demonstrated that 9 of 10 PLCG1 and 3 of 3 CARD11 variants induced MALT1 protease activity and increased transcription from NFAT or NF-ÎșB response element reporters, respectively. Collectively, the vast majority of variants in TCR-related genes could be classified as gain-of-function. Accordingly, the samples with mutations in TCR-related genes other than RHOA had transcriptomic profiles enriched in signatures reflecting higher T-cell activation. Although no correlation with presenting clinical features nor significant impact on survival was observed, the presence of TCR-related mutations correlated with early disease progression. Thus, targeting of TCR-related events may hold promise for the treatment of TFH-derived lymphomas

    Prognostic Significance of MYC Rearrangement and Translocation Partner in Diffuse Large B-Cell Lymphoma : A Study by the Lunenburg Lymphoma Biomarker Consortium

    Get PDF
    PURPOSE: MYC rearrangement (MYC-R) occurs in approximately 10% of diffuse large B-cell lymphomas (DLBCLs) and has been associated with poor prognosis in many studies. The impact of MYC-R on prognosis may be influenced by the MYC partner gene (immunoglobulin [IG] or a non-IG gene). We evaluated a large cohort of patients through the Lunenburg Lymphoma Biomarker Consortium to validate the prognostic significance of MYC-R (single-, double-, and triple-hit status) in DLBCL within the context of the MYC partner gene. METHODS: The study cohort included patients with histologically confirmed DLBCL morphology derived from large prospective trials and patient registries in Europe and North America who were uniformly treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone therapy or the like. Fluorescence in situ hybridization for the MYC, BCL2, BCL6, and IG heavy and light chain loci was used, and results were correlated with clinical outcomes. RESULTS: A total of 5,117 patients were identified of whom 2,383 (47%) had biopsy material available to assess for MYC-R. MYC-R was present in 264 (11%) of 2,383 patients and was associated with a significantly shorter progression-free and overall survival, with a strong time-dependent effect within the first 24 months after diagnosis. The adverse prognostic impact of MYC-R was only evident in patients with a concurrent rearrangement of BCL2 and/or BCL6 and an IG partner (hazard ratio, 2.4; 95% CI, 1.6 to 3.6; P < .001). CONCLUSION: The negative prognostic impact of MYC-R in DLBCL is largely observed in patients with MYC double hit/triple-hit disease in which MYC is translocated to an IG partner, and this effect is restricted to the first 2 years after diagnosis. Our results suggest that diagnostic strategies should be adopted to identify this high-risk cohort, and risk-adjusted therapeutic approaches should be refined further

    Molecular Diagnosis of Primary Mediastinal B Cell Lymphoma Identifies a Clinically Favorable Subgroup of Diffuse Large B Cell Lymphoma Related to Hodgkin Lymphoma

    Get PDF
    Using current diagnostic criteria, primary mediastinal B cell lymphoma (PMBL) cannot be distinguished from other types of diffuse large B cell lymphoma (DLBCL) reliably. We used gene expression profiling to develop a more precise molecular diagnosis of PMBL. PMBL patients were considerably younger than other DLBCL patients, and their lymphomas frequently involved other thoracic structures but not extrathoracic sites typical of other DLBCLs. PMBL patients had a relatively favorable clinical outcome, with a 5-yr survival rate of 64% compared with 46% for other DLBCL patients. Gene expression profiling strongly supported a relationship between PMBL and Hodgkin lymphoma: over one third of the genes that were more highly expressed in PMBL than in other DLBCLs were also characteristically expressed in Hodgkin lymphoma cells. PDL2, which encodes a regulator of T cell activation, was the gene that best discriminated PMBL from other DLBCLs and was also highly expressed in Hodgkin lymphoma cells. The genomic loci for PDL2 and several neighboring genes were amplified in over half of the PMBLs and in Hodgkin lymphoma cell lines. The molecular diagnosis of PMBL should significantly aid in the development of therapies tailored to this clinically and pathogenetically distinctive subgroup of DLBCL

    The Genetic Basis of Hepatosplenic T-cell Lymphoma

    Get PDF
    Hepatosplenic T cell lymphoma (HSTL) is a rare and lethal lymphoma; the genetic drivers of this disease are unknown. Through whole exome sequencing of 68 HSTLs, we define recurrently mutated driver genes and copy number alterations in the disease. Chromatin modifying genes including SETD2, INO80 and ARID1B were commonly mutated in HSTL, affecting 62% of cases. HSTLs manifest frequent mutations in STAT5B (31%), STAT3 (9%), and PIK3CD (9%) for which there currently exist potential targeted therapies. In addition, we noted less frequent events in EZH2, KRAS and TP53. SETD2 was the most frequently silenced gene in HSTL. We experimentally demonstrated that SETD2 acts as a tumor suppressor gene. In addition, we found that mutations in STAT5B and PIK3CD activate critical signaling pathways important to cell survival in HSTL. Our work thus defines the genetic landscape of HSTL and implicates novel gene mutations linked to HSTL pathogenesis and potential treatment targets
    • 

    corecore