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Peripheral T-cell lymphomas (PTCL) comprised more than 30 rare

heterogeneous entities, representing 10 to 15% of adult non-Hodgkin

lymphomas. Although their diagnosis is still mainly based on clinical,

pathological, and phenotypic features, molecular studies have allowed for a

better understanding of the oncogenic mechanisms involved and the refinement

of many PTCL entities in the recently updated classifications. The prognosis

remains poor for most entities (5-year overall survival < 30%), with current

conventional therapies based on anthracyclin-based polychemotherapy

regimen, despite many years of clinical trials. The recent use of new targeted

therapies appears to be promising for relapsed/refractory patients, such as

demethylating agents in T-follicular helper (TFH) PTCL. However further

studies are needed to evaluate the proper combination of these drugs in the

setting of front-line therapy. In this review, we will summarize the oncogenic

events for the main PTCL entities and report the molecular targets that have led

to the development of new therapies. We will also discuss the development of

innovative high throughput technologies that aid the routine workflow for the

histopathological diagnosis and management of PTCL patients.
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1 Introduction

Peripheral T-cell lymphomas (PTCL) represent 10 to 15% of adult non-Hodgkin

lymphomas. In the latest revised WHO and ICC classifications (1, 2), more than 30 entities

are described, mostly defined by their clinical and pathological and phenotypic features,

with a growing element of molecular data. Indeed, molecular studies based on high-

throughput technologies have allowed for a better understanding of the oncogenic

mechanisms involved and have improved the characterization of several entities.
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Although only a few specific genomic alterations define a given

entity, the use of molecular data, such as clonality assays and

targeted next-generation sequencing (NGS), is now integrated

into the routine diagnostic workflow of expert centers, in

combination with clinical and pathological clues. However, the

translation of high-throughput genomic studies to clinical practice

is still limited due to the high cost of high-throughput technologies

and little clinical relevance for most findings. In this review, we will

detail the oncogenic mechanisms of the main non-cutaneous PTCL

entities, the molecular targets that have an impact on their diagnosis

or treatment, and the assays that are useful for the detection of these

clinically relevant molecular alterations (3). Entities with a leukemic

presentation (notably T-cell large granular lymphocytic leukemia

and T-prolymphocytic leukemia) will not be detailed.
2 Biology of PTCLs

2.1 Oncogenic mechanisms

T-cell lymphomagenesis is a multistep process resulting from

the accumulation of oncogenic events, such as genomic and

epigenetic alterations and dysregulation of cellular signaling

pathways, cell cycle, and immune surveillance (Figure 1). The

microenvironment also plays a role in the initiation and

maintenance of neoplastic transformation, best highlighted in
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angioimmunoblastic T-cell lymphoma (AITL), a disease

characterized by a prominent tumor microenvironment (TME).

However, the impact of the TME in other entities is still

poorly understood.

Different types of genomic alterations can modify a biological

function. Chromosomal translocations, detected by cytogenetic

methods (karyotype, FISH, CGH), may produce fusion

transcripts, detected by various technologies such as RT-PCR,

RNAseq, or ld-RTPCR. They can result in aberrant expression,

detectable by immunohistochemistry (for ALK fusions), or

constitutive activation of oncogenes (such as JAK2, VAV1, CD28,

etc.). Mutations in coding regions (single nucleotide variations or

indels), detected by targeted exome or genomic sequencing, result in

the gain of function of oncogenes or the loss of function of tumor

suppressor genes. Mutations in noncoding regions have also been

described, but their functional consequences are unclear.

Disruption of the 3’UTR of PDL1 leads to its aberrant expression

in extra-nodal NK/T-cell lymphomas and nasal-type (ENKTCL)

and adult T-cell leukemia/lymphoma (ATLL), thus participating in

immune escape (4, 5).

Epigenetic alterations appear to be a founding event in many

PTCLs, mutations of genes involved in epigenetic regulation being

frequently reported among different PTCL entities. Alterations of

TET2 and DNMT3A, reflecting clonal hematopoiesis (6), were

initially described in tumoral and reactive cells of TFH

lymphomas (7, 8), but have also been reported in other entities,
FIGURE 1

Oncogenic mechanisms of the main non-cutaneous PTCL entities. PTCL oncogenesis is a multistep process resulting from the accumulation of
oncogenic events targeting epigenetics, signaling pathways (alterations of the TCR pathway is a common feature of TFH-PTCL, ATLL and certain
PTCL-NOS, whereas alterations of the JAK/STAT pathway is shared by PTCL entities with a cytotoxic immunophenotype), cell cycle or apoptosis.
Oncogenic viruses (HTLV1, EBV) are involved in a few specific entities. Chronic antigen stimulation may play a role as initiating event in several
extranodal T or NK-cell lymphomas. Immune surveillance and crosstalk between neoplastic cells and reactive cells of the microenvironment is
important, especially in AITL, where reactive cytotoxic CD8 T-cells and B-cells are associated with a poor and favorable outcome respectively.
Genetic susceptibility is recognized in SPTCL, EATL and ENKTL. This figure depicts these events and their involvement for specific PTCL entities.
Genes are crossed out when the alterations result in a loss of function. TFH, T follicular helper; ALCL, anaplastic large cell lymphoma; PTCL-NOS,
peripheral T-cell lymphoma, not otherwise specified; ATLL, adult T-cell leukemia/lymphoma; ENKTCL, extra-nodal NK/T-cell lymphoma; HSTL,
hepatosplenic T-cell lymphoma; EATL, enteropathy associated T-cell lymphoma; MEITL, monomorphic epitheliotropic intestinal T-cell lymphoma;
SPTCL, subcutaneous panniculitis-like T cell lymphomas.
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such as peripheral T-cell lymphoma not otherwise specified (PTCL-

NOS), especially with a cytotoxic immunophenotype (9), or chronic

lymphoproliferative disorders of NK cells (10). Although mutations

of these two genes are not sufficient to induce lymphomas (11, 12),

the loss of TET2 is often required in vitro and in vivo prior to the

occurrence of other genomic alterations (such as RHOA G17V

mutation, less frequently VAV1 alterations or FYN_TRAF3IP2

fusion) as a “second-hit” in the development of TFH-lymphoma

(13–15). Recurrent mutations of IDH2 R172, responsible for the

production of the oncometabolite D-2 hydroxyglutarate,

measurable in the serum of patients, are confined to tumoral T-

cells in AITL (16). Mutations of TET2, DNMT3A and/or IDH2may

explain the common loss of 5-hydroxymethylcytosine observed by

immunohistochemistry in most PTCL entities, with the exception

of hepatosplenic T-cell lymphoma (HSTL) (17), although it has

been reported independently of the mutational status. Alterations of

SETD2 that inactivate histone methyltransferase function are

almost ubiquitous in monomorphic epitheliotropic T-cell

lymphoma (MEITL) and less frequent in HSTL (18, 19).

Mutations of several other epigenetic modifiers (KMT2C,

KMT2D, CREBBP, EP300) have also been reported among the

main PTCL entities (20–22).

T-cell lymphomagenesis also implies the deregulation of

signaling pathways, which occurs in many PTCL entities.

Dysregulation of the TCR pathway is a common feature of TFH-

lymphoma, ATLL, and PTCL-NOS (23, 24), whereas the JAK/STAT

pathway is frequently altered in PTCL with a cytotoxic

immunophenotype (ALK-positive or negative anaplastic large cell

lymphoma (ALCL), breast implant associated-ALCL (Bi-ALCL),

cytotoxic PTCL-NOS, extra-nodal NK/T-cell lymphoma, nasal-type

(ENKTCL), enteropathy-associated T-cell lymphoma (EATL) and

MEITL (9, 18, 22, 25, 26).

Dysregulation of the cell cycle in cancer is mostly due to

inactivation of the tumor suppressor gene TP53, which is

associated with a poor prognosis. In PTCL, alterations of TP53

and CDKN2A/PTEN have been reported in GATA3-positive PTCL-

NOS, associated with complex chromosomal rearrangements and

genomic instability (27–29), as well as in ENKTCL (30) and EATL

(31). On the contrary, these alterations appear to be infrequent in

TFH-lymphoma and ATLL (24, 29). TP63 rearrangements,

described in a small subset of ALK-negative ALCL, appear to

correlate with a poor prognosis (32, 33).

Another mechanism involved in T-cell lymphomagenesis is

immune escape. Overexpression of PD-L1, due to alterations in the

3’-UTR region, lead to the anergy of reactive intra-tumoral lymphocytes

in ENKTCL and ATLL (4, 5). PD-L1 expression has also been described

in ALK-positive and ALK-negative ALCL, regulated by STAT3

activation, with a debated impact on the prognosis (34–36). The loss

of CD58, HLA molecules, or b2-microglobulin, observed in ATLL and

PTCL NOS, impairs recognition of the tumor cells by the immune

system (24, 28). By contrast, DUSP22-rearranged ALK-negative ALCL

shows immunogenic cues, with overexpression of the genes of T-cell co-

stimulation CD58 and CD70 and HLA class II and decreasing PDL1

expression (37).
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The role of reactive immune cells and stromal cells has been

highlighted in AITL, a disease in which tumor cells are commonly

scarce within a prominent microenvironment, thus influencing the

results of gene expression studies (38). Microenvironmental

molecular signatures may have prognostic relevance: a B-cell

signature is associated with a favorable outcome, whereas

macrophage and CD8+ cytotoxic signatures correlate with an

adverse prognosis (38–40). The presence of tumor-associated

macrophages has also been reported to be associated with a poor

prognosis in other PTCL entities, such as GATA3 PTCL-NOS (41),

and ALK-positive anaplastic large cell lymphoma (ALCL) (42).

Viral infection (EBV and HTLV-1) is also recognized as a driver

of PTCL oncogenesis.
a. HTLV-1 infection is required for the development of ATLL.

This retrovirus is randomly integrated into the host DNA

(43, 44), with a predilection for specific transcription factor

binding sites, such as STAT1, HDAC6, and TP53 (45).

While most HTLV-1 carriers are asymptomatic, with

multiple clones, a dominant clone is detected in ATLL

patients (46, 47). Viral replication is permitted by clonal

expansion of infected CD4+ T-cells (48). Expression of the

oncogenic viral proteins TAX and HBZ leads to the

disruption of homeostasis of infected cells, with the

modification of epigenetic processes, genetic instability,

and the accumulation of mutations (49). The TAX

protein is highly immunogenic and responsible for the

initiation of oncogenesis through NFKB and AP-1, while

HBZ is involved in tumoral maintenance (50, 51).

b. EBV infection is a pre-requisite for the development of

ENKTCL and other NK/T-cell neoplasms, such as

aggressive NK-cell leukemia or the rare EBV+ T/NK

lymphoproliferative disorders of childhood. The

mechanism for acquisition of the EBV receptor CD21 by

NK and T-cells is still debated between trogocytosis and

viral episome transfer (52, 53). The survival of infected cells

is permitted by the type II latency pattern, with the

expression of LMP1 and EBNA1 but not EBNA2. LMP1

promotes the proliferation of EBV-infected cells through

deregulation of the p53, CMYC, and NF-kB pathways, in

synergy with the production of cytokines (IL-2, IL-9, IL-10

et IL-15), by infected neoplastic cells and cells of the

microenvironment (54).
Antigenic stimulation may also play a role in the initiation or

progression of T/NK cell lymphomagenesis, as established for

gliadin in EATL (55), textured breast-implants in Bi-ALCL (56),

or recently suggested for the SARS-CoV-2 mRNA vaccine in

AITL (57).

Finally, genetic susceptibility has been identified in several

entities, notably association between the haplotypes HLA-DPB1,

HLA-DRB1, and IL18RAP and ENKTCL (58, 59), HLA DQ2/DQ8

and EATL (60), and germline mutations of HAVRC2 in

subcutaneous panniculitis-like T-cell lymphoma (61).
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2.2 Oncogenic events of the main non-
cutaneous PTCL entities

PTCL can be derived from cells of the innate or adaptative

immune system. Neoplasms likely deriving from the innate

immune system comprise mostly extra-nodal lymphomas

(ENKTCL, EATL, MEITL, HSTL, gd-lymphomas, and probably

cases among PTCL-NOS). They share a cytotoxic phenotype,

alterations of the JAK/STAT pathway, and a context suggestive of

chronic antigen stimulation. PTCL derived from cells of the

adaptative immune system include most lymphomas with a nodal

presentation with a T helper phenotype, such as TFH-lymphomas,

ATLL, and PTCL-NOS. These lymphomas often show

dysregulation of the TCR signaling pathway, in addition to

alterations of epigenetic modifiers. The molecular characteristics

of the main non cutaneous PTCL entities are summarized

in Table 1.

2.2.1 Nodal TFH lymphomas
In the revised 2022 WHO and ICC classifications, the family of

lymphomas derived from TFH cells is regarded as a single disease

encompassing three morphological subtypes, commonly designated

angio-immunoblastic T-cell lymphoma (AITL), follicular-type, and

not otherwise specified. They have distinct morphological features

but share a common TFH phenotype and signature, as well as a

similar molecular pattern. In routine practice, the TFH phenotype is

defined by the expression of CD4, with at least two TFH markers

among PD1, ICOS, CD10, CXCL13, and BCL6, although none of

them, in particular PD1 and ICOS, are fully specific, as they can be

expressed by non-TFH reactive cells or other non-TFH PTCLs (62–

65). TFH-lymphomas show a unique mutational landscape,

characterized by the accumulation of alterations in genes involved

in epigenetic regulation (TET2, DNMT3A, IDH2) (7, 11, 66) and the

TCR pathway (RHOA, VAV1, CD28, PLCG1, FYN, LCK) (23, 67–

73). Fusion transcripts involving genes of the TCR signaling

(ICOS_CD28, CTLA4_CD28, ITK_SYK or involving VAV1 with

multiple partners) and NFKB (FYN_TRAF3IP2) pathways can be

observed. Although mutations of TET2 and DNMT3A may be

observed in tumoral and reactive cells, hotspot mutations in

RHOA G17V and IDH2 R172 are thought to be restricted to the

TFH tumor cells (74, 75). The recurrent RHOA G17V mutation,

detected in 50 to 70% of AITL (23, 67–69, 75–78), impairs the

GTPase domain, showing dominant negative activity and thus

abolishing GTP binding and downstream signaling. This

mutation is also responsible for VAV1 phosphorylation and TCR

pathway activation (71). RHOA G17V drives TFH polarization and

promotes lymphomagenesis in vivo through ICOS-PI3K-mTOR

signaling (14, 15). The IDH2 R172K mutation combined with

TET2 alterations modulate the tumoral microenvironment,

promoting B-cell proliferation, the accumulation of plasma cells,

and angiogenesis (79). Mutations in CD28, observed in 10% of

TFH-PTCL, are reported to be mutually exclusive from fusion

transcripts involving CD28 and other genes of the TCR pathway

(23, 72, 73, 76, 80, 81). Alterations in VAV1 result in oncogenic

activation of the NFAT pathway (70, 71, 82). Alterations of many
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other genes of the TCR pathway (FYN, PLCG1, PIK3R1, PDPK1,

AKT, LCK, TRAF6) contribute to T-cell proliferation (23). The rare

ITK_SYK fusion transcript has been described in follicular-type and

in rare cases of AITL (83, 84). TFH lymphomas illustrate multistep

oncogenesis, as shown by the development of « AITL » tumors in

vivo in TET2 knock-out mice transfected with a RHOA mutated

gene (13, 14), or in double-mutant mice TET2/IDH2R172K (79).

Overall, although there is no pathognomonic genomic

alteration that defines the TFH category, the detection of RHOA

G17V and/or IDH2 R172 mutations and, to a lesser extent, fusion

transcripts involving CD28 or TRAF3IP2 constitute a supplemental

clue to the diagnosis for pathologists.

2.2.2 - Anaplastic large-cell lymphomas
This category, defined by large “hallmark” cells showing strong

and homogenous CD30 expression by immunohistochemistry,

includes several entities based on the association of ALK-

rearrangement and the clinical presentation as systemic,

cutaneous, or breast implant-associated disease. Cutaneous ALCL

are not considered here.

A) ALK-positive ALCL is the only entity defined by recurrent

genomic translocations involving the ALK gene on chromosome

2p23 with various partners, the most frequent (~80%) being NPM1.

The translocation produces an oncogenic fusion protein consisting

of the association of the N-region of a partner gene with the

catalytic tyrosine kinase domain of ALK, resulting in constitutive

activation by dimerization. The chimeric NPM1_ALK protein

triggers several oncogenic pathways (JAK/STAT, PI3K, MAPK,

PLCG), leading to neoplastic transformation (85, 86),

whereas TRAF1_ALK activates the NFKB pathway (87, 88).

Recently, mutations of NOTCH1 and genes of the TCR pathway

have also been reported (89). The diagnosis is based on the

detection of aberrant ALK expression by immunohistochemistry

using anti-ALK antibodies. The pattern of staining may be

nuclear +/- nucleolar and/or cytoplasmic, depending on the

partner gene involved in the translocation (Table 2). The disease,

which mainly occurs in children and young adults, follows a

generally favorable prognosis (5-year OS around 90%) after

chemotherapy with CHOEP (100–102) or BV-CHP (103). The

prognosis may be less favorable in cases with secondary MYC

overexpression or rearrangement, in certain histologic variants

(small-cell or lymphohistiocytic) occurring in children (88,

104, 105).

B) Systemic ALK-negative ALCL is still heterogeneous in the

current classifications, gathering cases with different

oncogenic pathways:

- Rearrangement of the 6p25.3 locus involving DUSP22 and

IRF4 (106) defines a peculiar subgroup (approximately 25-30% of

ALK-negative ALCL), characterized by a non-cytotoxic phenotype,

silencing of the tumor suppressor gene DUSP22 while showing

normal IRF4 expression, absence of STAT3 activation, global

DNA hypomethylation, an immunogenic molecular profile

(overexpression of CD58, CTA, HLA class II), and expression of

LEF1 (37, 107–110). Recurrent MSC E116K mutations are

responsible for activation of the CD30-IRF4-CMYC axis and the
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dysregulation of cell cycle arrest (111). These rearrangements were

initially detected by mate-pair DNA sequencing in the context of a

translocation t(6,7)(p25.3;q32.3) also involving the non-coding

gene FLJ43663 at the fragile site FRA7H of chromosome 7 (106).
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The prognosis is debated, favorable in most studies (112, 113) but

not confirmed in others (114, 115).

- Rearrangements of TP63, due to the inversion inv (3) (q26q28) or

translocation t(3,6)(q28;p22.3) that produce the fusion transcripts
TABLE 1 Molecular characterization of the main non-cutaneous PTCL entities.

Entity Differentiation Molecular features

TFH-lymphomas TFH - DNA methylation: TET2, DNMT3A, IDH2 R172 mutations
- TCR pathway: RHOA G17V, CD28, VAV1, PLCG1 mutations
- Fusion transcripts: ICOS_CD28, CTLA4_CD28, ITK_SYK, ITK_FER, fusion transcripts
involving VAV1

ALK-positive ALCL Activated cytotoxic T cell - Fusion transcripts involving ALK
- Mutations in genes of the NOTCH1 pathway

ALK-negative ALCL Activated cytotoxic T cell STAT3 activation:
JAK1 and/or STAT3 mutations
Fusion transcripts involving ROS, TYK2, FRK, CAPRIN2
Absence of STAT3 activation:
DUSP22/IRF4 (locus 6p25.3) rearrangement
MSCE116K mutation
Others: TP63 rearrangements

Breast-implant ALCL Activated cytotoxic T cell - JAK/STAT pathway: STAT3, JAK1, SOCS3, STAT5B, SOCS1, PTPN1 mutations
- Epigenetics: KMT2D, KMT2C, CREBBP, CHD2, TET2, DNMT3A mutations

ATLL Memory regulator T cell - TCR pathway: PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4, CCR7, RHOA,
CD28 mutations
- Immunosurveillance: CD58, B2M, HLA (class I) mutations
- JAK/STAT pathway: JAK3, STAT3, PTPN1 mutations
- Transcription factor: GATA3, IKZF2, PRDM1 mutations
- Epigenetics: TET2, DNMT3A, IDH2, SETD2, EP300, KDM6A mutations
- Fusion transcripts: ICOS_CD28 and/or CTLA4_CD28

ENKTCL (nasal type) NK>>T (gd or ab) - BCOR, DDX3X, TP53, MGA, STAT3, STAT5B, MLL2, ARID1A, MSN mutations
- 3 molecular subgroups :
°TSIM : mutations of genes of the JAK/STAT pathway, TP53, amp9p24.1(JAK2, PDL1/2),
amp17q21.2 (STAT3/5A/5B), EBV latency type II => NK cells
°HEA: mutations of HDAC9, EP300, ARID1A, EBV latency type II => T-cells
°MB: mutations of MGA, del1p22.1 (BRDT), MYC overexpression, EBV latency type I =>
T-cells

HSTL Tgd> Tab - SETD2, STAT5B, INO80, ARID1B, STAT3, PIK3CD mutations

Indolent clonal T-cell lymphoproliferative
disorder of the gastro-intestinal tract

CD8+ or CD4-/CD8-
(TH2)

- Structural alterations of the 3’UTR regions of IL2 coding gene

CD4+ or CD4+/CD8+ - JAK/STAT pathway: STAT3, SOCS1 mutations, STAT3_JAK2 fusion
- Epigenetics: TET2, DNMT3A, KMT2D mutations

EATL Intraepithelial lymphocyte
(Tab)

- JAK/STAT pathway: JAK1 (p.G1097 dans 50%), JAK3, STAT3, STAT5B, SOCS1
mutations
- KRAS, NRAS mutations
- NFkB pathway: TNFAIP3, TNIP3 mutations
- Epigenetics: TET2, KMT2D, DDX3X, SETD2 (15%) mutations

MEITL Intraepithelial lymphocyte
(Tgd > Tab)

- Alterations of SETD2 (mutations, deletions)
- STAT5B, JAK3, TP53, GNAI2 mutations

T-LGLL Tab (CD8) >> Tgd - JAK/STAT pathway: STAT3, less frequently STAT5B mutations
- Epigenetics: TET2, DNMT3A

PTCL-NOS TH1 (ab >> dg), common
cytotoxic phenotype

- Epigenetic: TET2, DNMT3A, KMT2D, SETD2 mutations
- TCR pathway: VAV1, PLCG1, PRKCB, CARD11 mutations; fusion transcripts involving
VAV1
- JAK/STAT pathway: STAT3, STAT5B, JAK3, SOCS1 mutations

TH2 (Tab) - Deletions of CDKN2A, TP53, PDGFA, STK11, WDR24, CDK4, CCND1, AKT,
RPTOR…
- Gains/amplifications of STAT3, CMYC
TFH, T follicular helper; ALCL, anaplastic large cell lymphoma; PTCL-NOS, peripheral T-cell lymphoma, not otherwise specified; ATLL, adult T-cell leukemia/lymphoma; ENKTCL: extra-nodal
NK/T-cell lymphoma, HSTL, hepatosplenic T-cell lymphoma; EATL, enteropathy associated T-cell lymphoma; MEITL, monomorphic epitheliotropic intestinal T-cell lymphoma; T-LGLL, T-
cell large granular lymphocytic leukemia.
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TBL1XR1_TP63 and TP63_ATXN1 respectively, coding for oncogenic

chimeric proteins, are rare and associated with a poor prognosis (32,

112, 114). The detection of P63 by immunohistochemistry may reflect

P63 overexpression independently of the presence of fusion

transcript (33).

- Aberrant truncated transcripts of ERBB4 was also reported in

24% of ALK-negative ALCL in one study, associated with a

Hodgkin-like morphology, without clinical relevance (116).

- Expression of pSTAT3 by immunohistochemistry, reflecting

activation of the JAK/STAT pathway, is common in ALK-positive

and ALK-negative ALCL, with the notable exception of those cases

associated with DUSP22 rearrangement. Among ALK-negative

ALCLs, a recent study that excluded cases with rearranged

DUSP22 suggested that positive pSTAT3 cases constitute a

distinct subgroup, characterized by a cytotoxic phenotype and the

expression of EMA and PDL1, that is associated with a better

prognosis than negative pSTAT3 cases (117). Such constitutive

phosphorylation of STAT3 has been previously shown to be related

to mutations in JAK1 and/or STAT3, reported in 18% of ALK-

negative ALCLs, as well as in fusion transcripts involving ROS,

TYK2, and FRK (26, 118). More recently, fusion transcripts

involving JAK2 with several partners (PABPC1, PCM1, ILF3,

TFG, MAP7) were detected by targeted RNAseq and associated

with a Hodgkin-like morphology (119).

C) Breast-implant associated ALCL is a site-specific entity that

occurs after a long latency after a breast implant for reconstruction

or cosmetic reasons. Most cases are non-invasive. The disease

appears to be due to chronic inflammation, with possible TH2

polarization, linked to a macro-textured implant (120). High-

throughput sequencing studies have highlighted alterations of

genes involved in the JAK-STAT pathway (STAT3, STAT5B,

JAK1, JAK3, SOCS1, SOCS3), leading to its constitutive activation,

together with recurrent mutations in epigenetic modifiers (KMT2C,

CREBBP) (22, 121), the loss of chromosome 20 (122), and

chromosome 9p24 gains, leading to PDL1 expression (123).

Recently, a STAT3_JAK2 fusion transcript was also reported (124).
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Several immunohistochemical algorithms have been recently

proposed to classify ALCL based onLEF1, P63, and pSTAT3 (117,

125), although this currently has no impact on the management of

ALK-negative ALCL patients.

2.2.3 EBV-positive NK or T-cell neoplasms
EBV-related NK or T-cell neoplasms are heterogenous diseases

derived from T or NK cells (126). The revised WHO and ICC

classifications recognize ENKTCL, and primary nodal EBV-positive

T/NK-cell lymphomas, characterized by nodal involvement, as

distinct entities (1, 2). In addition to EBV, considered to be a

driver of oncogenesis in these lymphomas, defined by EBV infection

of virtually all neoplastic cells, as shown by in situ hybridization

with EBER probes, the mutational landscape of ENKTCL is

characterized by recurrent mutations of genes coding for RNA

helicases (especially DDX3X), as well as TP53, genes of the JAK/

STAT pathway (JAK3, STAT5B, STAT3) and epigenetic modifiers

(MLL2, ARID1A, EP300, ASXL3) (20, 30, 127). The initial poor

prognosis associated with DDX3X and TP53 mutations for patients

treated with the CHOP regimen was not confirmed for patients

receiving L-asparaginase treatment (20, 30, 128). Recurrent

deletions of the 6q21 locus encompassing tumor suppressor genes

(PRDM1, ATG5, AIM1, FOXO3 et HACE1) have been detected by

CGH array (129–131). A recent large integrative analysis of

genome, exome, and RNA sequencing, identified three molecular

subgroups (30):
- the “TSIM (tumor suppressor and immunomodulator)”

subgroup is characterized by frequent TP53 mutations,

deletion of the 6q21 locus, amplification of the 9p24.1

locus containing PDL1 and PDL2, and the amplification

of genes of the JAK/STAT pathway. This subgroup presents

a gene expression signature enriched in NK-cell genes.

There is an EBV latency II phenotype, with expression of

the lytic gene BALF3, responsible for DNA damage and

genomic instability.
TABLE 2 Fusion transcripts involving ALK in ALK-positive anaplastic large cell lymphoma.

Fusion Translocation Immunostaining

NPM1_ALK (90) t (2,5)(p23.2;q35.1) Nuclear and cytoplasmic

TPM3_ALK (91) t(1;2)(q25;p23) Cytoplasmic with peripheric reinforcement

ATIC_ALK (92) inv(2)(p23q35) Cytoplasmic diffuse

TFG_ALK (93) t(2;3)(p23;q12.2) Cytoplasmic diffuse

CLTCL_ALK (94) t(2;17)(p23;q23) Cytoplasmic granular

MSN_ALK (95) t(X;2)(q11-12;p23) Membranous

ALO17_ALK (96) t(2;17)(p23;q25) Cytoplasmic diffuse

MYH9_ALK (97) t(2;22)(p23;q11.2) Cytoplasmic diffuse

TRAF1_ALK (87) t(2;9)(p23;q33) Cytoplasmic

EEF1G_ALK (98) t(2;11)(p23;q12.3) Cytoplasmic

PABPC1_ALK (99) t(2;8)(p23;q22) Cytoplasmic
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Fron
- the “MB (MGA, BRDT)” subgroup is characterized by

frequent MGA mutations, loss of heterozygosity of BRDT,

and MYC overexpression, as well as activation of the

MAPK, NOTCH, and WNT pathways. The EBV latency

is of type I, with downregulation of LMP1.

-the “HEA (HDAC, EP300, ARID1A)” subgroup is

characterized by mutations of epigenetic modifier genes

(HDAC9, EP300 et ARID1A), resulting in aberrant histone

acetylation. The gene expression profile is enriched in T-cell

genes and shows activation of the TCR and NFKB

pathways. The EBV latency is of type II, with expression

of the BNRF1 lytic gene.
Although there is currently no applicability of this molecular

subclassification in routine practice, the poor prognosis of the MB

subgroup relative to TSIM and HEA (3-year OS rate of 38% versus

80% and 90%, respectively) may justify the evaluation of MYC

expression in ENKTCL. Structural alterations of CD274, coding for

PDL1, appear to confer sensitivity to immune checkpoint inhibitors

(5, 132).

EBV-positive nodal T- and NK-cell lymphoma or primary

nodal Epstein-Barr virus–positive T-cell/NK-cell lymphoma, is

now recognized as a distinct entity in both the WHO and ICC

classifications respectively, due to its differences with ENKTCL.

This entity is morphologically characterized by the lack of necrosis

and angiocentrism, a common CD8+ CD56- phenotype, a frequent

T-cell origin, and, finally, peculiar molecular abnormalities, with

frequent TET2, PIK3CD, and STAT3 mutations, activation of the

NFKB, IFNg, and JAK-STAT3 pathways, resulting in high PDL1

expression, and lower genomic instability (133). The prognosis is

reported to be poorer than for ENKTCL.

The mutational landscape of ENKTCL is shared with that of

other EBV-positive NK/T-cell neoplasms, in particular, aggressive

NK-cell leukemia (134–136), as well as that of chronic active EBV-

disease (137). This genetic landscape may be of clinical relevance in

the rare cases that require a differential diagnosis from

infectious mononucleosis.

2.2.4 Adult T-cell Leukemia/Lymphoma
This HTLV-1-associated T-cell neoplasm occurs after a long

latency (more than 25-30 years) following infection, mainly due to

prolonged breast feeding and, less frequently, sexual transmission

(138). The histopathological diagnosis is challenging in the absence

of information concerning the HTLV-1 status, as the pathological

aspects of ATLL are highly heterogeneous. It can be evoked by the

loss of CD7, together with the expression of CD25 and FOXP3,

although the CD25+/FOXP3+ immunophenotype is variable and

not specific to ATLL (139–142). The molecular landscape is

characterized by mutations in genes of the TCR pathway (PLCG1,

PRKCB, CARD11, VAV1, IRF4, FYN, CCR4, CCR7, RHOA, CD28),

JAK/STAT pathway (JAK3, STAT3, PTPN1), immune surveillance

(CD58, B2M, HLA class I), DNA damage (TP53, CDKN2A, POT1),

epigenetic modifiers (TET2, DNMT3A, IDH2, SETD2, EP300,

KDM6A), transcription factors (GATA3, IKZF2, PRDM1), and

fus ion transcr ipts involv ing CD28 ( ICOS_CD28 and
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CTLA4_CD28) (24, 143). The co-expression of these two fusion

transcripts can occur in patients younger than 50 years of age (144).

Gene mutations of the TCR/NFKB pathway, TP53, and IRF4 are

associated with an aggressive outcome, whereas STAT3 mutations

are frequently observed in patients with more indolent disease (143,

145). The type of CCR4 mutation also has a specific prognostic

impact (unfavorable in cases of frameshifts vs non-synonymous

variations) (146).

2.2.5 Intestinal T-cell lymphomas
Enteropathy-associated T-cell lymphoma (EATL) and

monomorphic epitheliotropic intestinal T-cell lymphoma

(MEITL) are two distinct entities, with different morphological

and immunophenotypic features. Although both are derived from

intestinal intra-epithelial lymphocytes (IEL) expressing CD103,

EATL and MEITL show distinct clinico-pathological and

molecular characteristics (31).
a. EATL is associated with celiac disease or gluten sensitivity. Its

histopathological features include the proliferation of

pleomorphic to anaplastic T-cells expressing CD3

and CD30, but lacking CD4 and CD8, despite an activated

cytotoxic profile. CD103 is variably expressed. Overexpression

of P53 is detectable by immunohistochemistry, independently

of gene alterations (147). This entity shows frequent alterations

of the JAK/STAT pathway (in particular, STAT3 and JAK1, as

well as SOCS1 and SOCS3), whereas STAT5B mutations are

almost constantlyabsent (18, 148, 149). TET2 and, less

frequently, mutations of the RAS/MAPK pathway (149) can

be observed, whereas SETD2 mutations were almost absent in

most recent series (18, 148). Gene expression profiling studies

have shown enrichment for genes of the JAK/STAT (STAT3,

STAT5A) and IFNg pathways (31).
b. MEITL does not associate with celiac disease and is

typical ly character ized by the prol i ferat ion of

monomorphic medium cells, showing epitheliotropism

and a CD8+ CD56+ phenotype. However, approximately

25% of cases may show more pleomorphism and certain

phenotypic variations associated with the prognosis, in

particular, a better outcome in the presence of aberrant

expression of CD20 or poor outcome in the presence of

MYC expression and TP53 alterations, suggesting the utility

of screening for these abnormalities in routine practice

(150, 151). MEITL has a very homogeneous genetic

landscape, with almost consistent alterations of SETD2

(mutation +/- deletion) associated with mutations of

STAT5B (approximately 60%) or JAK3 and GNAI2, which

constitute a common feature and may help pathologists in

difficult cases (18, 150–152).
Indolent clonal T-cell lymphoproliferative disorder of the

gastrointestinal tract (2), also designated indolent T-cell

lymphoma of the gastrointestinal tract in the WHO classification

(1), is now recognized as a definitive entity in both classifications

due to the recent evidence of neoplastic molecular features, i.e.,
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alterations of genes in the JAK/STAT pathway or epigenetic

modifier genes and JAK2_STAT3 fusions or structural alterations

of the 3’UTR of the IL2 gene, depending on the CD4 or CD8

phenotype (153, 154). Despite an indolent course, some cases may

relapse, spread to other sites, or transform, indicating potential

aggressiveness (155, 156).

Indolent NK-cell lymphoproliferative disorder of the

gastrointestinal tract is a rare condition, and a new entity in the

WHO and ICC classification. Although neoplastic molecular

characteristics have also been described, in particular, recurrent

deletions of STAT3, there is no extension of this lymphoproliferation

beyond the gastrointestinal tract and the outcome is favorable (157).

2.2.6 Hepatosplenic T-cell lymphoma
This rare neoplasm occurs preferentially in young males but can

arise at any age, with a possible context of immunosuppression. The

diagnosis is based on highly characteristic pathological features, in

particular sinus infiltration in the bone marrow by small to medium

lymphocytes with a CD3+, CD5+, CD4-/CD8-, CD56+ phenotype,

commonly TCRgd+. The sinusal infiltration in the liver and spleen is
less specific. There is typically no lymph node involvement. This

entity was initially characterized by an isochromosome 7q and

chromosome 8 trisomy (158, 159), but cytogenetic material is not

always available in routine practice to support the diagnosis and

FISH analysis can be challenging. The mutational landscape has

been reported, identifying three types of mutations involving 1/

epigenetic modifier genes (SETD2, ARID1B, INO80, TET3 and

SMARCA2), 2/STAT5B or STAT3 that are mutually exclusive, and

3/PIK3CD (19, 160, 161). Gene expression profiling studies show a

distinct signature, characterized by the overexpression of oncogenes

(FOS, FOSB VAV3, MAF), NK-cell associated genes (KIR3DS1,

CD244 and other KIRs), the tyrosine kinase SYK, and S1PR5, and

downregulation of AIM1, which could constitute targets for therapy

in this disease that has always fatal outcome (162). A recent single-

cell profiling study suggested a change in the gene expression profile

of the tumor cells during disease progression under the selective

pressure of therapy (163).

2.2.7 PTCL-NOS
PTCL-NOS is a diagnosis of exclusion, corresponding to cases that

do not fulfill the criteria for defined PTCL entities. Thus, a large panel

of immunohistochemical markers and the integration of clinical and

often molecular features are required to exclude any other PTCL. Gene

expression profiling studies have shown two subgroups based on

expression of the TBX21 and GATA3 transcription factors associated

with the immunological TH1 and TH2 signatures, respectively (39, 40),

confirmed by immunohistochemistry (164). The TBX21 group is

enriched in genes of IFNg and NFKB pathway signatures and shows

mutations of genes involved in epigenetic regulation (TET1, TET3,

DNMT3A), whereas the GATA3 group shows a cell proliferation

signature driven by MYC, together with enrichment in PI3K/Akt/

mTOR pathway signatures, a higher number of genomic copy number

abnormalities, and a poorer outcome (27, 165). In routine practice,

there is no consensus concerning the proposed thresholds of

immunohistochemical markers to define these two subgroups and an
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understanding of the clinical relevance of such immunohistochemical

algorithms requires further studies.

The mutational landscape of PTCL-NOS is currently poorly

defined, likely due to the heterogeneity of this category. Only a few

“omic” studies focusing on PTCL-NOS have been published to date.

Targeted sequencing has shown mutations of epigenetic modulator

genes, notably histone methylation (KMT2D, SETD2, KMT2A,

KDM6A) or acetylation (EP300, CREBBP), as well as that of genes

of the TCR pathway (TNFAIP3, TRAF3, TNFRSF14) and tumor

suppressor genes (TP53, ATM, FOXO1, BCORL1) (21, 166). Recent

integrative studies based on exome and RNA sequencing have

confirmed mutations of genes involved in epigenetic regulation

(TET2, DNMT3A, KMT2C, KMT2D, SETD2, CREBBP, ARID1A),

tumor suppressor genes (TP53, TP63, ATM, FAT1, LATS1, STK3),

and genes of the NOTCH pathway (NOTCH1 and 2) (28, 167). In

one study, mutations in FAT1 were shown to be associated with a

poor prognosis (167). RNAseq studies have shown fusion

transcripts involving VAV1 with various partner genes (GSS,

THAP4, MYO1F, S100, HNRNPM) and rearrangements of VAV1

were detected by FISH in 11% of PTCL-NOS (28, 70, 82). The

VAV1_MYO1F transcript induces tumoral TH2 polarization and

the accumulation of tumor-associated macrophages (41). Other

fusion transcripts have also been reported in single cases (ITK_FER,

IKZF2_ERBB4, ETV6_FGFR3) (82). A t (14, 19)(q11;q13)

translocation, involving TCRA and the poliovirus receptor-related

2 gene (PVRL2), resulting in BCL3 overexpression, has also been

reported in PTCL-NOS, including one case with the morphological

variant of Lennert’s lymphoma (168, 169).

PTCL-NOS with a cytotoxic phenotype has been reported in 25

to 40% of cases, associated with impaired immunity and a poor

prognosis (9, 170). This immunophenotypic subgroup has also been

identified in gene expression studies within the PTCL-NOS TBX21

subgroup, enriched for genes of CD8/NK cells, the IFN response,

and an immunosuppressive signature (39, 40). Targeted sequencing

has shown recurrent mutations of genes involved in epigenetic

regulation (TET2, DNMT3A), TCR (VAV1, PLCG1, PRKCB,

CARD11) and the JAK/STAT pathways, as well as TP53 (9).

Fusion transcripts involving VAV1 have been detected in 14% of

patients. In another study, two cases of cytotoxic PTCL-NOS with

diffuse cutaneous and medullary involvement showed a t (6, 14)

(p25;q11.2) translocation resulting from rearrangement between

the TCRa and IRF4 loci (171).

Despite these advances in our knowledge of the molecular

biology of this entity, there is still an unmet need for the

management of PTCL-NOS patients.
3 From biology to the diagnosis and
management of PTCL patients

The diagnosis and classification of PTCLs are often challenging

for pathologists, requiring experienced hematopathologists and

access to molecular tests. In the absence of clear diagnostic

guidelines, practices are often heterogenous between centers

(172–174).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1202964
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Drieux et al. 10.3389/fonc.2023.1202964
Analysis of rearrangements of the TCR loci (especially TRG or

TRB) is an important element of the diagnostic process. PCR-based

assays (BIOMED-2) are largely widespread in routine practice due

to their reliability on FFPE samples (160–162). However, there are a

number of pitfalls in the interpretation of clonality testing due to

“false-negative” results in cases with low tumoral content, especially

common in AITL, or due to T-cell oligoclones, as observed in AITL

(175). Conversely, the presence of clonal TCR rearrangements in

certain reactive conditions or even in B-cell lymphomas (notably

Hodgkin lymphomas) due to TCR repertoire restriction can be

misleading (176). The development of NGS-amplicon based

clonality assays may improve the detection of scarce clones in a

polyclonal background and allow the determination of clonotypes

(177). Several authors have proposed analyzing TCR genes by whole

genome sequencing, but its applicability in routine practice is still

limited (178). Others have highlighted the potential interest of

analyzing non-recombined T-cell receptor sequences using a digital

PCR assay (179).

Recently, gene expression studies suggested molecular classifiers

to discriminate the main PTCL entities, with certain limitations due

to tumor cell content and the quality of the nucleic acid (40, 180,

181). Such tools should be used in routine practice with caution, as

they were developed for the classification of the most common

entities, their robustness has not yet been extensively evaluated, and

the results need to be interpreted in the context of the

histopathological analysis. Indeed, misclassification using these

algorithms or discordance with the histopathological data occur

for 15 to 20% of samples, likely due to a prominent

microenvironment or plasticity of the tumor cells (180, 181).

Sequencing of transposase-accessible chromatin (ATAC-seq) has

been proposed as another innovative strategy to classify PTCL

(182), but it requires fresh or frozen samples and its applicability

in routine practice has not been yet evaluated.

Exome and genome sequencing studies have allowed a precise

description of the mutational landscape of almost all PTCL entities.

An increasing number of laboratories have developed targeted NGS

panels for the molecular characterization of lymphomas or

hematological neoplasms that are useful for their diagnosis and

classification (183). The diagnostic performance of targeted NGS

relative to that of measuring T-cell clonality by BIOMED multiplex

PCR in PTCL was assessed in one study and showed similar sensitivity

(approximately 95%) but significantly superior specificity (100%

versus 45%) (184). However, there is currently no consensus

concerning the design of the panel or the sequencing depth or

coverage, which may affect the interpretation of the results. Hotspot

mutations of diagnostic relevance, notably RHOAG17V or IDH2 R172

mutations, can also be detected using alternative technologies, such as

allele-specific PCR, digital PCR, and RTMLPA (180, 185–188).

As described above, despite highly characteristic genetic profiles

for certain PTCLs, such as TFH-lymphomas and MEITL, there is no

single pathognomonic molecular alteration that can define an entity,

apart from ALK-positive ALCL. However, the detection of RHOA

G17V and IDH2 R172 mutations in routine practice strongly supports

the diagnosis of TFH-PTCL (14, 16, 63, 64, 72). Although RHOA

mutations can also be observed in 10% of ATLL, only 1% correspond

to G17V (189), whereas IDH2 R172 is almost specific to AITL.
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Within ALCL, the discovery of the translocation t(2,5) led to the

development and use of an anti-ALK antibody in routine practice,

allowing rapid and efficient determination of the ALK status by

immunohistochemistry (90, 190). The identity of the ALK gene

partner does not appear to be important, with no prognostic

relevance, with the exception of the rare TRAF1_ALK fusion

transcript, which was shown to be associated with a poor

outcome in a recent study (87). In children with ALK-positive

ALCL, the prognosis also correlates with the ALK antibody titer and

the copy number of the ALK fusion transcript in the blood at

diagnosis (MDD: minimal disseminated disease) and after

treatment (MRD: minimal residual disease) (189, 191–194). The

significance of these parameters is unknown in adult patients.

In routine practice, FISH is required to diagnose DUSP22-

rearranged ALK-negative ALCL, a molecularly distinct subgroup

that probably merits being individualized (37). Interestingly, it is

also characterized by the presence of hotspot mutations of MSC

E116K in 35% of DUSP22-rearranged cases, a finding currently

without clinical relevance (111). In the context of intestinal T-cell

lymphomas, the identification of SETD2 alterations strongly favors

the diagnosis of MEITL and may be helpful in distinguishing

difficult cases from EATL (18). These alterations (mutations and/

or deletions) result in reduced H3K36 trimethylation, which can be

detected by immunohistochemistry (195).

A number of genetic alterations may also predict the outcome of

patients with a T- or NK-cell neoplasm, as observed in ENKTCL,

with the poor prognosis of the MB subgroup (30), and in ATLL with

CCR4 mutations or CCR7 alterations (146, 196–198). In AITL, the

DNMT3AR882X mutation may be associated with a poor prognosis

and resistance to anthracyclines (199), a finding that could

influence the management of these patients in the future. MYC

expression/rearrangement or TP53 alterations are associated with a

poor prognosis in various PTCL entities, especially ALK-positive

ALCL (104, 105), ENKTCL (30) and MEITL (151), but without a

significant impact on the management of these patients.

The diagnosis of ATLL is challenging for pathologists without

knowledge of the HTLV-1 serology status. Morphological and

immunophenotypic features may be confusing for ALK-negative

ALCL, GATA3 PTCL-NOS, or even TFH-lymphomas, with an

impact on the appropriate management of these patients. There is

an unmet need for the development of HTLV-1 biomarkers applicable

to FFPE samples in routine practice. TAX is not expressed in most

ATLL tumors, whereas HBZ is the only viral transcript expressed

during disease progression and could be a good candidate (50, 51). In

situ hybridization was proposed to detect the HBZ gene in FFPE

tissues in a single study, but there has thus far been no development of

this technology in routine practice (200). More recently, targeted gene

expression studies have been developed to measure expression of the

HBZ transcript in routinely-fixed samples (181, 201).

Thus far, the detection of fusion transcripts has not been

integrated into the routine diagnosis of PTCL due to the low

prevalence of known fusions (10%) and limited accessibility to

available technologies. Although RNAseq is the most exhaustive

technology to detect fusion transcripts, several targeted RNA

sequencing alternatives have been developed (ArcherFusionPlex®,

Qiaseq RNA fusion XP®, and ld-RTPCR (202)), which can be
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implemented in a routine laboratory at a lower cost. Despite the

current lack of clinical relevance of most fusion transcripts, the

recent identification of rearrangements involving JAK2 in systemic

CD30-positive PTCL (119, 203), Bi-ALCL (124), in indolent clonal

T-cell lymphoproliferative disorder of the gastrointestinal tract

(153), and cutaneous T-cell lymphoma (204–208) opens the door

to targeted therapies requiring the detection of such fusion

transcripts. Furthermore, in addition to pathological features, the

detection of certain transcripts may be of diagnostic value to

support a diagnosis among several hypotheses. For example,

ICOS_CD28, ITK_SYK, or FYN_TRAF3IP2 fusions favor a

diagnosis of PTCL, especially TFH-lymphoma in difficult cases,

raising the possibility of the differential diagnosis from Hodgkin

lymphoma or marginal zone lymphoma.

Recent studies on a limited number of cases have demonstrated

the applicability of assessing circulating tumor DNA (ctDNA) by

high-throughput sequencing for PTCL. In a comparison with

matched tumors, ctDNA detected by HTS-sequencing of the TCR

was detected for 78% of various PTCL entities (209). The detection

of hotspot mutations in AITL (RHOA and IDH2) appears to be

promising and sensitive, with 100% concordance between cell-free

DNA and the tumors by NGS in one study (210) and a prevalence of

70% in another using allele-specific PCR (188). In ENKTCL, a

concordance of 93.5% between ctDNA and tumor biopsy

sequencing was observed, with a potential prognostic significance

(211–213). Beyond the potential application for the detection of

minimal residual disease during follow-up or at relapse, the

detection of ctDNA may also be a promising tool to help for the

diagnosis of difficult cases, especially those with limited tumor

material, in combination with pathological analysis.
4 From molecular targets to
personalized treatment: alternatives
or additive therapeutic options to
standard chemotherapy

The CHO(E)P-based regimen has been the standard of care for

PTCL for many decades (214). To date, most alternative therapies

have failed to demonstrate a better outcome and the prognosis of

patients for most PTCLs is still poor (215, 216), even for stage I-II

disease (217).
4.1 Frontline targeted therapies

A recent major change in frontline therapy is the use of

brentuximab-vedotin (BV), in addition to CHP chemotherapy, for

patients with CD30 positive PTCL. Approval for the use of BV by

the US Food and Drug Administration (FDA) followed the

ECHELON-2 study, which demonstrated a significant

improvement in progression free survival (PFS) (median 48

months in the BV-CHP group versus 20.8 months in the CHOP

group, p=0.0110), and a reduced risk of death in the BV-CHP arm,

although the median overall survival (OS) was not reached (103).
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However, the subgroup analyses confirmed the benefit for ALCL

patients receiving BV, but not for those with AITL. For PTCL-NOS,

the potential benefit is unclear, probably due to the heterogeneity of

the disease with respect to the percentage of CD30-positive cells

(threshold ≥10% of cells by local review). The addition of BV to

standard chemotherapy has also been shown to provide an

improvement in event-free survival of children with ALK-positive

ALCL (218). In addition, a retrospective pooled study showed a

significant improvement of OS and PFS in ALK-positive ALCL with

the use of CHOEP in frontline therapy compared to CHOP,

independently of age (100). To date, there has been no

comparison between CHOEP and BV-CHP in the frontline

management of ALK-positive ALCL patients.

A second large trial compared the addition of romidepsin to

CHOP versus CHOP alone in previously untreated PTCL patients

(219). Although the results of the study were negative, as PFS did not

statistically increase in the romidepsin CHOP group relative to the

control arm, a trend towards longer PFS was observed for TFH-

lymphoma patients, suggesting susceptibility of TFH-lymphomas to

drugs targeting epigenetics. A phase 2 trial combining the oral form of

5-azacytidine to CHOP in the first line for 21 PTCL patients, including

17 with TFH-lymphoma, showed promising results, with an 88%

complete response (CR) rate for TFH-lymphoma patients and 69%

two-year PFS. However, these promising results, based on a limited

number of patients, need to be confirmed in a larger series (220).

Among ENKTCL, the introduction of asparaginase has

significantly improved the prognosis of patients (221, 222). Better

efficacy and tolerance have been observed with the use of

pegasparaginase relative to L-asparaginase (223, 224). Although

there is no international consensus concerning the treatment

sequence, it is generally accepted that frontline therapy should

include at least pegylated-asparaginase and gemcitabine in

association with various combination of other agents or strategies

(including cisplatin/oxaliplatin, dexamethasone, methotrexate, and

radiotherapy), depending on the staging of the lymphoma as

localized or disseminated disease (223–226).

In ATLL, the characterization of a Treg/TH2 phenotype and

polarization of the tumor cells led to the development of anti-CCR4

monoclonal antibodies (227). Although this targeted therapy is

currently used for refractory/relapsed patients, a recent study

showed better survival of aggressive transplant-ineligible ATLL

using a polychemotherapy regimen containing mogalizumab in

the first line (4-year OS of 46.3% versus 20.6%, p=0.033) (228). A

previous study failed to demonstrate any benefit with the addition

of mogalizumab in the first line for transplant-eligible patients

(229). It is still unknown whether the use of mogamulizumab could

be extended in the future to other PTCLs that express CCR4, in

particular, GATA3-PTCL-NOS (164).
4.2 Promising therapeutic options for
relapse/refractory PTCL patients

Several ALK inhibitors have been tested in refractory/relapsed

ALK-positive ALCL patients, showing an improvement in PFS and

long-term complete remission (230–234). However, there are no
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recommendations concerning the indication or duration

of treatment.

The frequent alterations of chromatin modifiers among PTCLs

has led to the development of therapies to regulate epigenetic

programs. Although approved by the FDA, the use of romidepsin,

pralatrexate, and belinostat did not show significant efficacy in

several studies, probably due to the enrollment of patients with

several PTCL entities, leading to a small sample size for each (219,

235). However, subgroup analyses showed a benefit for HDAC

inhibitors for TFH-lymphomas (219, 236). Prospective studies are

needed to confirm these promising results for TFH-lymphoma

patients and to identify predictive biomarkers of response. Several

studies using hypomethylating agents, such as 5’azacytidine, have

also shown promising results in AITL, usually independently of the

TET2, DNMT3A, and IDH2 mutational status, although these

studies had only small numbers of patients (237, 238). A phase 3

trial comparing the use of the oral form of the 5-azacytidine to

investigator-choice treatment between gemcitabine, bendamustine,

or romidepsin in relapsed/refractory THF-lymphoma patients was

recently reported. The primary endpoint was PFS and was not met,

likely due to the trial being underpowered. However, OS was longer

for patients receiving 5-azacytidine, suggesting efficacy of the drug.

The combination of oral 5-azacytidine and romidepsin has shown

efficacy for frontline or refractory/relapsed PTCL patients,

especially those with a TFH phenotype (239). The development of
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IDH2 Inhibitors in acute myeloid leukemia (240, 241) suggests their

potential application in TFH-lymphomas with IDH2 mutations.

In AITL, the identification of gene alterations enhancing the

TCR pathway paved the way for the use of dasatinib, a PKC

inhibitor, which showed efficacy in vitro and in vivo in a mouse

RHOA G17V mutant TET2 deleted model, as well as in a phase 1

trial for relapsed/refractory patients (71, 242).

The identification of structural alterations of PDL1 in ENKTCL

led to studies to evaluate the use of immune checkpoint inhibitors,

such as PD1 inhibitors, for refractory/relapsed patients (5, 132,

243). The response to these therapies may be predicted by

characterization of the tumor immune microenvironment using

gene expression profi l ing (Nanostring technology) or

immunohistochemistry (anti-PDL1, anti-FOXP3, anti-CD68)

(244). Surprisingly, although similar disruption of the 3’UTR of

PDL1 was also detected in ATLL, the use of PD1 inhibitors in this

entity led to rapid progression of the disease for at least some

patients (245).

Translocations involving JAK2 leads to phosphorylation of the

tyrosine kinase domain, subsequent constitutive activation, and

downstream JAK/STAT pathway activation (246). This pathway

is now targeted using JAK inhibitors in the clinic for

myeloproliferative neoplasms and cancers with high pSTAT3

levels (247), such as ALK-negative ALCL, may be a good

candidate for such targeted therapy, as suggested in vivo in a
TABLE 3 Relevant cytogenetic or molecular findings for the management of PTCL patients.

Entity Diagnosis Prognosis Therapeutic
relevance

Potential targeted therapies

TFH-lymphoma - Mutations RHOA G17V, IDH2 R172, -
fusions transcript ITK_SYK

DNMT3A R882X ITK_SYK
CTLA4_CD28
FYN_TRAF3IP2

Demethylating agents
PI3K inhibitors
SYK inhibitors
CTLA4 inhibitors
IkB inhibitors

ALK-positive ALCL ALK expression (IHC), rearrangement
(FISH), fusion transcript

MYC expression TRAF1_ALK
fusion transcript

Brentuximab-vedotin
ALK inhibitors
JAK/STAT inhibitors

ALK-negative ALCL FISH for:
-DUSP22 rearrangement
- TP63 rearrangement

JAK2 fusion
transcripts
pSTAT3

Brentuximab vedotin
JAK/STAT inhibitors
Kinase inhibitor

ENKTCL (nasal
type)

EBV (EBER ISH) MYC expression PDL1 expression Immune checkpoint inhibitors
(pembrolizumab, nivolumab)

HSTL Iso7q (FISH) KIR3DL2
expression

Humanized KIR3DL2 antibodies
(lacutamab)
JAK/STAT inhibitors

EATL Mutations JAK1 p.G1097, STAT3 JAK/STAT inhibitors

MEITL SETD2 mutation/deletion CD20 expression (favorable)
TP53 alterations, MYC expression

JAK/STAT inhibitors
Wee1 inhibitor (adavosertib)

Indolent NK-LP of
the GI tract

STAT3 K563_C565del JAK-STAT inhibitors

ATLL HBZ transcript Aggressive: mutations of CCR4
(frameshift), TP53, IRF4
Indolent: STAT3 mutations

KIR3DL2
expression

Humanized antibodies against CCR4
(mogamulizumab),
KIR3DL2 (lacutamab)

PTCL-NOS TH2 polarization
DNMT3A mutations

Humanized antibodies against CCR4
(mogamulizumab)
FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; ISH, in situ hybridization.
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xenograft model (248). In a recent study, ruxolitinib showed some

clinical activity on PTCLs, especially those with JAK or STAT

mutations or activation (249).

Recently, the KIR3DL2 killer Immunoglobulin-like receptor

was identified as a useful biomarker and therapeutic target among

cutaneous T-cell lymphomas, including mycosis fungoides and

Sezary syndrome (250, 251) and ATLL (252, 253). Its expression

in other PTCL entities has been recently evaluated (254) and

lacutamab, an anti KIR3DL2 antibody, is currently under

investigation for KIR3DL2-positive PTCL (NCT04984837).

Given the limited efficacy of conventional chemotherapies, such as

CHOP, for most PTCL patients, in the future, it may be worthwhile

considering alternative treatment options that are personalized and

directed according to the molecular characterization of the tumor

(Table 3). However, whether the detection of actionable alterations will

be clinically important for most PTCLs, which are still an unmet

medical need for most, remains unknown.
5 Conclusion

The emergence of innovative high-throughput technologies has

led to a better understanding of the pathogenesis of most PTCL

entities, highlighting their diversity in terms of their biology and

clinical features. A large group of TFH-lymphoma patients has

emerged with a unique lymphoma oncogenesis, for which the

diagnosis takes advantage of robust molecular markers and for

which the treatment may benefit from the emergence of novel

therapies, such as those that target epigenetics. The ALCL category

is still heterogenous due to its genetic diversity, which has

prognostic relevance, but may now benefit from the introduction

of BV targeting CD30. The recent description of the genetic

landscape of PTCL offers the rationale for an association of

targeted therapies, with or without conventional chemotherapy
Frontiers in Oncology 12
agents, in the future, although the efficient combination for each

PTCL entity or molecular subgroups still needs to be identified.
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