Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but dos not include the final publisher proof-corrections or journal pagination.

Published in final edited form as:

Title: Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Authors: Vallois D, Dobay MP, Morin RD, Lemonnier F, Missiaglia E, Juilland M, Iwaszkiewicz J, Fataccioli V, Bisig B, Roberti A, Grewal J, Bruneau J, Fabiani B, Martin A, Bonnet C, Michielin O, Jais JP, Figeac M, Bernard OA, Delorenzi M, Haioun C, Tournilhac O, Thome M, Gascoyne RD, Gaulard P, de Leval L Journal: Blood Year: 2016 Sep 15 Volume: 128 Issue: 11 Pages: 1490-502 DOI: 10.1182/blood-2016-02-698977

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

Université de Lausanne Faculté de biologie et de médecine

Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas

David Vallois^{1*}, Maria Pamela D. Dobay^{2*}, Ryan D. Morin^{3,4}, François Lemonnier⁵, Edoardo Missiaglia¹, Mélanie Juilland⁶, Justyna Iwaszkiewicz², Virginie Fataccioli⁵, Bettina Bisig¹, Annalisa Roberti¹, Jasleen Grewal³, Julie Bruneau⁷, Bettina Fabiani⁸, Antoine Martin⁹, Christophe Bonnet¹⁰, Olivier Michielin^{2,17}, Jean-Philippe Jais¹¹, Martin Figeac¹², Olivier A. Bernard¹³, Mauro Delorenzi², Corinne Haioun¹⁴, Olivier Tournilhac¹⁵, Margot Thome⁶, Randy D. Gascoyne¹⁶, Philippe Gaulard^{5#} and Laurence de Leval^{1#}.

¹ Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
²SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
³Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada

⁴Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada

⁵INSERM U955, Université Paris-Est, Hôpital Henri-Mondor, Département de Pathologie, Créteil, France

⁶Department of Biochemistry, University of Lausanne, Lausanne, Switzerland ⁷Service d'Anatomie et cytologie pathologiques, Hopital Necker, Paris, France ⁸Service d'Anatomie et cytologie pathologiques, Hopital Saint-Antoine, Paris, France ⁹Service d'Anatomie pathologique, Hopital Avicenne, Bobigny, France ¹⁰Hématologie clinique, CHU Liège, Belgique

¹¹Service de Biostatistiques, GH Necker Enfants malades, Paris, France

¹²Plate-forme de Génomique Fonctionnelle et Structurale, Institut Pour la Recherche sur le Cancer de Lille, Lille, France

¹³INSERM U1170, Institut Gustave Roussy, Villejuif, France

¹⁴Hémopathies lymphoides, CHU Henri Mondor, Creteil, France

¹⁵Hématologie Clinique, CHU Estaing, Clermont-Ferrand, France

¹⁶Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, BC, Canada

¹⁷Centre Hospitalier Universitaire Vaudois, Oncology, Lausanne, Switzerland

^{*}co-first authors

[#]co-last authors

Running title: Mutation-induced TCR activation in TFH nodal PTCL

Keywords: T-cell lymphoma, Angioimmunoblastic, TCR signaling, next generation sequencing, activating mutations

Scientific category: Lymphoid neoplasia

Corresponding author: Pr. Laurence de Leval ; **mailing adress:** CHUV Institut de Pathologie, Rue du Bugnon 25, 1011 Lausanne Switzerland ; **phone:** +41 (0)21 314 71 94 ; **FAX:** +41 (0)21 314 72 05 ; **e-mail:** Laurence.deLeval@chuv.ch

Word count (abstract): 233 Word count (main text): 3993 Table(s) count: 1 Figure(s) count: 7

References count: 58

Key points

- A high frequency of diverse, activating mutations in co-stimulatory/TCR-related signaling genes occur in AITL and other TFH-derived PTCL
- Deregulated TCR activation may play a role in the pathogenesis of TFH-derived PTCL, paving the way for developing novel targeted therapies

Abstract

Angioimmunoblastic T-cell lymphoma (AITL) and other lymphomas derived from follicular Thelper cells (TFH) represent a large proportion of peripheral T-cell lymphomas (PTCL) with poorly understood pathogenesis and unfavorable treatment results. We investigated a series of 85 patients with AITL (n=72) or other TFH-derived PTCL (n=13) by targeted deep sequencing of a gene panel enriched in T-cell receptor (TCR) signaling elements. RHOA mutations were identified in 51/85 cases (60%) consisting of the highly recurrent dominant negative G17V variant in most cases and a novel K18N in 3 cases, the latter showing activating properties in *in vitro* assays. Moreover, half of the patients carried virtually mutually exclusive mutations in other TCR-related genes, most frequently in PLCG1 (14.1%), CD28 (9.4%, exclusively in AITL), PI3K elements (7%), CTNNB1 (6%) and GTF2I (6%). By in vitro assays in transfected cells, we demonstrated that 9/10 PLCG1 and 3/3 CARD11 variants induced MALT1 protease activity and increased transcription from NFAT or NF-kB response element reporters, respectively. Collectively, the vast majority of variants in TCR-related genes could be classified as gain-of-function. Accordingly, the samples with mutations in TCR-related genes other than *RHOA* had transcriptomic profiles enriched in signatures reflecting higher T-cell activation. Although no correlation with presenting clinical features nor significant impact on survival was observed, the presence of TCR-related mutations correlated with early disease progression. Thus, targeting of TCR-related events may hold promise for the treatment of TFH-derived lymphomas.

Introduction

Angioimmunoblastic T-cell lymphoma (AITL), one of the most common peripheral T-cell lymphomas (PTCL)^{1,2} comprises CD4-positive neoplastic T cells with a T follicular helper (TFH) immunophenotype, and an important reactive microenvironment³. Additionally, a subset of PTCL not otherwise specified (PTCL-NOS) exhibiting a TFH-like immunophenotype and overlapping characteristics with AITL, are believed to be part of the same disease spectrum ^{4,5}. The prognosis of AITL remains poor, with a 5-year overall survival of around 30% ^{1,6}. Although autologous stem cell transplantation may improve the response to conventional first-line therapy, early disease progression makes it frequently impossible ⁷. Thus, pinpointing new druggable targets for developing specific therapies in TFH-derived lymphomas remains critical.

Recurrent mutations in the epigenetic regulators *TET2*, *IDH2* and *DNMT3A* have been detected in AITL and TFH-like PTCLs^{8,9}, but are not likely sufficient to drive lymphomagenesis^{10,11}. A highly recurrent dominant-negative G17V mutation in the RHOA GTPase was recently discovered in up to 70% of AITL and TFH-like PTCLs¹²⁻¹⁴. RHOA is activated downstream of T-cell receptor (TCR) engagement in mature T cells and is linked to cytoskeleton reorganization following T-cell activation ^{12,13}. Although their exact role in human T-cell transformation remains uncertain, *RHOA* mutations tend to co-occur with *TET2* mutations, suggesting that they represent a second event in multistep AITL lymphomagenesis¹⁵. Finally, AITL also bears a variety of other less recurrent genetic alterations^{12,13,16}.

In B-cell lymphomas, constitutive B-cell receptor (BCR) signaling via somatic mutationinduced or antigen-mediated activation of key BCR components lead to neoplastic B-cell survival and expansion¹⁷. Several lines of evidence suggest that TCR activation might be similarly relevant to PTCL pathogenesis. For example, NPM1-ALK chimeric proteins induce an

intracellular cascade of events substituting to TCR signaling in anaplastic large cell lymphoma ¹⁸. The *ITK-SYK* fusion present in rare PTCLs likewise drives lymphomagenesis by triggering antigen-independent activation of TCR signaling pathways in mice¹⁹. Mutations or gene fusions in co-stimulatory/TCR signaling genes as CD28, FYN, PLCG1 or CARD11 have also been reported in several PTCLs^{12,20-25}. However, alterations in the TCR signaling pathway have not yet been extensively studied in TFH-related lymphomas. Here, we focused on investigating mutations in the co-stimulatory/TCR signaling cascade in a series of AITL and TFH-like PTCLs using a targeted deep sequencing approach. Besides frequent RHOA mutations, we demonstrated recurrent activating and virtually mutually exclusive mutations in co-stimulatory/TCR pathway components in 49% of the cases. Notably, we found several mutations in PLCG1 and CARD11 that we characterized as functionally activating *in vitro*. Integrated analysis with gene expression profiles indicated that TCR-mutated samples were enriched for molecular signatures reflecting higher T-cell activation and proliferation. Clinically, TCR-mutated patients receiving anthracyclin-based chemotherapy showed an increased early progression risk compared to patients without such mutations. These results indicate the potential of using drugs that reduce TCR signaling for treating these lymphomas.

Methods

Patients and Tumor Samples

<u>Discovery cohort:</u> eleven paired tumoral and normal samples from 10 clinically annotated AITL patients were subject to whole-genome (WGS, n=8) or whole-exome sequencing (WES, n=3) (**Table S1**).

<u>Extended cohort:</u> targeted deep sequencing (TDS) was performed on DNA extracted from frozen tissue biopsies of an extended cohort of 85 previously untreated patients (72 AITL and 13 TFH-like PTCL-NOS). In three patients, paired samples were analyzed. These cases and associated clinical annotations (**Table S2**), were collected in the framework of the Tenomic LYSA consortium. Diagnoses were confirmed by expert hematopathologists. Criteria used to define TFH-like PTCL, NOS were previously reported ⁸. A subset of these patients were analysed for *TET2, IDH2* and *DNMT3A* mutations in previous studies^{8,9} The study was approved by the local ethics committee (CPP IIe de France IX 08-009).

WGS, WES and TDS

Libraries were constructed for WGS following a standard protocol²⁶. 100-bp paired-end reads were generated using an Illumina HiSeq 2000 Sequencer (version 3 chemistry). Reads were mapped to the NCBI Build 36.1 reference genome using the Burrows-Wheeler Aligner (BWA) alignment tool version 0.5.7, algorithm aln. PCR duplicates were eliminated using Picard version 1.38. Indels and Single Nucleotide Variants (SNVs) were called using Strelka version 1.0.14, removing false positive calls internally. Variants were independently identified for each tumor-

germline pair, using the germline as reference. GRCh37 coordinates of the filtered indels and SNVs were obtained using LiftOverVCF. Variants were annotated with VEP, and their read counts were obtained using in-house scripts. Copy Number Variations (CNVs) were identified using HMMcopy. Commonly deleted or amplified regions from WGS were visually identified using the Integrative Genome Viewer Software (IGV, <u>https://www.broadinstitute.org/igv/</u>). Deleted loci and genes having SNVs and/or CNVs in at least two patients are listed in **Tables S3** and S4.

TDS of sixty-nine genes (Table S5) was performed on the extended cohort. Systematic sequencing errors were removed by adding two randomly selected blood samples from four healthy volunteers to each run. Libraries were prepared using the True-Seq Custom Amplicon kit (Illumina) and sequenced on a MiSeq machine (Illumina, 1000x mean depth, mean coverage 94%). Variants were called using MiSeq reporter using default settings and were visually inspected on IGV. All synonymous variants and known SNPs with an allelic frequency above 0.1% in public databases (dbSNP131, 1000 Genomes Project, 5000 Exomes project) were filtered out. We excluded variants found in normal samples, in ambiguously mapped regions from captured pseudogenes, and in regions of low complexity. Candidate variants were independently validated in a second round of TDS: we selectively amplified the amplicons covering the positions of candidate mutations (IonAmpliseq kit, Lifetechnologies) and sequenced them on a Ion PGM System (Lifetechnologies; 1305x mean depth, mean coverage 91.64%). Variants were called using default settings of the IonReporter software and reviewed with IGV. The final variants list (Table S6) was generated applying the following flitering criteria: a) variants called by both platforms, b) variants with minor allele frequency (MAF) < 0.4, c) variants already described as somatic in the COSMIC database. Filter b) was introduced to take in to account the low tumor content and the inavaillability of matched normal samples. The threshold was defined based on the Minor Allelic Frequency (MAF) range of well-characterized AITL mutations, such as in *RHOA* and *CD28*^{12-14,25}. Variants were annotated using GeneTalk (http://www.gene-talk.de/).

Cloning and Functional validation

A detailed description is provided in supplemental material. Briefly, we performed site-directed mutagenesis of *RHOA*, *PLCG1* and *CARD11* mutations on cloned cDNAs into pcMV6-MycFlag (*RHOA*, *PLCG1*) (Origene, C terminal tag) and pcDNA3-HA (*CARD11*) (N terminal tag)²⁷ vectors. RHOA variants were functionally assessed *in vitro* with rhotekin pull-down assays¹²⁻¹⁴ and SRE (Serum Responsive Element) (Promega, Madison, WI, USA) luciferase reporter assay using HEK293T cells

PLCG1 and CARD11 variants were functionally tested by fluorescence resonance energy transfer (FRET)-based determination of their ability to induce MALT1 protease activity in HEK293T cells ²⁸ and in luciferase-based assays using a NFAT reporter in HEK293T cells (forPLCG1) or a NF-B reporter in Jurkat cells deficient in *CARD11*²⁹ (kindly provided by Dr. Xin Lin) (for CARD11).

Western blot analysis

The following primary antibodies were used in Western blotting: anti-HA (Covalab Biotechnology), anti-Myc (clone 4A6, Millipore), anti-CARD11 (clone 1D12, Cell Signaling), anti-MALT1²⁸ and anti-Actin (ab3280, Abcam). Secondary antibodies were purchased from Jackson Laboratories.

Gene expression and enrichment analysis

Gene expression profiles generated by hybridization on Affymetrix U133 Plus 2.0 were available for the extended cohort³. Rotation testing using mean ranks (ROMER, R package limma) was used to determine the gene set signature enrichments in TCR_Mut compared to TCR_WT patients. A total of 304 signatures, including 23/50 hallmark signatures and nine signatures from the curated and immunogenic signature collection of the Molecular Signatures Database (MSigDB, http://software.broadinstitute.org/gsea/msigdb), all signatures of interest in lymphoid biology (Staudt, lymphochip.nih.gov/signaturedb/) and two manually annotated sequences linked to TCR signaling, were tested.

Clinical correlations and survival analysis

Frequency differences of categorial variables were analyzed using Fisher's exact test, while differences in continuous variables were tested with the Wilcoxon rank sum test. Overall survival (OS) was defined as time from diagnosis to death or last follow up, while progression free survival (PFS) was defined as time from treatment initiation to death or progression or last follow up. Analyses of OS and PFS were performed using the Kaplan-Meier method and hazard ratio differences were computed with the log rank test.

Results

Whole exome/genome sequencing reveals alterations in T-cell signaling genes in AITL

Eleven tumor samples from 10 AITL patients were subject to WGS or WES and compared to germline DNA (**Figure S1 and Table S1**). On average, 91% of the genome had >10× coverage, with 68% having >30×. A mean of 27 single nucleotide variations (SNV) per patient (range: 11-50) was observed in coding regions, except in a sample from a relapsing patient with a chromothripsis pattern of structural variation (**Figure S2**) and 225 SNVs. In one patient refractory to first-line therapy, WGS performed on tumor biopsies at diagnosis and after 5 cycles of chemotherapy, revealed a similar profile of alterations, with identical *TET2* and *ANKRD62* SNVs in both samples. CNV analysis revealed multiple loci deleted in a number of patients, with eight minimal common regions (**Table S3**), mostly in three patients. A total of 39 genes had SNVs and/or CNVs in at least two patients (**Table S4**). Apart from *RHOA* G17V and *TET2* mutations, 9/39 (23%) altered genes were related to TCR (n=7), Toll-like receptor (n=1) or Wnt (n=1) signalings. Other mutations were found in genes involved in the cell cycle (n=5), autophagy (n=2), or other pathways (n=6). Six additional genes relevant to TCR or JAK/STAT signaling (*CTNNB1, VAV1, MTOR, CREBBP, PIK3C2G, JAK1*) were altered in one patient each. Collectively, T-cell signaling alterations were found in 7/10 patients.

Frequent mutations of *RHOA* and other TCR-related genes are confirmed in an extended cohort of TFH-derived lymphomas

We designed a panel of 69 genes for TDS, partly based on findings in the discovery cohort (**Tables S5 and Figure S1**), for application on our extended cohort (**Table S2**). After orthogonal cross-validation and conservative filtering (**Table S6** and **Figure S3**) we validated 70 variants in 29 genes (**Figure 1**), including missenses (61), frameshifts (5), non-frameshift deletions (2), and

stop-gain mutations (2). Mutations were detected in 70/85 samples (82%, mean mutations per sample = 1.8). *RHOA* and other TCR signaling-related genes accounted for 19 of 29 (65.5%) mutated genes (**Figures 1 and 2**).

RHOA mutations include a novel activating K18N variant

RHOA was the most frequently mutated gene among those analyzed (51/85; 60% patients), with a similar prevalence in AITL and TFH-like PTCL. Consistent with previous reports^{12,13}, the G17V variant was found in most of the cases. We also identified a novel K18N mutation (VF: [5.5%; 7.4%; 10%]) in three AITL patients (**Figure 3A and Table 1**). Both mutations occur in the highly conserved GTP binding site of RHOA. We tested Myc-tagged G14V (constitutively active³⁰), G17V (dominant negative), K18N as well as WT RHOA in a pull-down assay using Rhotekin-RBD (Rho Binding Domain) beads (**Figure 3B**). While RHOA G17V already characterized as dominant negative¹²⁻¹⁴ did not bind RBD beads even in the presence of FBS as compared to WT, RHOA K18N showed a marked increase of RBD beads binding similarly to RHOA G14V (Figure 3B). Moreover, unlike RHOA G17V that did not activate and even repressed transcription from the SRE under serum activation, RHOA K18N markedly enhanced its transcription (**Figure 3C**).

Mutations in other TCR signaling-related genes are variably recurrent and diverse

Apart from *RHOA*, mutations in genes involved in TCR costimulation or signaling were detected in 42/85 patients (49%) (Figures 1-2 and Table 1).

CD28 and TCR-proximal signaling genes

Three different *CD28* mutations, T195P, D124V and D124E, all described previously^{13,25,31} were identified in 4, 2 and 2 AITL patients, respectively (8/85, 9.4%) (**Figure 4A**). All TFH-like

PTCL were *CD28*-WT. T195P and D124V mutations are known to enhance TCR/CD28-induced NF-kB activity *in vitro* ^{25,31}. Three patients (2 AITL, 1 TFH-like PTCL; 3.5%) harbored mutations in *FYN*, a TCR- and CD28-proximal kinase component (**Figure 4B**). Mutations in the SH2 domain (S186L) and the absence of phosphorylated tyrosine 531 (T524fs or Q527X mutations) probably confer enhanced kinase activity by disrupting their inhibitory interaction ¹². The two amino acid substitution in the tyrosine kinase domain of LCK observed in one AITL patient is expected to enhance its kinase activity ³². We did not find mutations in *ICOS, ZAP70, LAT* or *ITK*.

NF-kappaB/NFAT pathway

Ten different-missense mutations spanning the coding region of *PLCG1* (VF: [2.1%; 38%]) were identified in 12/85 patients (8 AITL, 4 TFH-like PTCL; 14.1%) (**Figure 5A**). Apart from previously reported variants in Adult T-cell Leukemia/Lymphoma (ATLL) or in other PTCL²⁰⁻²⁴, we identified two novel variants (E730K and G869E). We generated all mutant constructs and tested their activity against WT PLCG1 in a FRET-based reporter assay of MALT1 protease activity^{27,28} (**Figure 5B**) and in a NFAT luciferase reporter assay (**Figure 5C**). Both experiments confirmed that the S345F and S520F variants were activating ²¹. All six variants in the PI-PLC, SH2, SH3 and C2 domains were also activating, increasing the FRET signal by 1.7 to 3-fold and the luciferase expression by 4 to 5-fold. Of the two PH1 domain variants, R48W had no effect in both assays, while E47K increased NFAT reporter activity by 2.1 fold and FRET signal by 1.5-fold.

Point mutations in *CARD11*, which encodes a scaffolding protein downstream of PLCG1 required for CD28/TCR-induced NF-kB activation ²⁸ were found in two AITL and one TFH-like

PTCL (3.5%). The F176C variant affects the coiled-coil domain of the protein, commonly mutated in DLBCL ³³. The S547T and F902C variants map to linker regions with undefined structure (**Figure 5D**). In a FRET-based assay²⁸, F176C and S547T enhanced MALT1 proteolytic activity by 2- and 4-fold, respectively, while the F902C mutant, previously reported in ATLL patients ²⁰, had no detectable effect (**Figure 5E**). When transfected into Jurkat cells deficient for *CARD11*²⁹, we found that, compared to wildtype CARD11, all three variants induced enhanced NF-kB reporter activity in response to PMA/Ionomycin stimulation (**Figure 5F**).

PI3K pathway

Six patients (3 AITL, 3 TFH-like PTCL; 7%) showed mutations in *PI3K* genes encoding the regulatory subunits PIK3R1 (n=5), PIK3R5 (n=1) or the catalytic subunit PIK3CA (n=1) (**Figure 4C-E**). These mutations likely enhance the catalytic subunit activity or increase PIK3R1 binding to CD28 ³⁴. Five AITL patients (5.9%) had mutations in *PDPK1* (PDK1), a master serine/threonine kinase with multiple targets including AKT. Three missense mutations were found on or near its kinase domain, suggesting an activating effect³⁵ (**Figure 4F**). Four different *CTNNB1* mutations, known to occur in a variety of carcinomas and Wilms tumors, were identified in five patients (4 AITL, 1 TFH-like PTCL; 5.9%) (**Figure 4G**). All have been previously characterized as activating or stabilizing variants that induce persistent signaling and increased proliferation, and have been linked to both poor treatment response and frequent tumor relapse in various tumors^{36,37}.

AP-1/MAPK pathway

Eleven patients (8 AITL, 3 TFH-like PTCL; 13%) had mutually exclusive activating mutations in the MAPK pathway, which regulate the activity of the AP-1 transcription factor family. Activating *KRAS* ³⁸ and *STAT3*^{26,39} mutations were detected in three and two patients each (**Figure 4H**). We also found five missense mutations in *GTF2I* (*TFII-I*) ⁴⁰, (**Figure 4I**) that are likely activating, as those reported in thymic epithelial tumors ⁴¹.

GTPases pathway

Apart from highly recurrent *RHOA* mutations, four patients (3 AITL, 1 TFH-like PTCL; 4.7%) harbored previously undescribed frameshift deletions or missense mutations in *VAV1*, a guanosine exchange factor for RAC1, CDC42 and RHOA (**Figure 4J**). Two missense mutations were on the second SH3 domain, where a D797 residue mutation was previously shown to activate VAV1-mediated transformation via cell-cell contact deregulation ⁴².

Analysis of sequential biopsies

Analysis of paired samples in four refractory or relapsed patients (**Table S8**) showed that the mutations identified at diagnosis were also present in the second biopsy, with overall very similar VF. Within the limit of the panel of genes examined, two patients presented one additional mutation at relapse (*CTNNB1* and *VAV1*), at somewhat lower VF than those present at diagnosis. Although this analysis is limited to a few pairs of samples, it indicates that the mutational heterogeneity that characterizes many AITL samples appears to be preserved and essentially not modified by the treatments administered.

Activating mutations in TCR signaling-related genes correlate with molecular signatures reflecting higher T-cell activation and with response to therapy

A total of 66/85 patients harbored mutations in TCR signaling genes. To assess the biological and clinical impact of the tumor mutational status, we focused on patients with mutations in TCR signaling-related genes other than *RHOA*, designated hereafter as "TCR_Mut" (42/85 cases, 49%), and compared them to those with only *RHOA*, or no detectable mutation, designated "TCR_WT" (43/85 cases, 51%). (**Figure 6**).

Mutations in TCR-related genes other than *RHOA* were virtually non-overlapping, and the vast majority (47/56 distinct variants, 84%) were either functionally validated (n=24) or predicted (n=23) to be biologically gain-of-function mutants (**Figure 6**). Consequently, nearly all TCR_Mut patients (39/42 patients, 93%) harbored at least one activating mutation.

There was no significantly differentially expressed genes between TCR_Mut and TCR_WT samples (**Figure S4**). However, the molecular signatures of TCR_Mut were significantly enriched in fifteen gene sets compared to TCR_WT by enrichment analysis (**Figure 7A, Table S7, Figure S5**), reflecting the activation of signaling pathways like PI3K, NF-kB¹⁷, IRF4, JAK-STAT, as well as the upregulation calcium signaling target genes. This points towards TCR signaling activation in TCR_Mut PTCLs. TCR_Mut samples also showed enrichment in cell cycle signatures reflecting increased proliferative activity. Finally, there was a trend for TCR_Mut samples to have downregulated proximal TCR signaling genes (signature "T_cell") such as TCR (*TCRa*, *TCRβ*; *CD3δ*, *CD3γ*), signaling molecules (*LAT*, *TRIM*, *SAP*, *FYB*, *ZAP70*) and cell surface markers (adjusted p. value = 0.10), a feature consistent with sustained T-cell activation ⁴³.

Then, when comparing the clinical features and outcome of TCR_Mut and TCR_WT patients, no significant differences in main clinical characteristics at presentation (**Table S9**) or in overall survival (18 vs 40 months median OS; 5 year OS 20% vs 29%; p=0.37) were found (**Figure S6**). Strikingly, however, among the 59 patients (49 AITL and 10 TFH-like PTCLs) who received anthracyclin-based induction chemotherapy, 11/33 (33%) TCR_Mut patients versus 2/26 (8%) TCR_WT (p=0.02, **Table S9**) showed early progression, relapse or no response to treatment within the first six months after diagnosis. This, however, did not translate into a

Mutation-induced TCR activation in TFH nodal PTCL

statistically significant difference in progression-free survival at 5 years (21% versus 24% for TCR_Mut versus TCR_WT patients, p=0.15) (**Figure 7B-C**).

Discussion

In this study, we confirmed the high prevalence of *RHOA* mutations in TFH-derived PTCL, with most samples bearing the dominant negative G17V variant. Interestingly, we identified a new K18N variant in 3% of the patients that presented activating features in *in vitro* assays. This intriguing finding of distinct *RHOA* mutations with apparently opposite functional properties in the same disease, was also recently documented in ATLL^{44,45}. Further studies are warranted to understand how these variants may contribute to the pathogenesis of PTCLs.

Apart from *RHOA* alterations, we identified activating and virtually mutually exclusive mutations in diverse TCR signaling genes in half of TFH-derived lymphomas. Individually, the frequencies of these mutations were variable, with the five most mutated genes (*PLCG1, CD28, PIK3* elements, *GTF21, CTNNB1*) being altered in 14% to 5% of the patients. *CD28* and *FYN* mutations in AITL were previously described in a small number of cases¹²⁻¹⁴. Our study significantly expands these previous results, and strongly supports a role of activated TCR signaling in the pathogenesis of TFH-derived PTCLs, drawing strong parallels with the role of BCR signaling in B-cell lymphomas.

Mutations in genes related to TCR co-stimulation and signaling were recently reported in other PTCL enties, like cutaneous T-cell lymphomas (CTCL), PTCL-NOS and ATLL^{20-24,46}. Nonetheless, mutations in specific genes are variably recurrent in distinct entites ^{24,25}, and for a given gene the distribution of the mutations and their relative prevalence are heterogeneous. For instance, *PLCG1* and *CARD11* mutations are highly prevalent (up to 18% and 15% of the cases, respectively) in CTCL, in which conversely *CD28* mutations are not found. ²⁰ *CARD11* mutations are more frequent in ATLL (24%) and Sésary syndrome (SS, 10.9%) than in this series of TFH-derived lymphomas. Whether the observed mutations are sufficient to induce

constitutive activation of the respective pathways, and how their effect may be dependent or influenced by antigen-driven or other stimulatory signals remains unknown. Interestingly, some of the TCR-related genes may be altered through point mutations or small indels as well as by major structural rearrangements, amplifications and deletions^{20,23,24}. Collectively, these findings strongly suggest that genetic alterations impacting TCR signaling operate as a common pathogenic mechanism in several PTCL entities.

Our analysis also explored the JAK/STAT and TLR pathways. Mutation-induced activation of the JAK/STAT pathway, highly prevalent in myeloid neoplasms, was recently identified as a major oncogenic mechanism in several T-cell leukemias and lymphomas derived from innate immune cells^{20,46-53}. Our results suggest, however, that JAK/STAT mutations do not have the same importance in the pathogenesis of TFH-derived lymphomas, as only 4/85 patients bore a single activating mutation each in *JAK1*, *JAK2*, *JAK3* or *MYD*88 (**Table 1**)⁵⁴. Except for *JAK2* V617F, the three others were observed in *PLCG1*-mutated cases.

Our data further support that AITL and TFH-like PTCL are closely related at the molecular level⁵, and share common oncogenic mechanisms. We and others have reported the occurrence of *TET2*, *DNMT3A* and *RHOA* mutations in a large proportion of both AITL and TFH-like PTCL patients^{5,8,9,12-14}. This study extends the molecular overlap across TFH-derived neoplasms to genetic alterations in various TCR-signaling. Interestingly, *CD28* mutations were exclusively identified in AITL patients, consistent with recent reports^{25,31}. Similarly, *IDH2* mutations were rarely detected in PTCL cases^{9,55}, suggesting that the distribution of some genetic features might be relevant in distinguishing AITL from other TFH-derived nodal lymphomas, which otherwise share many common features⁵.

VALLOIS et al.

In the proposed multistep model of pathogenesis for TFH-derived PTCL, mutation-induced epigenetic deregulation, possibly arising in early hematopoietic precursors, may promote the emergence of premalignant cells, which requires additional genetic events to acquire a definitively malignant phenotype^{13,56}. It has been thus suggested that *RHOA* alterations occur as a second event in TET2 and/or DNMT3A-mutated cells^{13,56,57}. The prevalence of mutations in TET2, DNMT3A and IDH2 analyzed in a subset of our cases was 52% (34/65 cases), 29% (17/56 cases) and 30% (21/71 cases), respectively^{8,9}. These mutations were not mutually exclusive, and in fact tended to co-occur with each other, as previously reported ^{12,13}. We also found a tendency for RHOA mutations to associate with epigenetic alterations, since RHOA mutations were detected in 31/41 (76%) cases mutated in TET2, DNMT3A and/or IDH2, but in only 8/23 (35%) cases without epigenetic mutations (p=0.003). Since the proportion of neoplastic cells in AITL is typically low and variable from case to case³, the comparison of VF of different mutated genes was performed for each individual sample. In 13 cases harboring mutations in both TET2 and/or DNMT3, and RHOA or IDH2 with available VF, the TET2/DNMT3A VF was significantly higher than for RHOA or IDH2 (Figure S7A). There was no obvious association of RHOA mutations with other TCR-related genes, as 27/51 (53%) RHOA-mutated and 15/34 (44%) RHOA-WT cases were mutated in other TCR-related genes (p=0.51). In twenty-seven cases mutated in both RHOA and one or several genes of the TCR, JAK/STAT or TLR pathways, no significant difference in VF means was observed between RHOA and other genes (Figure S7B).

Although our results warrant confirmation in cohorts of patients treated on prospective clinical trials, they suggest that the mutational status of TCR-related genes may have important clinical implications, predicting early treatment failure with anthracyclin-based chemotherapy in TFH-related PTCL patients. Importantly, several activating mutations found in PI3K or NFkB

VALLOIS et al.

pathways could be targeted by idelalisib or the proteasome inhibitor bortezomib, respectively. It is of interest to determine their efficacy in TCR_Mut patients^{12,21}, possibly in combination with demethylating agents⁵⁸. Thus, similar to the importance of targeting BCR signaling in B-cell lymphomas with the BTK inhibitor ibrutinib¹⁷, characterization of the TCR mutational status might open new avenues to design specific and hopefully more effective therapies. In clinical practice, given the high number of genes involved and the diversity of mutations found, targeted deep sequencing with high depth/coverage appears as the method of choice for selecting patients.

Acknowledgments

This work was supported by grants received from the Plan Cancer (Belgium), the Ligue du Cancer (Switzerland), the Institut National du Cancer (INCa AAP PLBIO13-085, INCa-DGOS 2010-085, and INCa-Plan Cancer 2013) and the MEDIC foundation.

We acknowledge Catherine Chapuis (Pathology, Lausanne) and Caroline Communaux from the LYSA-Pathology for their technical assistance.

We acknowledge K Harshman and the LGFT (Lausanne Genomic Technology Facility) for their technical support.

We acknowledge Céline Villenet et Sabine Quief from the plate-forme de génomique fonctionnelle et structurale, Lille University, for the WES experiments.

Authorship

Contribution: D. Vallois, R. Morin, M. Thome, R.D. Gascoyne, L. de Leval and P. Gaulard were involved in the conception and design of the study. D. Vallois, M.P. Dobay developed the methodologies. D. Vallois, M.P. Dobay, J. Bruneau, B. Fabiani, A. Martin, C. Bonnet, F. Lemonnier, M. Juilland, M Thome, J. Iwaszkiewicz, A. Roberti and B. Bisig acquired the data. D. Vallois, MP Dobay, E. Missiaglia, F. Lemonnier, M. Juilland, O. Michielin, O Tournilhac, C Haioun, M. Delorenzi, O. Bernard, J.P. Jais and J. Grewal analysed and interpreted the data. D. Vallois, M.P. Dobay, F. Lemonnier, E. Missiaglia, L. de Leval and P. Gaulard worte the manuscript. V. Fataccioli was the administrative, technical and material support. L. de Leval and P. Gaulard supervised the study. Conflict-of-interest disclosure: the authors have no conflict of interest to disclose

Correspondence: Pr. Laurence de Leval, CHUV Institut de Pathologie, Rue du Bugnon 25, 1011 Lausanne, Switzerland; e-mail: Laurence.deLeval@chuv.ch

References

- **1.** Federico M, Rudiger T, Bellei M, et al. Clinicopathologic characteristics of angioimmunoblastic T-cell lymphoma: analysis of the international peripheral T-cell lymphoma project. *J Clin Oncol.* 2013;31(2):240-246.
- 2. de Leval L, Parrens M, Le Bras F, et al. Angioimmunoblastic T-cell lymphoma is the most common T-cell lymphoma in two distinct French information data sets. *Haematologica*. 2015;100(9):e361-e364.
- **3.** de Leval L, Rickman DS, Thielen C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. *Blood*. 2007;109(11):4952-4963.
- **4.** Gaulard P, de Leval L. Pathology of peripheral T-cell lymphomas: where do we stand? *Semin Hematol.* 2014;51(1):5-16.
- 5. Dobay MP LF, Missiaglia E, Bastard C, Vallois D, Jais JP, Fataccioli V, Scourzic L, Dupuy A, Martin-Garcia N, Parrens M, Le Bras F, Rousset T, Picquenot JM, Tournilhac O, Delarue R, Bernard O, Delorenzi M, de Leval L and Gaulard P. A PTCL, NOS subset with molecular and clinical features similar to AITL. *Hematological Oncology*. 2015;33(Issue supplement S1):100-180.
- 6. Mourad N, Mounier N, Briere J, et al. Clinical, biologic, and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d'Etude des Lymphomes de l'Adulte (GELA) trials. *Blood.* 2008;111(9):4463-4470.
- 7. Corradini P, Vitolo U, Rambaldi A, et al. Intensified chemo-immunotherapy with or without stem cell transplantation in newly diagnosed patients with peripheral T-cell lymphoma. *Leukemia*. 2014;28(9):1885-1891.
- **8.** Lemonnier F, Couronne L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. *Blood*. 2012;120(7):1466-1469.
- **9.** Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. *Blood.* 2012;119(8):1901-1903.
- **10.** Jaiswal S, Fontanillas P, Flannick J, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. *N Engl J Med.* 2014;371(26):2488-2498.
- **11.** Muto H, Sakata-Yanagimoto M, Nagae G, et al. Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice. *Blood Cancer Journal*. 2014;4(12):e264.
- **12.** Palomero T, Couronne L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. *Nat Genet.* 2014;46(2):166-170.
- **13.** Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. *Nat Genet.* 2014;46(2):171-175.
- **14.** Yoo HY, Sung MK, Lee SH, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. *Nat Genet.* 2014;46(4):371-375.
- **15.** Cleverley SC CP, SHenning SW and Cantrell DA. Loss of Rho function in the thymus is accompanied by the development of thymic lymphoma. *oncogene*. 2000;19(1):13-20.
- **16.** Odejide O, Weigert O, Lane AA, et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. *Blood.* 2014;123(9):1293-1296.
- 17. Wilson WH, Young RM, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. *Nat Med.* 2015;21(8):922-926.
- **18.** Inghirami G, Chan WC, Pileri S, the AxcG-dtmolm. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. *Immunological Reviews*. 2015;263(1):124-159.

- **19.** Pechloff K, Holch J, Ferch U, et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. *J Exp Med*. 2010;207(5):1031-1044.
- **20.** Kataoka K, Nagata Y, Kitanaka A, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. *Nat Genet*. 2015;47(11):1304-1315.
- **21.** Vaque JP, Gomez-Lopez G, Monsalvez V, et al. PLCG1 mutations in cutaneous T-cell lymphomas. *Blood*. 2014;123(13):2034-2043.
- **22.** Manso R, Rodríguez-Pinilla SM, González-Rincón J, et al. Recurrent presence of the PLCG1 S345F mutation in nodal peripheral T-cell lymphomas. *Haematologica*. 2015;100(1):e25-e27.
- **23.** da Silva Almeida AC, Abate F, Khiabanian H, et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. *Nat Genet*. 2015;47(12):1465-1470.
- 24. Wang L, Ni X, Covington KR, et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. *Nat Genet*. 2015;47(12):1426-1434.
- **25.** Rohr J, Guo S, Huo J, et al. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. *Leukemia*. 2016;30(5):1062-1070.
- 26. Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. *Nature*. 2011;476(7360):298-303.
- 27. Lenz G DR, Ngo Vu N, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Chan WC, Staudt LM. Oncogenic CARD11 Mutations in Human Diffuse Large B Cell Lymphoma. *Science*. 2008;319(5870):1676-1679.
- **28.** Pelzer C, Cabalzar K, Wolf A, Gonzalez M, Lenz G, Thome M. The protease activity of the paracaspase MALT1 is controlled by monoubiquitination. *Nat Immunol.* 2013;14(4):337-345.
- **29.** Wang D, You Y, Case SM, et al. A requirement for CARMA1 in TCR-induced NF-[kappa]B activation. *Nat Immunol.* 2002;3(9):830-835.
- **30.** Ihara K, Muraguchi S, Kato M, et al. Crystal Structure of Human RhoA in a Dominantly Active Form Complexed with a GTP Analogue. *Journal of Biological Chemistry*. 1998;273(16):9656-9666.
- **31.** Lee SH, Kim JS, Kim J, et al. A highly recurrent novel missense mutation in CD28 among angioimmunoblastic T-cell lymphoma patients. *Haematologica*. 2015;100(12):e505-507.
- **32.** Lorraine E Laham NMaTMR. The activation loop in Lck regulates oncogenic potential by inhibiting basal kinase activity and restricting substrate specificity. *Oncogene*. 2000;19(35):3961-3970.
- **33.** Lenz G, Davis RE, Ngo VN, et al. Oncogenic CARD11 Mutations in Human Diffuse Large B Cell Lymphoma. *Science*. 2008;319(5870):1676-1679.
- **34.** Huang C-H, Mandelker D, Schmidt-Kittler O, et al. The Structure of a Human p110α/p85α Complex Elucidates the Effects of Oncogenic PI3Kα Mutations. *Science*. 2007;318(5857):1744-1748.
- **35.** Chinen Y, Kuroda J, Shimura Y, et al. Phosphoinositide Protein Kinase PDPK1 Is a Crucial Cell Signaling Mediator in Multiple Myeloma. *Cancer Research*. 2014;74(24):7418-7429.
- **36.** Austinat M, Dunsch R, Wittekind C, Tannapfel A, Gebhardt R, Gaunitz F. Correlation between β-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma. *Molecular Cancer*. 2008;7(1):1-9.
- **37.** Pilati C, Letouzé E, Nault J-C, et al. Genomic Profiling of Hepatocellular Adenomas Reveals Recurrent FRK-Activating Mutations and the Mechanisms of Malignant Transformation. *Cancer Cell.* 2014;25(4):428-441.
- **38.** Stolze B, Reinhart S, Bulllinger L, Fröhling S, Scholl C. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. *Scientific Reports*. 2015;5:8535.

- **39.** Ohgami RS, Ma L, Monabati A, Zehnder JL, Arber DA. STAT3 mutations are present in aggressive B-cell lymphomas including a subset of diffuse large B-cell lymphomas with CD30 expression. *Haematologica*. 2014;99(7):e105-e105.
- **40.** Sacristán C, Schattgen SA, Berg LJ, Bunnell SC, Roy AL, Rosenstein Y. Characterization of a novel interaction between transcription factor TFII-I and the inducible tyrosine kinase in T cells. *European Journal of Immunology*. 2009;39(9):2584-2595.
- **41.** Petrini I, Meltzer PS, Kim I-K, et al. A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors. *Nat Genet*. 2014;46(8):844-849.
- **42.** Razanadrakoto L, Cormier F, Laurienté V, et al. Mutation of Vav1 adaptor region reveals a new oncogenic activation. *Oncotarget*. 2015;6(4):2524-2537.
- **43.** Singh NJ, Schwartz RH. The Strength of Persistent Antigenic Stimulation Modulates Adaptive Tolerance in Peripheral CD4+ T Cells. *The Journal of Experimental Medicine*. 2003;198(7):1107-1117.
- 44. Nagata Y, Kontani K, Enami T, et al. Variegated RHOA mutations in adult T-cell leukemia/lymphoma. *Blood*. 2016;127(5):596-604.
- 45. Ishikawa S. Opposite RHOA functions within the ATLL category. *Blood.* 2016;127(5):524-525.
- **46.** Kiel MJ, Sahasrabuddhe AA, Rolland DCM, et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. *Nat Commun.* 2015;6:8470.
- **47.** Koskela HL, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. *N Engl J Med.* 2012;366(20):1905-1913.
- **48.** Jerez A, Clemente MJ, Makishima H, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. *Blood*. 2012;120(15):3048-3057.
- **49.** Koo GC, Tan SY, Tang T, et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. *Cancer Discov.* 2012;2(7):591-597.
- **50.** Kiel MJ, Velusamy T, Rolland D, et al. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. *Blood.* 2014;124(9):1460-1472.
- **51.** Bellanger D, Jacquemin V, Chopin M, et al. Recurrent JAK1 and JAK3 somatic mutations in T-cell prolymphocytic leukemia. *Leukemia*. 2014;28(2):417-419.
- **52.** Nicolae A, Xi L, Pittaluga S, et al. Frequent STAT5B mutations in gammadelta hepatosplenic T-cell lymphomas. *Leukemia*. 2014;28(11):2244-2248.
- **53.** Kucuk C, Jiang B, Hu X, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. *Nat Commun.* 2015;6:6025.
- **54.** Avbelj M, Wolz O-O, Fekonja O, et al. Activation of lymphoma-associated MyD88 mutations via allostery-induced TIR-domain oligomerization. *Blood.* 2014;124(26):3896-3904.
- **55.** Wang C, McKeithan TW, Gong Q, et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. *Blood.* 2015;126(15):1741-1752.
- **56.** Sakata-Yanagimoto M. Multistep tumorigenesis in peripheral T cell lymphoma. *International Journal of Hematology*. 2015;102(5):523-527.
- **57.** Quivoron C, Couronne L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. *Cancer Cell.* 2011;20(1):25-38.
- **58.** Cheminant M, Bruneau J, Kosmider O, et al. Efficacy of 5-Azacytidine in a TET2 mutated angioimmunoblastic T cell lymphoma. *Br J Haematol.* 2015;168(6):913-916.

Tables Legends

 Table 1. Characteristics of the 70 variants identified by Targeted Deep Sequencing of TCR,

 JAK/STAT and TLR-related genes in 85 TFH-derived PTCL samples. Genes are organized

 by functional groups.

Figures Legends

Figure 1. Mutational landscape of nodal TFH-derived lymphomas. The results of targeted deep sequencing of 69 genes in 72 AITL (light grey) and 13 TFH-like PTCL (dark grey) are presented. Ten cases (8 AITL and 2 TFH-like PTCL) with no mutations detected are not represented. *TET2, DNMT3A* and *IDH2* mutations available for a subset of the cases reported in previous studies ^{8,9} are also shown. Case-mutation pairs for which data are not available are indicated by a 0. Mutated genes (rows) are arranged by decreasing order of mutation frequency. Patients (columns) are arranged from left to right based on their mutational status following gene ranking.

Figure 2. Mutations of TCR signaling-related genes in nodal lymphomas of TFH origin.

The intracellular pathways following TCR ligation and costimulatory activation were reconstructed using the Ingenuity pathway analysis (IPA) tools, the KEGG database and other references. Four main pathways are individualized, from left to right: (1) PI3K pathway following CD28/TCR-dependent FYN phosphorylation and ultimately resulting in CTNNB1

translocation into the nucleus; (2) NF-kB/NFAT pathway proximally initiated by ITK-dependent PLCG1 activation and resulting in NFAT1, NF-kB and IRF4 activation; (3) AP-1/MAPK pathway that comprises ITK-dependent GTF2I activation, MALT1-induced JNKs activation and PLCG1- GRB2/SOS-induced MAPK components activation; and (4) GTPase-dependent pathway, including RHOA, responsible for cytoskeleton remodelling upon co-stimulatory/TCR activation. The main positive interactions are indicated by solid green arrows, while inhibitory effects are indicated in red. The TCR signaling elements are depicted in yellow or red if the coding genes were mutated in <5% or 5% or more cases, respectively. The most frequently mutated genes (*PLCG1*, *CD28*, *PI3K* components, *CTNNB1* and *GTF21*) were part of costimulatory, NF-kB/NFAT, PI3K and AP-1/MAPK intracellular signaling pathways. Proteins corresponding to wild type genes are indicated in blue, while genes that were not sequenced are in grey. ERK1, ERK2, JNK1, JNK2 and PDK1 are protein names for *MAPK1*, *MAPK3*, *MAPK8*, *MAPK9* and *PDPK1* genes respectively.

Figure 3. RHOA mutations in AITL and TFH-like PTCL. (**A**) Overview of the RHOA protein structure, showing G17V (42 AITL, 6 TFH-like PTCL) and the novel K18N (3 AITL) variants which target the highly conserved GTP/GDP binding site of RHOA. (**B**) Protein blot analysis of GTP-bound RHOA-Myc in rhotekin pulldown assay from HEK293T cells expressing indicated RHOA constructs. IP: immunoprecipitation. Representative of six independent experiments. (**C**) SRE (Serum Responsive Element) luciferase reporter assay monitoring the activity of RHOA K18N mutant, compared with WT, G14V or G17V mutants, previously characterized as activating and dominant negative respectively. Cells were stimulated (light grey) or not (dark grey) with FBS during 6 hours. Data are represented as mean ± sem (standard error

on mean) from four independent experiments. Significant differences in activation activity were determend using two-way ANOVA with repeated measurement (**, $p \le 0.01$; ***, $p \le 0.001$ compared to WT). (**D**) Representative western blot from a luciferase assay experiment. Ectopic myc tagged RHOA expression is revealed by anti-Myc. Anti-Actin blotting serves as loading control.

Figure 4. Mapping of variants in TCR signalling genes mutated in at least 3 patients. (A) CD28: the D124V/E variants involve the extracellular part of the receptor, while T195P lies in the intracellular, C-terminal domain, between the two domains allowing interaction with PIK3R1 (YVKM sequence) or GRB2/VAV (PRRP sequence) proteins (B) FYN: the five mutations indicated occurred in three patients; one patient harboured two mutations (a); two mutations in adjacent positions in the SH3 domain (b) were observed on the same allele in another patient. (C-E) PI3K subunits: when appropriate cellular stimuli are present, the nSH2 and cSH2 domains of PIK3R1 bind phosphorylated tyrosines (YXXM motif) in activated receptors (CD28) and adapter proteins, thereby activating the PIK3CA (p110a) catalytic subunit without releasing the PIK3R1 (p85a) interaction with p110a through their iSH2 and ABD domains respectively. The K141R missense affects the Rho-GAP domain, while iSH2 and the second SH2 domains of PIK3R1 bore two missenses each (Q475P, T576A and G680S, V704M respectively). The A259V mutation, described as somatic in COSMIC, affects a linker region of PIK3R5. Finally, the L1001P point mutation affects the PIK3CA kinase domain. (F) PDK1: one inframe INDEL, one frameshift INDEL and three missense affect PDK1 protein. (G) CTNNB1: three previously described activating missenses affect the GSK3^β inhibitory domain (exon 3), while the K335T activating mutation affects the armadillo repeats region (H) KRAS: three missense mutations

alter two N-terminal nucleotide binding regions. (I) GTF2I: five missense mutations affect the GTF2I transcription factor, among which two are found in different GTF2I-like domains. (J) VAV1: two frameshift deletion and two missenses affect VAV1, three being localized in the C-terminal SH3 domain of the protein. In all figure panels, previously described activating mutations are in green boldface, while mutations previously described but not functionally tested are underlined. PDK1 is the protein name of *PDPK1* gene.

Figure 5. Mapping and functional analysis of PLCG1 variants and CARD11 variants. (A) Schematic representation of PLCG1 protein with mapping of the 10 missense mutations identified in AITL (circles) or TFH-like PTCL (squares) cases. Previously described activating mutations are in green boldface and mutations previously described but not functionally tested are underlined. (B) Monitoring of PLCG1-mediated MALT1 activation via a FRET-based reporter assay. Data are represented as mean \pm sem (standard error on mean) from three independent experiments. Significant differences in activation activity were determined using one-way ANOVA (**, p≤0.01; ***, p≤0.001). Representative western blot from a MALT1 activation experiment. PLCG1 expression is revealed by anti-Myc tag blotting while MALT1 expression is shown by anti-MALT1 antibody. (C) NFAT luciferase reporter assay monitoring activity of PLCG1 mutants, compared with previously-reported activating mutants (green). Data are represented as mean \pm sem (standard error on mean). from seven independent experiments. Significant differences in activation activity were determend using one-way ANOVA (*, $p \le 0.05$; **, p≤0.01). Representative western blot from a luciferase assay experiment. Ectopic myc tagged PLCG1 expression is revealed by anti-Myc. Anti-Actin blotting serves as loading control. (D) Schematic representation of CARD11 protein with mapping of the three point mutations found in

two AITL (circles) and one TFH-like PTCL-NOS (square) patients. A previously-described mutation is underlined. (E) Monitoring of CARD11-mediated MALT1 activation via a FRETbased reporter assay. Data are represented as mean \pm sem (standard error on mean) from six independent experiments. Significant differences in activation activity were determined using one-way ANOVA (*, p \leq 0.05; **, p \leq 0.01). The known activating L244P variant (green) was used as a positive control for the experiment. Representative western blot from a MALT1 activation experiment. CARD11 expression is revealed by anti-HA tag blotting while MALT1 expression is shown by anti-MALT1 antibody. (F) NF-KB luciferase reporter assay in Jurkat cells deficient for *CARD11* monitoring activity of CARD11 mutants, compared with previously-reported activating mutants (green). Data are represented as mean \pm sem from four independent experiments. Significant differences in activation activity were determined using two-way ANOVA (*, p \leq 0.05; **, p \leq 0.01; ***, p \leq 0.001 compared to WT PMA/IONO).

Figure 6. Mutual exclusivity of TCR signaling variants. The mutational status of TCR-related genes is represented for the 85 patients of the extended cohort. Genes other than *RHOA* are ranked by decreasing mutation frequency, and show an essentially mutually exclusive mutation pattern. In total, 49% of cases were mutated in one or several TCR-related gene(s) other than *RHOA* (hereafter considered as TCR_Mut), 28.5% were mutated in *RHOA* only and 22.5% harbored no mutation in any of the genes tested (collectively considered as TCR_WT).

Figure 7. Biological significance and clinical relevance of TCR signaling-related mutations (A) Spider plot representation of gene sets differentially enriched in patients with or without mutations in genes related to TCR signaling (TCR_Mut versus TCR_WT). Genes tested in the enrichment analysis were selected from signatures relevant in T- and B-cell differentiation and activation. Statistical significance of the enrichment was reached for gene sets 1 to 15 (p<0.05); for gene set 16, marginal significance was observed (p=0.1). (**B**, **C**) Overall survival (OS, B) and progression-free survival (PFS, C) of patients with (red) or without (blue) mutations in TCR signaling-related genes. Analyses are restricted to the 59 patients treated with anthracyclin-based chemotherapy. Mutated patients show a trend toward a shorter PFS (11 vs 36 months) than WT patients (p= 0.15).

Mutation-induced TCR activation in TFH nodal PTCL

Functional Groups	GENE	Amino Acid Change	Mutation type	Domain	New/reported	Effect	References
	CD28	D124V	missense	extracellular	AITL, ATLL	gain of function (F)	20, 25
	CD28	D124E	missense	extracellular	AITL, ATLL	gain of function (F)	20, 25
	CD28	T195P	missense	cytoplasmic	AITL, ATLL	gain of function (F)	20, 25, 31
	LCK	^{b;} N446K	missense	kinase	new	probably gain of function (P)	
co-stimulatory and	LCK	^{b;} P447R	missense	kinase	new	probably gain of function (P)	
proximal TCR	FYN	Q527X	stop gain		ATLL	probably gain of function (P)	20
signalling	FYN	^{a;} 525_525del	frameshift deletion		new	probably gain of function (P)	
	FYN	^{a;} S186L	missense	SH2	new	probably gain of function (P)	
	FYN	^{b;} K108fs	frameshift deletion		new	probably loss of function (P)	
	FYN	^{b;} E107S	missense	SH3	new	probably loss of function (P)	
	PLCG1	E47K	missense	PH 1	ATLL	gain of function (F)	20
	PLCG1	R48W	missense	PH 1	ATLL, SS	no effect (F)	20, 24
	PLCG1	D342G	missense	PI-PLC X-box	ATLL, MF	gain of function (F)	20
	PLCG1	^{a;} S345F	missense	PI-PLC X-box	AITL, MF, SS, ATLL	gain of function (F)	20, 21, 22, 24
	PLCG1	^{a;} S520F	missense	PH 2; first part	MF, SS, ATLL	gain of function (F)	20, 21, 24
	PLCG1	E730K	missense	SH2 2	new	gain of function (F)	
NF-kB/NF-AT pathway	PLCG1	G869E	missense	near SH3	new	gain of function (F)	
	PLCG1	E1163K	missense	C2	ATLL, SS	gain of function (F)	20,24
	PLCG1	D1165H	missense	C2	AILL, SS	gain of function (F)	20,24
	CARD11	E902C	missense	02		gain of function (F)	20
	CARD11	S547T	missense		new	gain of function (F)	20
	CARD11	F176C	missense	coiled coil	new	gain of function (F)	
	TRAF6	Q347X	stop gain	coiled coil /MATH	new	NA	
	PIK3R1	K141R	missense	RHO-GAP	new	probably gain of function (P)	
	PIK3R1	Q475P	missense	iSH2	new	probably gain of function (P)	
	PIK3R1	T576A	missense	iSH2	new	probably gain of function (P)	
	PIK3R1	G680S	missense	SH2 2	new	probably gain of function (P)	
	PIK3R1	V704M	missense	SH2 2	new	probably gain of function (P)	
	PIK3R5	A259V	missense		carcinoma (liver)	probably gain of function (P)	34
	PIK3CA	L1001P	missense	РВК/РИК	new	probably gain of function (P)	
	PDPK1	19_20del	inframe deletion		new	NA	
	PDPK1	151_152del	frameshift deletion	protein kinase	new	probably loss of function (P)	
	PDPK1	R324Q	missense	protein kinase	new	probably gain of function (P)	
	AKT1	G20/R	missense	protein kinase	new	probably gain of function (P)	
PI3K pathway	7.0.077	02341	missense	protein kinase	TICW.	probably gan of function (1)	
					have a factor of the second second		
	CTNNB1	^{a;} T41A	missense	Phospho by GSK3b	acute lymphoblastic leukaemia, breast cancer, wilms tumor	gain of function (F)	36
	CTNNB1 CTNNB1	^{a:} T41A H36P	missense	Phospho by GSK3b	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor	gain of function (F)	36
	CTNNB1 CTNNB1 CTNNB1	^{a:} T41A H36P ^{a:} S45F	missense missense missense	Phospho by GSK3b	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor	gain of function (F) gain of function (F) gain of function (F)	36
	CTNNB1 CTNNB1 CTNNB1 CTNNB1	^{a;} T41A H36P ^{a;} S45F K335T	missense missense missense missense	Phospho by GSK3b	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma	gain of function (F) gain of function (F) gain of function (F) gain of function (F)	36 36 36 37
	CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS	^{a:} T41A H36P ^{a:} S45F K335T B6M	missense missense missense missense	Phospho by GSK3b	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms	gain of function (F) gain of function (F) gain of function (F) gain of function (F) gain of function (F)	36 36 36 37 37 38
	CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS	^{a;} T41A H36P ^{a;} S45F K335T B6M A18D	missense missense missense missense missense	Phospho by GSK3b	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma	gain of function (F) gain of function (F) gain of function (F) gain of function (F) gain of function (F)	36 36 36 37 38 38 38
	CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS	^{a:} T41A H36P ^{a:} S45F K335T B6M A18D G13D	missense missense missense missense missense missense	Phospho by GSK3b	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors	gain of function (F) gain of function (F)	36 36 37 38 38 38 38 38
	CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS STAT3	^{a:} T41A H36P ^{a:} S45F K335T B6M A18D G13D R278Q	missense missense missense missense missense missense missense	Phospho by GSK3b	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new	gain of function (F) gain of function (F) probably gain of function (F)	36 36 36 37 38 38 38 38 38 38
AP-1/MAPK nathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS KRAS STAT3 STAT3	^{a;} T41A H36P ^{a;} S45F K335T B6M A18D G13D R278Q E616G	missense missense missense missense missense missense missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma	gain of function (F) gain of function (F) probably gain of function (F) gain of function (F)	36 36 36 37 38 38 38 38 26,39 26,39
AP-1/MAPK pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS STAT3 STAT3 STAT3 STAT3	^{a;} T41A H36P ^{a;} S45F K335T B6M A18D G13D R278Q E616G E616K D317E	missense missense missense missense missense missense missense missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma lymphoma	gain of function (F) gain of function (F) probably gain of function (P) gain of function (F) gain of function (F) gain of function (F)	36 36 36 37 38 38 38 26,39 26,39 26,39
AP-1/MAPK pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS STAT3 STAT3 STAT3 GTF21 GTF21	^{a:} T41A H36P ^{a:} S45F K335T B6M A18D G13D G13D G13D E616G E616K D317E N340S	missense missense missense missense missense missense missense missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma new new	gain of function (F) gain of function (P) gain of function (F) gain of function (F) probably gain of function (F) probably gain of function (F)	36 36 36 37 38 38 38 38 26,39 26,39
AP-1/MAPK pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS STAT3 STAT3 GTF21 GTF21 GTF21 GTF21	^{a:} T41A H36P ^{a:} S45F K335T B6M A18D G13D R278Q E6166 E616K D317E N340S R523S	missense missense missense missense missense missense missense missense missense missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2Hike	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma lymphoma new new	gain of function (F) gain of function (F) probably gain of function (P) gain of function (F) gain of function (F) probably gain of function (P) probably gain of function (P)	36 36 37 38 38 38 26,39 26,39
AP-1/MAPK pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS STAT3 STAT3 GTF21 GTF21 GTF21 GTF21 GTF21	^{a:} T41A H36P ^{a:} S45F K335T B6M A18D G13D R278Q E616K D317E N340S R523S L607F	missense missense missense missense missense missense missense missense missense missense missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2Hike GTF2Hike	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma lymphoma new new	gain of function (F) gain of function (P) gain of function (P) gain of function (P) gain of function (P) probably gain of function (P) probably gain of function (P) probably gain of function (P)	36 36 37 38 38 38 26,39 26,39
AP-1/MAPK pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS STAT3 STAT3 GTF21 GTF21 GTF21 GTF21 GTF21 GTF21	^{a;} T41A H36P ^{a;} S45F K335T B6M A18D G13D R278Q E616G E616K D317E N340S R523S R523S L607F R702Q	missense missense missense missense missense missense missense missense missense missense missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2Hike GTF2Hike	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma new new new	gain of function (F) gain of function (F) probably gain of function (P) probably gain of function (P)	36 36 36 37 38 38 38 26,39 26,39 26,39
AP-1/MAPK pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS STAT3 STAT3 STAT3 STAT3 GTF21 GTF21 GTF21 GTF21 RHOA	^{a;} T41A H36P ^{a;} S45F K335T B6M A18D G13D R278Q E616G E616K D317E N340S R523S L607F R702Q K18N	missense missense missense missense missense missense missense missense missense missense missense missense missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2Hike GTF2Hike GTF2Hike	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma lymphoma new new new	gain of function (F) gain of function (F) probably gain of function (P) probably gain of function (P) gain of function (P)	36 36 37 38 38 38 26,39 26,39
AP-1/MAPK pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS STAT3 STAT3 STAT3 GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 RTP2	^{a:} T41A H36P ^{a:} S45F K335T B6M A18D G13D R278Q E616G E616G E616G E616K D317E N340S R523S L607F R702Q K18N G17V	missense missense missense missense missense missense missense missense missense missense missense missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2I-like GTF2I-like GTF2I-like GTF2I-like	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma lymphoma new new new new	gain of function (F) gain of function (F) probably gain of function (P) probably gain of function (P) gain of function (P) probably gain of function (P) gain of function (P) gain of function (F) dominant negative (F)	36 36 36 37 38 38 38 26,39 26,39 26,39 26,39 26,39
AP-1/MAPK pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS KRAS KRAS KRAS GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 RHOA RHOA RHOA VAV1	^{a:} T41A H36P ^{a:} S45F K335T B6M A18D G13D R278Q E616G E616K D317E R278Q E616K D317E R523S L607F R702Q K18N G17V 151_158del	missense missense missense missense missense missense missense missense missense missense missense missense missense missense missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 GTF2Hike GTF2Hike GTF2Hike	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma haematopoeitic neoplasms lymphoma new new new new new new new	gain of function (F) gain of function (F) probably gain of function (P) probably gain of function (P) gain of function (F) dominant negative (F)	36 36 36 37 38 38 38 38 26,39 26,39 26,39 26,39 26,39
AP-1/MAPK pathway GTPases pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS STAT3 STAT3 STAT3 GTF21 GTF21 GTF21 GTF21 GTF21 RHOA RHOA VAV1 VAV1 VAV1	^{a:} T41A H36P ^{a:} S45F K335T B6M A18D G13D R278Q E616K D317E N340S R523S L607F R702Q K18N G17V 151_158del 778_783del	missense missense missense missense missense missense missense missense missense missense missense missense missense missense missense frameshift deletion	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2Hike GTF2Hike GTF2Hike GTP binding GTP binding	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma lymphoma new new new new new new new new	gain of function (F) gain of function (F) probably gain of function (F) probably gain of function (P) probably gain of function (P) probably gain of function (P) gain of function (P) probably gain of function (P) gain of function (P) dominant negative (F) gorbably loss of function (P)	36 36 37 38 38 38 26,39 26,39 26,39 26,39 26,39
AP-1/MAPK pathway GTPases pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS KRAS KRAS GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 RHOA RHOA VAV1 VAV1 VAV1 VAV1	^{a;} T41A H36P ^{a;} S45F K335T B6M A18D G13D R278Q E616G E616K D317E R702Q K18N G17V 151_158del 778_783del 778_783del	missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2Hike GTF2Hike GTF2Hike GTP binding GTP binding GTP binding GTP binding	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma new new new new new new new new new new	gain of function (F) gain of function (F) probably gain of function (P) probably gain of function (P) gain of function (P) probably gain of function (P) gain of function (P) probably gain of function (P) gain of function (P) not function (P) probably gain of function (P)	36 36 36 37 38 38 38 26,39 26,39 26,39 26,39 26,39 26,39
AP-1/MAPK pathway GTPases pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS STAT3 STAT3 STAT3 STAT3 GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 RHOA RHOA VAV1 VAV1 VAV1 VAV1 VAV1 VAV1	^{a;} T41A H36P ^{a;} S45F K335T B6M A18D G13D R278Q E616G E616G E616K D317E R702Q K18N G17V 151_158del 778_783del D797G Y826S	missense missense missense missense missense missense missense missense missense missense missense missense missense missense frameshift deletion frameshift deletion missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2Hike GTF2HIKE GT	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma lymphoma new new new new new new new new new new	gain of function (F) gain of function (F) probably gain of function (P) probably gain of function (P) gain of function (P) probably gain of function (P) gain of function (P) probably gain of function (P) NA probably gain of function (P) probably gain of function (P) probably gain of function (P) probably gain of function (P)	36 36 36 37 38 38 38 26,39 26,39 26,39 26,39 26,39 26,39 26,39
AP-1/MAPK pathway GTPases pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS STAT3 STAT3 STAT3 STAT3 STAT3 GTF21 GTF21 GTF21 GTF21 GTF21 RHOA RHOA VAV1 VAV1 VAV1 VAV1 VAV1 VAV1 VAV1 VA	^{a;} T41A H36P ^{a;} S45F K335T B6M A18D G13D R278Q E616G E616G E616K D317E N340S R523S L607F R702Q K18N G17V 151_158del 778 783del D797G Y826S Y214C	missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2Hike GTF2Hike GTF2Hike GTF2Hike GTP binding GTP binding GT	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma lymphoma lymphoma new new new new new new new new new new	gain of function (F) gain of function (F) probably gain of function (P) probably gain of function (P) gain of function (P) probably gain of function (P) gain of function (P) gain of function (P) probably gain of function (P) gain of function (P) probably gain of function (P)	36 36 36 37 38 38 38 26,39 26,39 26,39 26,39 26,39 26,39
AP-1/MAPK pathway GTPases pathway	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS KRAS KRAS KRAS KRAS	^{a;} T41A H36P ^{a;} S45F K335T B6M A18D G13D R278Q E616G E616G E616G E616G E616G E616G B317E R702Q K18N G17V 151_158del 778_783del D737G Y826S Y214C D831E	missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2Hike GTF2HIKE GT	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma lymphoma new new new new new new new new new new	gain of function (F) gain of function (F) probably gain of function (P) probably gain of function (P)	36 36 36 37 38 38 38 26,39 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38
AP-1/MAPK pathway GTPases pathway JAK/STAT and TLR pathways	CTNNB1 CTNNB1 CTNNB1 CTNNB1 CTNNB1 KRAS KRAS KRAS KRAS KRAS STAT3 STAT3 STAT3 STAT3 STAT3 GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 GTF21 STAT3	^{a:} T41A H36P ^{a:} S45F K335T B6M A18D G13D R278Q E616G E616G E616K D317E N340S R523S L607F R702Q K18N G17V 151_158del 778_783del D797G Y214C D831E V214C	missense missense	Phospho by GSK3b GTP binding GTP binding protein kinase SH2 SH2 GTF2Hike GTF2Hike GTF2Hike GTF2Hike GTP binding GTP binding	nepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma, acute lymphoblastic leukaemia, breast cancer, wilms tumor hepatocellular carcinoma haematopoeitic neoplasms lymphoma solid tumors new lymphoma lymphoma new new new new new new new new new new	gain of function (F) gain of function (F) probably gain of function (P) probably gain of function (P) probably gain of function (P) probably gain of function (P) gain of function (P) probably gain of function (P) gain of function (P) probably gain of function (P) probably gain of function (P) probably gain of function (P) probably gain of function (P) gain of function (P)	36 36 36 37 38 38 38 38 26,39 26,39 26,39 26,39 26,39 26,39 26,47 53 47-53 47-53

^{a:} gene variants found in the same patient but in different alleles

Gene variants found in the same patient and in the same allele F: Functional validation; P: literature and models based ATL: angloimmunoblastic T-cell lymphoma, ATLL: adult T-cell lymphoma/leukemia, SS: Sezary syndrome, MF: Mycosis Fungoides, DLBCL: diffuse large B-cell lymphoma

Table 1. Characteristics of the 70 variants identified by Targeted Deep Sequencing of TCR, JAK/STAT and TLR-related genes in 85 TFH-derived PTCL samples. Genes are organized by functional groups.

AITL TFH-like PTCL • missense • inframe indel • frameshift indel • stop gain

Figure 4

AITL TFH-like PTCL

---- WT; n=26

CI=[0.85; 2.76]

140

100 120

80

- Mut; n=33

	1-Cell_cycle_Cho
	2-E2F3_overexpression_2x_up
	3-HALLMARK_KRAS_SIGNALING_DN
	4-Tcell_cytokine_induced_PMBC_Bcell_induced
	5-Tcell_cytokine_induced_IL2_IL7_IL15only
ŝ	6-JAK_Up_HBL1
Ĕ	7-HALLMARK_MTORC1_SIGNALING
na	8-Thymic_DP_Tcell_gt_Thymic_SP_CD4+Tcell
es.	9-Tcell_Plind_CalciumDefPtdown4x_Feske_Fig4
tur	10-Blood_Module-1.4_Undetermined
gna	11-IRF4_myeloma_induced_direct
Si	12-IRF4_myeloma_induced_all
	13-ABC_gt_GCB_Affy
	14-ABCgtGCB_U133AB
	15-ABC_gt_GCB_PMBL_MCL_BL_U133AB
	16-T cell

Prepublished online July 1, 2016; doi:10.1182/blood-2016-02-698977

Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas

David Vallois, Maria Pamela D. Dobay, Ryan D. Morin, François Lemonnier, Edoardo Missiaglia, Mélanie Juilland, Justyna Iwaszkiewicz, Virginie Fataccioli, Bettina Bisig, Annalisa Roberti, Jasleen Grewal, Julie Bruneau, Bettina Fabiani, Antoine Martin, Christophe Bonnet, Olivier Michielin, Jean-Philippe Jais, Martin Figeac, Olivier A. Bernard, Mauro Delorenzi, Corinne Haioun, Olivier Tournilhac, Margot Thome, Randy D. Gascoyne, Philippe Gaulard and Laurence de Leval

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.

Blood (print ISSN 0006-4971, online ISSN 1528-0020), is published weekly by the American Society of Hematology, 2021 L St, NW, Suite 900, Washington DC 20036. Copyright 2011 by The American Society of Hematology; all rights reserved.

Appendix

Participants of the Tenomic consortium:

A. Martin, Hôpital Avicenne, Bobigny, France; I. Soubeyran, P. Soubeyran, Institut Bergonié, Bordeaux, France; P. Dechelotte, A. Pilon, O.Tournilhac, Hôtel-Dieu, Clermont-Ferrand, France; P. Gaulard, C. Copie-Bergman, M.H. Delfau, J. Moroch, F. Le Bras, J. Dupuis, C. Haioun, Hôpital H. Mondor, Créteil, France; T. Petrella, L. Martin, JN., Bastié, O. Casasnovas CHU, Dijon, France; B. Fabre, R. Gressin, D. Leroux, MC Jacob CHU, Grenoble, France; L. de Leval, B. Bisig, E. Missiaglia, A. Cairoli, CHUV, Lausanne, Suisse; C. Bonnet, CHU Sart-Tilman, Liège, Belgique; M.C. Copin, B. Bouchindhomme, F. Morschhauser, CHU, Lille, France; B. Petit, A. Jaccard, Hôpital Dupuytren, Limoges, France; F. Berger, B. Coiffier, CHU Sud, Lyon, France; T. Rousset, P. Quittet, G. Cartron, Hôpital Gui de Chauliac-St Eloi, Montpellier, France; S. Thiebault, B. Drenou, Hôpital E. Muller, Mulhouse, France; K. Montagne, C. Bastien, S. Bologna, CHU de Brabois, Nancy, France; C. Bossard, S. Le Gouill, Hôtel-Dieu, Nantes, France; J. Brière, D. Sibon, C. Gisselbrecht, J. Soulier, Hôpital St Louis, Paris, France; B. Fabiani, A. Aline-Fardin, P. Coppo, Hôpital Saint-Antoine, Paris, France; F. Charlotte, J. Gabarre, Hôpital Pitié- Salpétrière, Paris, France; T. Molina, J. Bruneau, D. Canioni, V. Verkarre, E. Macintyre, V. Asnafi, O. Hermine, R. Delarue, JP Jaïs, Hôpital Necker, Paris, France; M. Parrens, J.P. Merlio, K. Bouabdallah, Hôpital Haut Lévêque, Bordeaux, France; S. Maugendre-Caulet, P. Tas, F. Llamas-Gutierrez T. Lamy, CHU Pontchaillou, Rennes, France; J.M. Picquenot, F. Jardin, C. Bastard, Centre H Becquerel, Rouen, France; M. Peoch', J. Cornillon, CHU, Saint Etienne, France; L. Lamant, C. Laurent, G. Laurent, L. Ysebaert, Hôpital Purpan, Toulouse, France; J.Bosq, P. Dartigues, V. Ribrag, Institut G Roussy, Villejuif, France; M. Patey, A. Delmer, Hôpital R. Debré, Reims. France: J.F. Emile, K. Jondeau,

Hôpital Ambroise Paré, Boulogne, France; M.C. Rousselet, M. Hunault, CHU, Angers, France; C. Badoual, Hôpital Européen Georges Pompidou, Paris; C. Legendre, S. Castaigne, A.L. Taksin, CH Versailles, Le Chesnay, France; J. Vadrot, B. Joly, A. Devidas, CH Sud Francilien, Corbeil, France; G. Damaj, CHU Caen, France; P. Dessen, G Meurice, Institut G. Roussy, Villejuif, France; M. Delorenzi, MP Dobay, Swiss Institut of Bioinformatics, Lausanne, Suisse; F Radvanyi, E. Chapeaublanc, Institut Curie, Paris, S. France; Spicuglia, CIML, Marseille, France; C. Thibault, IGBMC, Illkirsch, France; V. Fataccioli, project coordinator, Hôpital H. Mondor, Créteil, France.

Supplementary methods

RHOA Pull-down assay

 $2x10^{6}$ HEK293T cells were lipofected 24 h after seeding in 10 cm dishes with 20 µg of indicated constructs. Twenty-four hours later, cells were serum-starved for another 24h period. Then, cells were harvested or serum-stimulated during 20 minutes. Serum-starved and serum-stimulated cells were washed once with ice-cold PBS and lysed in IP buffer (50 mM Tris, 10 mM MgCl₂, 0.3 M NaCl, 2% IGEPAL, 1mM PMSF, Protease Inhibitor Cocktail 1X (Roche) and Phosphatase Inhibitor Cocktail 1X (Roche)). After clearing of lysates by centrifugation, protein content was quantified using the Precision Red advanced Protein Assay (Cytoskeleton). Next, lysates containing 200 µg of protein were incubated with 40 µL of Rhotekin-RBD beads (Cytoskeleton) for one hour at 4°C with rotation. After incubation, beads were washed twice in ice-cold wash buffer (25 mM Tris, pH 7.5, 30 mM MgCl₂ and 40 mM NaCl) and resuspended with 30 µL of 2x Laemmli buffer. The presence of Myc-tagged activated RHOA associated with Rhotekin-RBD beads was determined by immunoblotting with an anti-Myc antibody (Millipore).

Luciferase-based activity assays

The analysis of the activity of *RHOA*, *PLCG1* and *CARD11* mutants was performed using SRE (Serum Responsive Element; Promega, Madison, WI, USA), NFAT (Addgene, Cambridge, MA, USA) and NF-kB (Promega, Madison, WI, USA) luciferase-based reporter systems, respectively.

For *RHOA and PLCG1:* 50'000 HEK293T cells/well were lipofected (Lipofectamin 2000, Lifetechnologies, Carlsbad, CA, USA) 24h after seeding with 10 ng of Renilla luciferase vector, 400 ng of the Firefly luciferase reporter and 300 ng of PLCG1 or RHOA constructs. Twenty-four hours later, Firefly and Renilla luciferase activities were measured using the Dual-Luciferase Reporter Assay System from Promega according to manufacturer's instructions (Promega, Madison, WI, USA).

For *CARD11*: $10x10^6$ Jurkat cells deficient for *CARD11*²⁹ (kindly provided by Dr. Xin Lin) were electroporated (BioRad, Hercules, California, USA) with 200 ng of Renilla luciferase vector, 5 µg of the NF-kB (Promega, Madison, WI, USA) Firefly luciferase reporter, 5 µg of a Large T expressing plasmid and 10 µg of CARD11 constructs. Fourty-eight hours later, Firefly and Renilla luciferase activities were measured using the Dual-Luciferase Reporter Assay System from Promega according to manufacturer's instructions (Promega, Madison, WI, USA).

FRET (Fluorescence Resonance Energy Transfer)-based MALT1 activity assays

FRET-based reporter assays were performed to assess CARD11 and PLCG1-dependent MALT1 protease activation in HEK293T cells as previously described²⁸. 85'000 HEK293T cells were transfected with the eYFP–Leu-Val-Ser-Arg–eCFP reporter construct (which served as a MALT1 substrate), together with combinations of CARD11 or PLCG1 variants and MALT1 and BCL10 expression constructs. Twenty-four hours after transfection, cells were washed and resuspended in flow cytometry buffer (2% FCS in PBS) and analyzed with an LSR II flow

cytometer (BD Biosciences) containing 405-, 488-, 561- and 640-nm lasers. To measure the eCFP and FRET signals, the transfected cells were excited with a standard 450/50 filter for collection of the eCFP fluorescence and a 585/42 filter for FRET fluorescence, respectively, and for each sample at least 5'000 highly eYFP+ cells were counted. Significant differences in activation activity were determined using one-way ANOVA (**, $p \le 0.01$; ***, $p \le 0.001$) Analysis was performed using a Repeated measures one-way ANOVA test with Dunett correction for multiple comparisons.

Supplemental Figures

Figure S1: Study workflow.

WGS and WES of 11 paired normal and tumor samples from 10 AITL patients were used to screen for genes altered in at least two cases (SNV and/or CNV) or altered in one patient but relevant to TCR signaling or T-cell biology. A panel of 69 candidate genes, including 45 related to TCR and 7 related to T-cell biology signaling, were selected for deep sequencing in an extended cohort comprised of 72 AITL and 13 TFH-like PTCL-NOS tumor samples at diagnosis. Integrated analysis of the mutational status together with clinical information and gene expression profiles (GEP; 65 AITL and 12 TFH-like PTCL, NOS) was performed to assess the clinical and biological relevance of the detected variants.

Figure S2: Chromosomal rearrangements from patient with chromotripsis pattern.

In one patient, a striking number of structural variation (SV) breakpoints and SNVs were detected in the tumor genome. 116 of these breakpoints could be attributed to an apparent chromothripsis event owing to linkages between these and a restricted set of loci in the genome. In the inset (upper left), the four affected chromosomes are shown with the individual intra- and interchromosomal rearrangements represented as arcs. Expansion of the regions containing breakpoints shows the full scope of SVs involved in this event. Of note, breaks affected introns or exons of a total of seven genes with the approximate coordinates of the genes indicated with gene symbols. The chromosome with the most SV breakpoints was 8, and many of these affected the TOX gene. This gene encodes a protein with a high mobility group (HMG) DNA binding domain thought to play a role in T-cell development. Structural alterations (including homozygous deletions) affecting TOX have recently been found to be common in primary central nervous system lymphomas.

Figure S3: Variants frequencies distribution.

The 103 variants were found in 45 out of 69 deep-sequenced candidate genes in 85 AITL or TFH-like PTCL-NOS patients are represented. Variant frequencies (VF) were plotted for each patient. A VF threshold of 0.4 (red dotted line, chosen based on the maximum VF of *RHOA* and *CD28* variants) was used to discriminate potential somatic from germline variants. Variants with VF above 0.4 but previously described somatic and/or with functional relevance (CARD11) (brown dots) were not filtered out. A total of 70 variants were kept for further analysis. *TET2*, *DNMT3A* and *IDH2* results are from a previous study (19 patients sequenced on PGM platform are shown).

Figure S4: Principal component analysis (PCA) of AITLs and TFH-like PTCL-NOS coloured based on TCR pathway mutation status.

PCA of GEP from TCR_Mut and TCR_WT patients indicate that the main sources of variability in AITL and TFH-like PTCL-NOS groups are not principally linked to TCR status; heterogeneity within AITL and TFH-like PTCL-NOS thus masks differences in gene expression in TCR_Mut and TCR_WT.

Figure S5: Heatmap of leading edge genes in patients with or without mutations in TCR pathways related genes.

Clustering was performed according to (i) the patients' mutational status in TCR related pathways (mutants, red and wt, blue) and (ii) hierarchy of expression profile of leading edge genes grouped into two categories (T-cell activation, proliferation or both gene signatures). Only leading edge genes from gene sets presented in Figure 4 are shown.

Figure S6: Overall survival (OS) of patients with (red) or without (blue) mutations in TCR signaling-related genes was compared using the Kaplan-Meier method.

Analysis was performed on all 80 patients with available clinical information. Mut: mutated; WT: wild type; Mo: months; p: p value; HR: Hazard Ratio; CI: Confidence Interval.

●IDH2 ●RHOA ●CD28 ●PLCG1 ●PI3K genes ●CTNNB1 ●GTF2I ●PDPK1 ●Other TCR, JAK/STAT or TLR genes

Figure S7: Analysis of allele frequencies of selected mutations in patients harboring mutations in multiple genes. (A) Comparison of Variant Frequencies of mutations in 13 samples harboring mutations in *TET2/DNMT3A* co-occuring with *RHOA, IDH2* or *TCR, JAK/STAT, TLR* signaling pathways. Mean VF of *TET2/DNMT3A* was compared to those of *IDH2, RHOA* or *TCR, JAK/STAT, TLR* signaling pathways. When mutations occurred in both *TET2* and *DNMT3A* or in the same genes, the highest VF was recorded. (B) Comparison of VFs of mutations in 27 samples harboring mutations in *RHOA* co-occuring with mutations in *co-stimulatory/TCR* signaling related, *JAK/STAT* or *TLR* signaling. When *co-stimulatory/TCR* related, *JAK/STAT* or *TLR* signaling mutations were co-occuring, the highest VF was taken into consideration. Spearman correlation coefficients were calculated for relevant data pairs. Mean VF were compared using a Wilcoxon matched-pairs signed rank test.

Sample	sequencing	age at diagnosis	stage	IPI	status (follow up in months)	Type of sample (months after diagnostic)	treatment received before biopsy	source of tumor DNA	source of germline DNA	TCR clonality in germline DNA
TENOM04.119	WGS	69	IV	5	dead (6)	relapse (5)	CHOP	blood (leukemic dissemination, FACS sorted)	saliva	negative
TENOM04.121	WGS	69	IV	3	alive (18)	diagnosis	none	lymph node (cell suspension, FACS sorted)	blood	ND
TENOM04.026	WGS	70	IV	4	alive (126)	diagnosis	none	lymph node (tissue)	blood	negative
TENOM04.060	WGS	71	IV	4	alive (70)	diagnosis	none	lymph node (tissue)	blood	ND
TENOM28.001	WGS	66	IV	4	dead (47)	diagnosis	none	lymph node (tissue)	blood	negative
TENOM07.025	WGS	48	IV	4	dead (13)	diagnosis	none	lymph node (tissue)	blood	ND
TENOM07.025	WGS	48	IV	4	dead (13)	refractory (2.5)	CHOP	lymph node (tissue)	blood	ND
TENOM04.120	WGS	58	III	1	alive (11)	relapse (9.5)	CHOP	lymph node (cell suspension, FACS sorted)	blood	negative
TENOM04.065	WES	52	IV	2	dead (105)	relapse (43)	COPADEM/CYVE/CHOP	lymph node (tissue)	blood	negative
TENOM04.081	WES	62	IV	3	dead (20.6)	diagnosis	none	lymph node (tissue)	blood	negative
TENOM04.115	WES	68	IV	5	dead (10.8)	relapse (4)	CHOP/DHAP	peritoneal effusion	blood	negative

Table S1. Description of the 10 AITL patients of the discovery cohort.

WGS: Whole Genome Sequencing WES: Whole Exome Sequencing CHOP: Cyclophosphamide Hydroxydonorubicin Oncovin Prednisone COPADEM: Cyclophosphamide Oncovin Prednisone Adriamycine Methotrexate CVVE: Cytarabine Etoposide DHAP: Dexamethasone Cytarabine Cisplatin

	whole cohort	ΔΙΤΙ	TEH-like PTCI	stati	istics
				n value	test
Ν	85	72	13	pvalue	
Sex	00	12	10		
male	50	42	8	1	F
female	35	30	5	1	
median ago (quartilo)	65 (56-74)	65 (56-75)	62 (50-67)	0.4	N/N/
stage	03 (30-74)	00 (00-70)	02 (39-07)	0.4	10100
stage	0	0	0	0.2	F
	0	0	0	0.2	Г
	1	0	1		
	21	17	4		
	56	49	1		
				0.70	
>N	52	44	8	0.73	F
N 	21	17	4		
hemoglobin					
<10 g/dL	21	19	2	0.48	F
≥10 g/dL	46	38	8		
platelets					
<100000	4	3	1	0.5	F
≥100000	60	51	9		
hypergammaglobulinemia					
yes	23	20	3	0.7	F
no	22	18	4		
Direct coombs test					
positive	28	27	1	1	F
negative	17	16	1		
ECOG					
0-1	39	30	9	0.12	F
2-4	34	31	3		
B symptoms					
yes	51	43	8	1	F
no	24	20	4		
IPI group					
0-2	17	12	5	0.12	F
3-5	60	53	7		
First line chemotherapy					
anthracyclin based	59	49	10	1	Khi2
others	17	15	2		
Frontline auto SCT					
Ves	9	7	2	0.59	F
no	58	51	7		
5 years OS	35%	37%	25%	0.88	log rank
Response to treatment*		0170	20,0	0.00	109 10.111
	34	27	7	0 49	F
PR	11	a	2	0.10	•
SD	0	0 0	0		
PD	Q	0 8	0		
Early progression*	0	0	0		
	12	12	1	0 /3	F
	15	27	0	0.73	•
	200/	37	9 200/	0 5	log rook
5 years DES *	33%	40% 200/	20%	0.0	
J YEAIS FFJ	21%	30%	10%	0.35	iog rank

* anthracyclin based chemotherapy

Table S2. Summary of the clinical features of the 85 patients of the extended cohort (72 AITL and 13 TFH-like PTCL cases).

Hypergammaglobulinemia is defined as gammaglobukin level>16 g/L.

SCT:stem cell transplantation.

CR complete response, PR partial response, SD stable disease, PD progressive disease.

F: Fisher, MW: Mann Whitney

DELETIONS											
deleted region #	Chromosome	localiza	tion (bp)	Patient ID							
MCD1	1	1 600 000	1 775 000	TENOM04.119							
WICKI	T	1 000 000	1773000	TENOM04.026							
MCR2	2	203 100 000	20/ 000 000	TENOM04.119							
WICKZ	2	203 100 000	204 000 000	TENOM04.026							
MCB3	3	18 950 000	49 176 000	TENOM04.119							
WICKS	5	48 930 000	49 170 000	TENOM04.121							
MCR/	7	4 700 000	5 970 000	TENOM04.119							
WICK4	/	4 700 000	5 570 000	TENOM04.121							
MCR5	7	100 330 000	102 098 000	TENOM04.119							
Wiens	,	100 330 000	102 090 000	TENOM04.026							
MCR6	8	PVT1	locus	TENOM04.119							
Wiend	0	1011	10003	TENOM04.121							
MCR7	9	СПК	N2A	TENOM04.119							
Wietty	5	CDR		TENOM04.121							
				TENOM04.119							
MCR8	12	12 300 000	12 985 000	TENOM04.026							
				TENOM04.121							

Table S3. Summary of minimal common regions (MCR) deleted in at least two of ten AITL patients with whole-genome/whole-exome sequencing (discovery cohort)

GENE	Pathway	GENE ID	Chr	Patient ID	mutation	Position	Reference allele	Alternate allele	VF (%)
CDK11B	Cell Cycle	ENSG00000248333 ENSG00000248333	1	TENOM04.026	Deletion; Homo				
CDKN1B	Cell Cycle	ENSG00000111276	1	TENOM04.026	Deletion; Homo				
CDKN1B	Cell Cycle	ENSG00000111276	1	TENOM04.119	Deletion; Homo				
CDKN1B MTOR	Cell Cycle TCR signalling	ENSG00000111276	1	TENOM04.121 TENOM04.119	Deletion; Homo R2430T	1117/296	C	G	20.8
CEP170	Cell Cycle	ENSG00000143702	1	TENOM04.115	T378I	243329049	G	A	24
CEP170	Cell Cycle	ENSG00000143702	1	TENOM 04.026	Gain; Het				
DHX9	mRNA processing	ENSG00000143702 ENSG00000135829	1	TENOM 04.119 TENOM04.065	Gain; Het E6290	182845254	G	C	28.7
DHX9	mRNA processing	ENSG00000135829	1	TENOM 04.026	Gain; Het	102040204	0	Ŭ	20.7
DHX9	mRNA processing	ENSG00000135829	1	TENOM 04.119	Gain; Het				
DOCK7 DOCK7	TCR signalling	ENSG00000116641	1	TENOM 04.026	R1550K	62970323	с	т	53
DYRK3	Epignetic	ENSG00000143479	1	TENOM04.065	V465L	206821936	G	T	25.4
DYRK3	Epignetic	ENSG00000143479	1	TENOM 04.026	Gain; Het				
HMCN1	Epignetic	ENSG00000143479	1	TENOM 04.026	Gain: Het				
HMCN1		ENSG00000143341	1	TENOM 04.119	K1027T	185958651	A	С	28
HMCN1	IAK STAT signalling	ENSG00000143341	1	TENOM 04.119	Gain; Het	65201159	6	т	20
KCNK2	JAR_STAT signaling	ENSG00000082482	1	TENOM 04.020	Gain; Het	03301130	6	1	30
KCNK2		ENSG0000082482	1	TENOM 04.119	Y272D	215345517	Т	G	19
KCNK2 MIA3		ENSG00000082482 ENSG00000154305	1	TENOM 04.119 TENOM04.065	Gain; Het S725X	222838777	C	Δ	22.3
MIA3		ENSG00000154305	1	TENOM 04.026	Gain; Het	222000111	0	~	22.0
MIA3	Call Cuala	ENSG00000154305	1	TENOM 04.119	Gain; Het		â		05.4
NEK2 NEK2	Cell Cycle	ENSG00000117650 ENSG00000117650	1	TENOM04.115 TENOM 04.026	L376F Gain: Het	211840431	С	A	35.4
NEK2	Cell Cycle	ENSG00000117650	1	TENOM 04.119	Gain; Het				
TOR1AIP2		ENSG00000169905	1	TENOM04.065	Q10P	179821772	т	G	47.6
TOR TAIP2		ENSG00000169905	1	TENOM 04.026	Gain; Het				
TRAF5	TCR signalling	ENSG0000082512	1	TENOM04.115	N18I	211526634	A	т	50
TRAF5	TCR signalling	ENSG0000082512	1	TENOM 04.026	Gain; Het				
DOCK10	TCR signalling	ENSG00000135905	2	TENOM04.115	V1038L	225688289	с	A	43.4
DOCK10	TCR signalling	ENSG00000135905	2	TENOM04.026	P903S	225704744	G	A	37
FSIP2		ENSG00000188738	2	TENOM04.026	R309C	186611436	C	T	28
FSIP2		ENSG00000188738	2	TENOM04.119	15382L	186669910	A	c	47
FSIP2		ENSG00000188738	2	TENOM04.119	K6078T	186671999	A	С	19
RHOA	TCR signalling	ENSG00000067560	3	TENOM04.026 TENOM28.001	G17V G17V	49412973	C	A	26
RBP7	Tort signaling	ENSG00000162444	3	TENOM 04.119	Deletion; Het	43412313	0	~	10
RBP7		ENSG00000162444	3	TENOM04.026	Deletion; Het		-	-	
CINNB1 TET2	Frignetic	ENSG00000168036 ENSG00000168769	3	TENOM04.026 TENOM04.120	G34E 01034X	41266104	G	A T	15 21
TET2	Epignetic	ENSG00000168769	4	TENOM04.120	R206X	106413197	c	T	21
TET2	Epignetic	ENSG00000168769	4	TENOM07.025	G898X	106157791	G	T	9
TLR6	TLR signalling	ENSG00000174130 ENSG00000174130	4 4	TENOM04.065 TENOM 04.119	Gain: Het	38829267	С	A	32.9
WDFY3	Autophagy	ENSG00000163625	4	TENOM04.065	L1721F	85686988	т	A	33.7
WDFY3	Autophagy	ENSG00000163625	4	TENOM 04.119	M1299T	85708640	A	G	30
DNAH8	Autophagy	ENSG00000124721	4 6	TENOM04.06	13597T	38899753	T	C	26.5
DNAH8		ENSG00000124721	6	TENOM04.119	R3949X	38939412	С	Т	45
FYN	TCR signalling	ENSG00000010810	6	TENOM 04.119 TENOM04.026	Deletion; homo				
MDN1	Tort signaling	ENSG00000112159	6	TENOM04.065	D364Y	90499886	с	A	19.5
MDN1		ENSG00000112159	6	TENOM 04.119	D4565N	90382020	С	т	54
MDN1 GTE2I	TCR signalling	ENSG00000112159 ENSG0000077809	6 7	TENOM04.026 TENOM04.081	Deletion; Het	74150167	G	C	22.9
GTF2I	TCR signalling	ENSG00000077809	7	TENOM 04.119	Deletion; Het	14100101	0	Ŭ	22.5
GTF2I	TCR signalling	ENSG0000077809	7	TENOM04.121	Deletion; Het	100100050	-	0	04.5
SPDYE2		ENSG00000205238	7	TENOM04.081 TENOM 04.026	Gain: Het	102198956	1	C	21.5
SPDYE2		ENSG00000205238	7	TENOM 04.121	Gain; Het				
PVT1		ENSG00000249859	8	TENOM04.119	Deletion; Homo				
CDKN2A	Cell Cvcle	ENSG00000249859	o 9	TENOM04.121 TENOM04.119	Deletion; Homo				
CDKN2A	Cell Cycle	ENSG00000147889	9	TENOM04.121	Deletion; Homo				
DDX58	mRNA processing	ENSG00000107201	9	TENOM04.081	D502Y	32467832	C	A	40.9
DMBT1	Intrive processing	ENSG00000187908	10	TENOM04.020	S643P	124361393	т	c	39.2
DMBT1		ENSG00000187908	10	TENOM04.119	S1052T	124358487	т	А	50
CREBL2	TCR signalling	ENSG00000187908	10	TENOM04.121 TENOM04.026	Deletion; Het				
CREBL2	TCR signalling	ENSG00000111269	12	TENOM04.119	Deletion; Homo				
CREBL2	TCR signalling	ENSG00000111269	12	TENOM04.121	Deletion; Homo				
DUSP16	TCR signalling	ENSG00000111266	12	TENOM04.026	Deletion: Homo				
DUSP16	TCR signalling	ENSG00000111266	12	TENOM04.121	Deletion; Homo				
LRP6 LRP6	Wint signalling Wint signalling	ENSG0000070018	12	TENOM04.026	Deletion; Homo				
LRP6	Wint signalling	ENSG0000070018	12	TENOM04.119	E180V	12356245	т	A	42
LRP6	Wint signalling	ENSG0000070018	12	TENOM04.121	Deletion; Homo	10.00	-		00.7
PIK3C2G GOLGARP	I CR signalling	ENSG00000139144 ENSG00000215252	12	TENOM04.065	V453A T132I	18491445 34823738	G	C A	23.3
GOLGA8B		ENSG00000215252	15	TENOM 028.001	Gain; Het	04020100	0	~	20.4
GOLGA8B		ENSG00000215252	15	TENOM 04.060	Gain; Het				<u> </u>
KRT20	ICK signalling	ENSG0000005339	16 17	TENOM04.119	Gain: Het				
KRT20		ENSG00000171431	17	TENOM 04.119	E406D	39032670	Т	G	46
NLRP4	Autophagy	ENSG00000160505	19	TENOM04.065	T162M	56369244	c	Т	28.4
TPRX1	Autophagy	ENSG00000178928	19 19	TENOI/04.119	Deletion: Het	JUDJ62267	0	~	20
TPRX1		ENSG00000178928	19	TENOM04.121	Deletion; Het				
VAV1	TCR signalling	ENSG00000141968	19	TENOM04.119	R822Q	6805090	G	A	91
IFNAR2	IFNgamma signalling	ENSG00000159110	21	TENOM 04.026	W54X	34617320	G	A	18
IFNAR2	IFNgamma signalling	ENSG00000159110	21	TENOM 08.001	Gain; Het		2		
F8 F8		ENSG00000185010	X	TENOM04.065	A68V	153810993	G	A	28.8
F8		ENSG00000185010	x	TENOM 04.119	Gain; Het	100010883		~	
MAGEC1		ENSG00000155495	Х	TENOM 04.119	S535G	140994793	A	G	81
MAGEC1 MAGEC1		ENSG00000155495	X X	TENOM 04.119	Gain; Het				
BEND2		ENSG00000177324	X	TENOM04.026	M572L	18194130	т	A	22
BEND2		ENSG00000177324	Х	TENOM04.065	N542Y	18192234	Т	A	24.9

Table 54. Significant gene alterations found in the discovery cohort. Summary of SNVs and CNVs of 39 genes altered in at least two patients of 10 AITL patients subject to WG/ES and variants in 6 genes related to TCR signaling pathway found mutated in one patient each. Genes are arranged by chromosome number and position. Variants are presented according to GRCh37 assembly (Ensembl). VF: Variant frequency; Chr: chromosome; Homo:homozygous; Het: heterozygous

HGVS name	ensembl #	localization (chr:start-end:strand)	targeted	function	pathway
AKT1	ENSG00000142208	14:105235686-105262088:-1	exons	kinase	
ΔΚΤ2	ENSC00000105221	19:40736224-40791443:-1	exons	kinase	
RCL6	ENSC00000112016	2:197420165 197462515: 1	exons	transcription factor	
DDAF	ENSG00000113910	3.107439103-1074033131	exons		
BRAF	ENSG0000157764	7:140,419,127-140,624,564:-1	exons	kinase	
CARDII	ENSG00000196266	7.2,945,775-3,063,5791	exons		
CD28	ENSG0000178562	2:204571198-204602557:+1	exons	receptor	
CDC42	ENSG0000070831	1:22379120-22419437:+1	exons	small GTPase	
CDK11B	ENSG00000248333	1:1570603-1590473:-1	exons	cyclin	Cell Cycle
CDKN1B	ENSG00000111276	12:12867992-12875305:+1	exons	cyclin inhibitor	Cell Cycle
CDKN2A	ENSG00000147889	9:21967751-21995300:-1	exons	cyclin inhibitor	Cell Cycle
CEP170	ENSG00000143702	1:243287730-243418650:-1	exons	centrosome component	Cell Cycle
CREBBP	ENSG0000005339	16:3775055-3930727:-1	exons	transcription factor	TCR signalling
CREBL2	ENSG00000111269	12:12764761-12798042:+1	exons	transcription factor	TCR signalling
CTNNB1	ENSG00000168036	3:41236328-41301587:+1	exons	transcription factor	TCR signalling
CTNND1	ENSG00000198561	11:57520715-57587018:+1	exons	GAP	TCR signalling
DDX58	ENSG00000107201	9:32455300-32526322:-1	exons	RNA helicase	mRNA processing
DHX9	ENSG00000135829	1:182808504-182856886:+1	exons	RNA helicase	mRNA processing
DMRT1	ENSG0000187908	10.124320181-124403252.+1	exons	transcription factor	unknown
DOCK10	ENSC0000125005	2:225620807 225007462: 4	oxons	GEE	TCP signalling
DOCKIU	EN300000133903	2.223029607-2239071021	exons	GEF	
DOCK3	ENSG000014/459	0.20042238-20270098:+1	exons		
	ENSG0000116641	1:02920399-03153969:-1	exons		
DUSP16	ENSG00000111266	12:12628829-12715317:-1	exons	MAPK phosphatase	
DYRK2	ENSG00000127334	12:68042118-68059186:+1	exons	kinase	Epigenetic
DYRK3	ENSG00000143479	1:206808881-206857764:+1	exons	kinase	Epigenetic
FYN	ENSG0000010810	6:111981535-112194655:-1	exons	kinase	TCR signalling
GSK3β	ENSG0000082701	3:119540170-119813264:-1	exons	kinase	TCR signalling
GTF2I	ENSG0000077809	7:74071994-74175026:+1	exons	transcription factor	TCR signalling
ICOS	ENSG00000163600	2:204801471-204826300:+1	exons	receptor	TCR signalling
IFNAR2	ENSG00000159110	21:34602206-34637969:+1	exons	receptor	Receptor
IRF4	ENSG00000137265	6:391739-411447:+1	exons	transcription factor	TCR signalling
ITK	ENSG00000113263	5:156569944-156682201:+1	exons	kinase	TCR signalling
JAK1	ENSG00000162434	1:65,298,912-65,432,187:-1	hotspots	kinase	JAKs_STATs signalling
JAK2	ENSG00000096968	9:4,985,033-5,128,183:+1	hotspots	kinase	JAKs STATs signalling
JAK3	ENSG00000105639	9:17.935.589-17.958.880:-1	hotspots	kinase	JAKs STATs signalling
KRAS	ENSG00000133703	12:25.357.723-25.403.870:-1	exons	kinase	TCR signalling
LAT	ENSG00000213658	16:28.984.826-28.990.783:+1	exons	molecular bridge	TCR signalling
LCK	ENSG00000182866	1:32716840-32751766:+1	exons	kinase	TCR signalling
LRP6	ENSG0000070018	12:12268959-12419946:-1	exons	co-receptor	Wint signalling
MAF	ENSG00000178573	16:79619740-79634611:-1	exons	transcription factor	
MAPK1	ENSG00000100030	22:22108789-22221970:-1	exons	kinase	TCR signalling
MAPK3	ENSG00000102882	16:30125426-30134827:-1	exons	kinase	TCR signalling
MAPK8	ENSC00000107643	10:40514608-40647403:+1	exons	kinase	
MARKO	ENSC00000050749	5:170660142 170710000: 1	exons	kingso	
MAN NO	ENSC00000112150	6.00252218 00520442: 1	exons	nuclear changranne	nuclear chaperenne
	ENSC00000172026	2:20 170 060 20 104 512:11	botopoto	adapter pretoin	
NEK2	ENSC0000447650	1.211026114 211040000. 4	avera		
NERZ	EN3G0000117630	1:211636114-211646960:-1	exons	kinase	
	ENSG00000119408	9:12/019885-12/115586:+1	exons		
NLRP4	ENSG00000160505	19:5634/944-56393220:+1	exons	pattern recognition receptor	Autophagy
	ENSG0000140992	10:208/965-2653189:+1	exons		
PIK3CA	ENSG00000121879	3:178865902-178957881:+1	exons	PIK3 catalytic subunit	
PIK3CB	ENSG00000051382	3:1383/2860-138553780:-1	exons	PIK3 catalytic subunit	
PIK3CG	ENSG00000105851	7:106505723-106547590:+1	exons	PIK3 catalytic subunit	TCR signalling
PIK3R1	ENSG00000145675	5:67511548-67597649:+1	exons	PIK3 regulatory subunit	TCR signalling
PIK3R5	ENSG00000141506	17:8782233-8869029:-1	exons	PIK3 regulatory subunit	TCR signalling
PLCG1	ENSG00000124181	20:39765600-39825427:+1	exons	kinase	TCR signalling
PLCG2	ENSG00000197943	16:81772702-81991899:+1	exons	kinase	TCR signalling
PRKCQ	ENSG0000065675	10:6,469,105-6,622,263:-1	exons	kinase	TCR signalling
RAC1	ENSG00000136238	7:6414154-6443608:+1	exons	small GTPase	TCR signalling
RHOA	ENSG0000067560	3:49396578-49450431:-1	exons	small GTPase	TCR signalling
STAT3	ENSG00000168610	17:40,465,342-40,540,586:-1	hotspots	transcription factor	TCR and JAKs_STATs signalling
STAT4	ENSG00000138378	2:191,894,302-192,016,322:-1	hotspots	transcription factor	JAKs_STATs signalling
STAT5B	ENSG00000173757	17:40,351,186-40,428,725:-1	hotspots	transcription factor	JAKs_STATs signalling
TPRX1	ENSG00000178928	19:48304500-48322308:-1	exons	transcription factor	Transcription factor
TRAF5	ENSG0000082512	1:211499957-211548288:+1	exons	scaffold protein	TCR signalling
TRAF6	ENSG00000175104	11:36,508,577-36,531,822:-1	exons	E3 ubiquitin ligase	TCR signalling
VAV1	ENSG00000141968	19:6772725-6857377:+1	exons	GEF	TCR signalling
VAV2	ENSG00000160293	9:136627016-136857726:-1	exons	GEF	TCR signalling
WDFY3	ENSG00000163625	4:85590704-85887544:-1	exons	scaffold protein - PIP3 binding prot	Autophagy
ZAP70	ENSG00000115085	2.98.330.023-98.356.325 +1	exons	kinase	TCR signalling

Table S5. List of 69 genes analyzed by targeted deep sequencing. The 27 genes in boldface were selected from WG/ES of the discovery cohort. Genes found alteres in whole genome / whole exome sequencing are in bold face.

GENE	uniprot #	#CHROM	POSITION	ID	Nucleotide Change	Amino Acid Change	Mutation type	domain	somatic in cosmic	VF (mean)	VF (min)	VF (max)	# (AITL)	# (TFH-like) Filtered out	SIFT	PROVEAN	Polyphen-2
CDK11B	P21127 P23458	1	65307105		NM_033489:exon10:0.846_851del	282_284del D831E	non trameshift deletion	Glu rich domain		0.19	0.19	0.19	1	0	NA Deleterious	NA Damaging	NA probably damaging
LCK	P06230	1	32751125		^{b;} NM_001042771;exon13;c 1338C>A	PINAVER	missense	kinase domain		0.26	0.00	0.00	1	0	Neutral	Tolerated	probably damaging
LCK	1 00200	1	32751127		^b NM 001042771:exon13:c.1340C>G:p.P447R	^{b:} P447R	missense	kinase domain		0.26	0.26	0.26	1	0	Deleterious	Damaging	probably damaging
DOCK7	Q96N67	1	63042973		NM_033407:exon18:c.2072T>C	L691S	missense	DHR-1 domaim		0.48	0.48	0.48	0	1 yes	Neutral	Tolerated	probably damaging
DYRK3	O43781	1	206811055		NM_003582:exon2:c.138T>G	C46W	missense			0.53	0.53	0.53	1	0 yes	Neutral	Tolerated	probably damaging
TRAF5	O00463	1	211526601		:NM_145759:exon2:c.20A>G	H7R	missense			0.53	0.53	0.53	0	1 yes	Deleterious	Damaging	benign
CEP170	Q5SW79	1	243362476		NM_001042404:exon7:c.517G>T	G173C	missense			0.04	0.04	0.04	1	0	Neutral	Tolerated	possibly damaging
CD28	P10747	2	204591674		NM_006139:exon2:c.371A>T	D124V	missense	extracellular extracellular		0.12	0.09	0.16	2	0	Neutral	Tolerated	possibly damaging
CD28		2	204599555		NM_006139:exon4:c.583A>C	T195P	missense	cytoplasmic		0.24	0.07	0.38	4	0	Deleterious	Damaging	benign
MYD88	P22366	3	38182032		NM_001172567:exon3:c.656C>G	S219C	missense	TIR domain	yes	0.40	0.40	0.40	0	1	Deleterious	Damaging	possibly damaging
CTNNB1	P35222	3	41266124		a; NM_001904:exon3:c.122A>G	^{a;} T41A	missense	Phospho by GSK3b	yes	0.09	0.05	0.12	1	1	Deleterious	Damaging	possibly damaging
CTNNB1		3	41266137		⁸ : NM_001904:exon3:c.10/A>C	a; 0465	missense		yes	0.15	0.15	0.15	1	0	Deleterious	Damaging	possibly damaging
CTNNB1		3	41268766		NM_001904:exon7:c.1004A>C	K335T	missense		yes	0.13	0.08	0.03	2	0	Deleterious	Damaging	possibly damaging
RHOA	P61586	3	49412969		NM_001664:exon2:c.54G>T	K18N	missense	GTP binding		0.08	0.06	0.10	3	0	Deleterious	Damaging	possibly damaging
RHOA	D 40000	3	49412973	rs11552761	NM_001664:exon2:c.50G>T	G17V	missense	GTP binding	yes	0.15	0.02	0.39	42	6	Neutral	Tolerated	possibly damaging
PIK3CB	P42338	3	138433476		NM_006219:exon7:c.1136A>G	H3/9R	missense	C2 PI3K-type		0.50	0.50	0.50	1	0 yes	Deleterious	Damaging	possibly damaging
WDEV3	08/201	4	85758240		NM_000216.ex0121.c.30021>C	T140P	missense	PI3N/PI4N		0.02	0.02	0.02	1	0	Neutral	Tolerated	possibly damaging
PIK3R1	P27986	5	67569305	i i	NM 181523exon3:c.422A>G	K141R	missense	RHO-GAP		0.02	0.02	0.03	0	1	Deleterious	Damaging	benian
PIK3R1		5	67589661		NM_181523:exon11:c.1424A>C	Q475P	missense	iSH2		0.02	0.02	0.02	1	0	Neutral	Tolerated	possibly damaging
PIK3R1 PIK3R1		5	67591133		NM_181523:exon13:c.1726A>G NM_181523:exon16:c.2038G>A	T576A G680S	missense	iSH2 SH2 2		0.02	0.02	0.02	0		Deleterious	Damaging	benign possibly damaging
PIK3R1		5	67593364		NM_181523:exon16:c.2110G>A	V704M	missense	SH2 2		0.04	0.04	0.04	1	0	Deleterious	Damaging	possibly damaging
IRF4	Q15306	6	394867	rs202124383	NM_002460:exon3:c.263C>A	P88Q	missense	DNA binding		0.48	0.48	0.48	1	0 yes	Deleterious	NA	possibly damaging
MDN1	Q9NU22	6	90372565		NM_014611:exon86:c.14355_14357del	4785_4786del	non frameshift deletion	poly glu		0.43	0.43	0.43	1	0 yes	NA	NA	NA
MDN1		6	90415827 90428552		M 014611:ex0n53:C:80991>C	H2085Q	missense	near ATP binding		0.51	0.51	0.51	1	0 yes	Neutral	Tolerated	benign
MDN1		6	90481323		NM_014611:exon15:c.2101G>A	V701I	missense	near ATP binding		0.11	0.11	0.11	0	1	Deleterious	Damaging	benign
MDN1	DOCO44	6	90482411		NM_014611:exon14:c.1964C>T	P655L	missense	near ATP binding		0.50	0.50	0.50	1	0 yes	NA	NA	benign
FYN	P00241	6	111982968		^a :NM 153047:exon11:c 1574 1575del	a:525 525del	stop gain frameshift deletion			0.05	0.05	0.06	1	0	Deleterious	Damaging	NA
FYN		6	112024228		^{a:} NM_153047:exon5:c.557C>T	a:S186L	missense	SH2 domain		0.16	0.16	0.16	0	1	NA	NA	possibly damaging
FYN		6	112035569		b: NM_153047:exon2:c.324delA	^{b;} K108fs	frameshift deletion			0.10	0.10	0.10	1	0	Deleterious	Damaging	possibly damaging
FYN		6	112035573		b: NM_153047:exon2:c.321AAG>TCT	^{b;} E107S	missense	SH3 domain		0.10	0.10	0.10	1	0	Deleterious	Damaging	possibly damaging
CARD11	Q9BXL7	7	2955005		NM_032415:exon21:c.2705T>G	F902C	missense			0.06	0.06	0.06	1	0	Neutral	Damaging	possibly damaging
CARD11		7	2984003		NM_032415:exon5:c.527T>G	F176C	missense	coiled coil		0.49	0.49	0.49	1	0	Neutral	Tolerated	possibly damaging
GTF2I	P78347	7	74143131		NM032999:exon13:c.951T>G	D317E	missense			0.17	0.17	0.17	1	0	Neutral	Tolerated	benign
GTF2I GTF2I		7	74143199		NM_032999:exon13:c.1019A>G NM_032999:exon18:c.1569G>T	N340S R523S	missense	GTF2Llike		0.21	0.21	0.21	0	0 1	Neutral	Tolerated	benign possibly damaging
GTF2I		7	74159167		NM_032999:exon21:c.1821G>C	L607F	missense	GTF2I-like	yes	0.25	0.25	0.25	1	0	Neutral	Tolerated	possibly damaging
GTF2I		7	74162388		NM_032999:exon24:c.2105G>A	R702Q	missense			0.18	0.18	0.18	1	0	Neutral	Tolerated	benign
PIK3CG	P48736	7	106508166		NM_002649:exon2:c.160C>G	P54A	missense	PI3K-ABD		0.49	0.49	0.49	1	0 yes	Neutral	Tolerated	benign
CDKN2A	Q9H7D0 P42771	0	21068733		NM_001195132:exon3:c 495G>C	R1655	missense	DHK-2 domain		0.49	0.49	0.49	1	0 yes	Neutral	Tolerated	possibly damaging
DDX58	095786	9	32488079		NM_014314:exon8:c.1076C>T	T359M	missense	Helicase ATP-binding	no	0.48	0.44	0.44	1	0 yes	Deleterious	Damaging	possibly damaging
JAK2	O60674	9	5073770	rs77375493	NM_004972:exon14:c.1849G>T	V617F	missense	ž	yes	0.15	0.15	0.15	1	0	Neutral	Damaging	possibly damaging
VAV2	P52735	9	136674187		NM_001134398:exon7:c.641A>G	Y214C	missense	DH domain	yes	0.57	0.57	0.57	1	0	NA	NA	possibly damaging
DMBT1	Q9UGM3	10	124325492		NM_017579:exon2:c.72_79del	24_27del	frameshift deletion	00000		0.44	0.44	0.44	1	0 yes	NA	NA	NA
DMBT1		10	124342406		NM_017579:exon13:c.1357C>G	Q453E N674S	missense	SRCR 3 SRCR 5		0.61	0.61	0.61	1	0 yes	Deleterious	Tolerated	possibly damaging benign
DMBT1		10	124366695		NM_017579:exon29:c.3658C>T	P1220S	missense	SRCR 9		1.00	1.00	1.00	0	1 yes	NA	NA	benign
TRAF6	Q9Y4K3	11	36511918		NM_004620:exon7:c.1039C>T	Q347X	stop gain	coiled coil /MATH		0.14	0.14	0.14	1	0	Neutral	Tolerated	possibly damaging
I RP6	075581	12	12278241	· ·	NM_002336:exon21:c.4/38T<4	V1480N	missense	PPPSP motif 4		0.50	0.50	0.50	1	0 yes	Neutral	Tolerated	possibly damaging
LRP6	070001	12	12291358		NM_002336:exon16:c.3508A>G	I1170V	missense	LDL-receptor class B 20		0.45	0.45	0.45	1	0 yes	Deleterious	Damaging	benign
LRP6		12	12334271	rs141212743	NM_002336:exon6:c.1079G>A	R360H	missense	Beta-propeller 2		0.51	0.51	0.51	1	0 yes	Neutral	Damaging	possibly damaging
KRAS KRAS	P01116	12	25398211		NM_004985:exon2:c.108A>G NM_004985:exon2:c.53C>A	136M A18D	missense	GTP hinding	no	0.03	0.03	0.03	0	0 1	Deleterious	Damaging	possibly damaging
KRAS		12	25398281		NM_033360:exon2:c.38G>A	G13D	missense	GTP binding	yes	0.25	0.25	0.25	0	i i	Deleterious	Damaging	possibly damaging
AKT1	P31749	14	105239665		NM_001014431:exon10:c.880G>A	G294R	missense	protein kinase		0.33	0.33	0.33	1	0	Neutral	NA	possibly damaging
PDPK1	O15530	16	2607734		NM_002613:exon2:c.56_58del	19_20del	non frameshift deletion	protoin kin		0.32	0.32	0.32	1	0	NA	NA	NA
PDPK1 PDPK1		16	2633432	<u> </u>	NM_002613:ex0114:c:455_45606	R324Q	missense	protein kinase protein kinase		0.28	0.28	0.28	1	0	Deleterious	Tolerated	possibly damaging
PDPK1		16	2633480		NM_002613:exon10:c.1019C>A	P340Q	missense	protein kinase		0.27	0.27	0.27	1	0	Neutral	Tolerated	benign
	043561	16	28007042	re55045024	NM_001014989;evon2:o 217G- A	1402M	missense			0.49	0.19	0.49	1	U yes	Deleterious	Tolerated	possibly damaging
LAT	0-3301	16	28997459	.333343024	NM_001014989:exon5:c.275C>T		missense			0.32	0.32	0.32	1	0 yes	Deleterious	Damaging	possibly damaging
CREBBP	Q92793	16	3781835		NM_004380:exon29:c.4832C>T	P1611L	missense	Interaction with TRERF1		0.44	0.44	0.44	1	0 yes	Neutral	Damaging	possibly damaging
CREBBP	D07064	16	3900638	rs146538907	NM_004380:exon2:c.458C>T	P153L	missense	gentals bis		0.61	0.51	0.71	2	0 yes	Deleterious	Damaging	possibly damaging
MAPK3 MAPK3	P21301	16	30120549		NM_002746:exon4:c.622C>T	R208C	missense	protein kinase protein kinase		0.02	0.02	0.02	1	0 yes	Neutral	Tolerated	possibly damaging
PLCG2	P16885	16	81819700		NM_002661:exon2:c.106T>C	S36P	missense	PH domain		0.58	0.58	0.58	1	0 yes	Neutral	Damaging	benign

PLCG2		16	81957181		NM_002661:exon22:c.2399C>G	S800C	missense	SH3 domain		0.48	0.48	0.48	1	0	yes	Deleterious	Damaging	possibly damaging
STAT3	P40763	17	40475063		NM_139276:exon20:c.1847A>G	E616G	missense	SH2 domain	yes	0.03	0.03	0.03	1	0		Deleterious	Damaging	possibly damaging
STAT3		17	40475064		NM_139276:exon20:c.1846G>A	E616K	missense	SH2 domain	yes	0.04	0.04	0.04	1	0		Neutral	Tolerated	benign
PIK3R5	Q8WYR1	17	8793325		NM_014308:exon8:c.776C>T	A259V	missense		yes	0.53	0.53	0.53	1	0		NA	NA	possibly damaging
VAV1	P15498	19	6822232		NM_005428:exon5:c.451_472del	151_158del	frameshift deletion			0.14	0.14	0.14	1	0		Deleterious	Damaging	NA
VAV1		19	6826639		NM_005428:exon9:c.844C>T	R282C	missense	DH domain		0.44	0.44	0.44	1	0	yes	NA	NA	possibly damaging
VAV1		19	6853948		NM_005428:exon26:c.2333_2348del	778_783del	frameshift deletion			0.06	0.06	0.06	1	0		Deleterious	Damaging	benign
VAV1		19	6854015		NM_005428:exon26:c.2390A>G	D797G	missense	SH3 2 domain		0.15	0.15	0.15	1	0		Neutral	Tolerated	possibly damaging
VAV1		19	6854102		NM_005428:exon26:c.2477A>C	Y826S	missense	SH3 2 domain		0.07	0.07	0.07	0	1		Neutral	Tolerated	possibly damaging
JAK3	P52333	19	17945764	rs201784993	NM_000215:exon16:c.2096C>T	A699V	missense	kinase domain	yes	0.45	0.45	0.45	1	0		Neutral	Damaging	possibly damaging
TPRX1	Q8N7U7	19	48306003		NM_198479:exon2:c.265C>T	P89S	missense			0.44	0.44	0.44	0	1	yes	Deleterious	Damaging	possibly damaging
NLRP4	Q96MN2	19	56369244	rs117212164	NM_134444:exon3:c.485C>T	T162M	missense	NACHT domain	yes	0.48	0.46	0.50	1	1		Deleterious	Damaging	possibly damaging
NLRP4		19	56363459		NM_134444:exon2:c.13T>G	F5V	missense	DAPIN domain		0.05	0.05	0.05	0	1		Deleterious	Damaging	possibly damaging
PLCG1	P19174	20	39766420		NM_182811:exon1:c.139G>A	E47K	missense	PH 1 domain		0.06	0.06	0.06	0	1		Deleterious	Damaging	possibly damaging
PLCG1		20	39766423		NM_182811:exon1:c.142C>T	R48W	missense	PH 1 domain		0.18	0.18	0.18	1	0		Deleterious	Damaging	possibly damaging
PLCG1		20	39792575		NM_182811:exon11:c.1025A>G	D342G	missense	PI-PLC X-box domain		0.05	0.05	0.05	0	1		Deleterious	Damaging	possibly damaging
PLCG1		20	39792584		a; NM_182811:exon11:c.1034C>T	^{a;} S345F	missense	PI-PLC X-box domain	yes	0.11	0.04	0.19	1	1		Deleterious	Damaging	possibly damaging
PLCG1		20	39794139		a: NM_182811:exon15:c.1559C>T	^{a;} S520F	missense	PH 2; first part	yes	0.04	0.02	0.04	2	0		Neutral	Tolerated	possibly damaging
PLCG1		20	39795386		NM_182811:exon19:c.2188G>A	E730K	missense	SH2 2 domain		0.15	0.15	0.15	1	0		Deleterious	Damaging	possibly damaging
PLCG1		20	39798122		NM_002660:exon23:c.2606G>A	G869E	missense	near SH3 domain		0.07	0.03	0.10	2	0		Deleterious	Damaging	possibly damaging
PLCG1		20	39802073		NM_182811:exon28:c.3293G>A	R1098Q	missense	C2 domain		0.48	0.48	0.48	1	0	yes	Deleterious	Damaging	possibly damaging
PLCG1		20	39802384		NM_182811:exon29:c.3487G>A	E1163K	missense	C2 domain	yes	0.15	0.15	0.15	0	1		Deleterious	Damaging	possibly damaging
PLCG1		20	39802390		NM_182811:exon29:c.3493G>C	D1165H	missense	C2 domain		0.37	0.37	0.37	0	1		Deleterious	Damaging	possibly damaging
PLCG1		20	39802391		NM_182811:exon29:c.3494A>G	D1165G	missense	C2 domain		0.04	0.04	0.04	1	0		Neutral	Tolerated	possibly damaging
IFNAR2	P48551	21	34619127		a: NM_207585:exon5:c.326T>C	^{a;} V109A	missense	extracellular		0.55	0.55	0.55	1	0	yes	Neutral	Damaging	benign
IFNAR2		21	34635801	rs45513593	^{a;} NM_207585:exon9:c.1544G>A	^{a;} R515K	missense	cytoplasmique	no	0.54	0.54	0.54	1	0	yes	Neutral	Tolerated	possibly damaging
MAPK1	P28482	22	22161975	rs202041676	NM_138957:exon2:c.280A>G	T94A	missense			0.55	0.55	0.55	1	0	yes	NA	NA	benign

Table S6. List of crossvalidated variants identified by Targeted Deep Sequencing of 69 candidate genes in 85 ATTL and TFH-like PTCL samples. 103 variants were found in 45/69 candidate genes analyzed. Genes are arranged by chromosome number and position. Variants are presented according to GRCh37 assembly (Ensembl).

VF: Variant Frequency.

^a: denotes variants found in the same patient in different alleles.

^b: denotes variants found in the same patient in the same allele.

Signature name	number of genes	Up	Down	Leading edge genes symbols	Category	Remarks
ABC_gt_GCB_PMBL_MCL_BL_U133AB	51	0.00359964	0.99160084	ABHD17C,PIM2,RAB7L1	T cell activation	
ABCgtGCB_U133AB	273	0.0209979	0.96050395	CKAP4,ABHD17C,FUT8,LARP1B,PIM2,RAB7L1,SCN2A	T cell activation	
ABC_gt_GCB_Affy	20	0.02559744	0.98190181	FUT8,PIM2	T cell activation	
IRF4_myeloma_induced_all	289	0.03019698	0.97530247	ANKRD37,GFPT1,KLK1,MTHFD1L,PDIA4,PDS5A,PIM2	T cell activation	
IRF4_myeloma_induced_direct	37	0.04129587	0.839916008	GFPT1,PIM2	T cell activation	
Blood_Module-1.4_Undetermined	97	0.029997	0.920807919	BTG3,CDCA4,CREM,CYLD,EIF5,EPC1,PTP4A1,ZNF331	T cell activation	
Tcell_Plind_CalciumDefPtdown4x_Feske_Fig4	59	0.0289971	0.923707629	LTA,TMCC2,ZBED2	T cell activation	
Thymic_DP_Tcell_gt_Thymic_SP_CD4+Tcell	102	0.01509849	0.874812519	C17orf67,CD8A,CPVL,E2F7,SH2D1A	T cell activation	
HALLMARK_MTORC1_SIGNALING	197	0.049295071	0.98360164	IFRD1,PLOD2,PSPH,SLC7A11,ELOVL6,CYB5B,RPN1,NUFIP1	T cell activation	
JAK_Up_HBL1	328	0.03039696	0.97130287	HOOK3,KBTBD6,KRT71,MTHFD1L,SLC4A7,SYCN,TMED9	T cell activation	
Tcell_cytokine_induced_IL2_IL7_IL15only	23	0.00729927	0.97140286	LTA	T cell activation	
Tcell_cytokine_induced_PMBC_Bcell_induced	29	0.04489551	0.9740026	CREM,DNAJC3	T cell activation	
HALLMARK_KRAS_SIGNALING_DN	197	0.940605939	0.0169983	MAGIX,ARHGDIG,KCNQ2,SLC30A3,SSTR4,PNMT,TLX1	T cell activation	
E2F3_overexpression_2x_up	135	0.00529947	0.99690031	CDC20B,CRELD2,E2F7,KIAA1804	Proliferation	
Cell_cycle_Cho	508	0.04249575	0.99650035	BMPR1A,TIMMDC1,ELOVL6,EPC1,ETV1,FUT8,KLF5,LRRC8B,MOGAT2,NF2,PTPRR,STAM2,SYNGAP1,XIAP,ZFAND5	Proliferation	
T_cell	14	0.9310138	0.101257748	SH2D1A	Proximal TCR signalling elements	Marginal significance

Table S7. Leading edge genes from GSEA analysis comparing GEP profiles of samples according to the mutational status for TCR signaling genes (mutated versus wild type). The p-values for upregulated (Up) and downregulated (Down) pathways in patients harbouring mutations are reported, together with the genes with the highest correlation to the mutation status ("Leading edge genes"); genes indicated in boldface are differentially expressed in TCR_WT cases.

								Patie	ent 1	Pat	ient 2	Pat	ient 3	Patient 4				
											WES	WES	TDS	TDS	TDS	TDS	TDS	TDS
											diagnostic	refractory (2.5)	diagnostic	refarctory (1)	diagnostic	relapse (13)	diagnostic	relapse (7)
#CHRON	GENE	POSITION	REF	ALT	ID	CHANGE	effect	domain	somatic in cosmic	Filtered out								
4	TET2					c. 1516insG:p.Cys484fs	frameshift						8.06	7.74				
4	TET2					c.2937_2938insA:p.Gln958fs	frameshift								ND	ND	NA	NA
4	TET2	106180929		TTG	Т		splicing		•		5.90	5.90						
4	TET2	106157791		G	Т	NM_001127208:exon3:c.2692G>T:p.G898X	stopgain				6.35	6.35						
2	DNMT3A					c.2982C>T:p.Arg882Cys	missense						14.23	29.18	ND	ND		
2	DNMT3A					p.P700L	missense								ND	ND	NA	NA
15	IDH2					c.600A>G:p.Arg172Gly	missense			•			13.26	13.89	ND	ND		
2	CD28	204591675	С	A		NM_006139:exon2:c.372C>A:p.D124E	missense	extracellular							7.4	11.96		
3	CTNNB1					NM_001904:exon8:c.1147T>A:p.W383R	missense		yes									3.58
3	RHOA	49412969	С	A		NM 001664:exon2:c.54G>T:p.K18N	missense	GTP binding									7.42	8.44
3	RHOA	49412973	С	A	rs11552761	NM_001664:exon2:c.50G>T:p.G17V	missense	GTP binding	yes				21.98	22.00	8.98	12.31		
6	FYN	111982968	G	A		NM_153047:exon11:c.1579C>T:p.Q527X	stop gain						4.95	6.00				
7	GTF2I	74150975	G	T		NM_032999:exon18:c.1569G>T:p.R523S	missense										17.16	19.10
9	CDKN2A	21968733	С	G		NM_001195132:exon3:c.495G>C:p.R165S	missense			yes							44.33	48.25
16	CREBBP	3781878	Т	С		NM_004380:exon29:c.4789A>G:p.K1597E	missense	modified residue N6-acetyllysine								3.00		
19	NLRP4	56369244	С	Т	rs117212164	NM_134444:exon3:c.485C>T:p.T162M	missense	NACHT domain	yes						46.53	46.07		
20	PLCG1	39792584	С	Т		NM_182811:exon11:c.1034C>T:p.S345F	missense	PI-PLC X-box domain	yes		6.25	6.25	3.70	4.00				
20	PLCG1	39794139	Ċ	Т		NM_182811:exon15:c.1559C>T:p.S520F	missense	PH 2; first part	yes				4.48	4.00				

Table S8. Targeting Deep sequencing of 4 patients with paired samples. One patient from the discovery cohort (patient 1) and three patients from the extended cohort (patients 2 to 4) had samples harvested at diagnosis and in refractory state (patients 1 and 2, at 2.5 and 1 months) or at relapse (patients 3 and 4, at 13 and 7 months). Samples from patients 2 to 4) were TDS using the panels from the extended cohort. Data for TET2, DNMT3A and IDH2 are from a previous study. Both samples from patient 1 were TDS using the same panels as for the extended cohort plus a modified panel comprising TET2, DNMT3A and IDH2. Numbers indicate the Variant Frequency, while colors indicate the type of mutation (red: missense; brown: stop gain; blue: freameshift deletion). ND: not determined; NA: not applicable.

TCR-related genes mutations	mutar	nt	WT		statistics			
N	42		43		p value	test		
sex								
male	26	62%	24	56%	0.66	F		
female	16	38%	19	44%				
median age (quartile)	67	54-75	64	58-71	0.46	F		
diagnosis								
AITL	36	86%	36	84%	1	MW		
TFH like PTCL	6	14%	7	16%				
stage								
1	0	0%	0	0%	0.45	F		
II	0	0%	1	3%				
- 111	12	32%	9	23%				
IV	26	68%	30	75%				
LDH								
>N	29	78%	23	64%	0.2	F		
≤N	8	22%	13	36%				
hemoglobin								
<10 g/dL	11	32%	10	30%	1	F		
≥10 g/dL	23	68%	23	70%				
platelets								
<100000	3	9%	1	3%	0.62	F		
≥100000	31	91%	29	97%				
hypergammaglobulinemia								
yes	12	48%	9	45%	1	F		
no	13	52%	11	55%				
Direct coombs test								
positive	12	57%	16	67%	0.55	F		
negative	9	43%	8	33%				
ECOG								
0-1	19	50%	20	57%	0.64	F		
2-4	19	50%	15	43%				
B symptoms								
yes	25	68%	26	68%	1	F		
no	12	32%	12	32%				
IPI								
0-2	6	16%	11	28%	0.27	F		
3-5	32	84%	28	72%				
First line chemotherapy								
anthracyclin based	33	89%	26	67%	0.03	Khi2		
Others	4	11%	13	33%				
Frontline auto SCT								
yes	4	10%	5	13%	0.73	F		
no	35	90%	33	87%				
5 years OS	29%		43%		0.36	log rank		
Response to treatment*								
CR	16	57%	18	72%	0.11			
PR	5	18%	6	24%				
SD	0	0%	0	0%				
PD	7	25%	1	4%				
Early progression *								
yes	11	33%	2	8%	0.02	F		
no	22	67%	24	92%				
5 years OS*	33%		46%		0.56	log rank		
5 years PFS *	21%		24%		0.11	log rank		

* anthracyclin based therapy

Table S9. Summary and comparison of the clinical features of the 85 patients of the extended cohort (72 AITL and 13 T_{FH} -like PTCL, NOS cases) with (TCR_Mut) or without (TCR_WT) mutations in TCR-related genes (49% vs 51%).

* indicates analysis performed on anthracyclin based treated population

SCT:stem cell transplantation,CR complete response, PR partial response, SD stable disease, PD progressive disease, F: Fisher, MW: Mann Whitney