103 research outputs found

    Extracellular Matrix Dynamics in Hepatocarcinogenesis: a Comparative Proteomics Study of PDGFC Transgenic and Pten Null Mouse Models

    Get PDF
    We are reporting qualitative and quantitative changes of the extracellular matrix (ECM) and associated receptor proteomes, occurring during the transition from liver fibrosis and steatohepatitis to hepatocellular carcinoma (HCC). We compared two mouse models relevant to human HCC: PDGFC transgenic (Tg) and Pten null mice, models of disease progression from fibrosis and steatohepatitis to HCC. Using mass spectrometry, we identified in the liver of both models proteins for 26 collagen-encoding genes, providing the first evidence of expression at the protein level for 16 collagens. We also identified post-transcriptional protein variants for six collagens and lysine hydroxylation modifications for 14 collagens. Tumor-associated collagen proteomes were similar in both models with increased expression of collagens type IV, VI, VII, X, XIV, XV, XVI, and XVIII. Splice variants for Col4a2, Col6a2, Col6a3 were co-upregulated while only the short form of Col18a1 increased in the tumors. We also identified tumor specific increases of nidogen 1, decorin, perlecan, and of six laminin subunits. The changes in these non-collagenous ECM proteins were similar in both models with the exception of laminin β3, detected specifically in the Pten null tumors. Pdgfa and Pdgfc mRNA expression was increased in the Pten null liver, a possible mechanism for the similarity in ECM composition observed in the tumors of both models. In contrast and besides the strong up-regulation of integrin α5 protein observed in the liver tumors of both models, the expression of the six other integrins identified was specific to each model, with integrins α2b, α3, α6, and β1 up-regulated in Pten null tumors and integrins α8 and β5 up-regulated in the PDGFC Tg tumors. In conclusion, HCC–associated ECM proteins and ECM–integrin networks, common or specific to HCC subtypes, were identified, providing a unique foundation to using ECM composition for HCC classification, diagnosis, prevention, or treatment

    Antibody Targeting Facilitates Effective Intratumoral SiRNA Nanoparticle Delivery to HER2-Overexpressing Cancer Cells

    Get PDF
    The therapeutic potential of RNA interference (RNAi) has been limited by inefficient delivery of short interfering RNA (siRNA). Tumor-specific recognition can be effectively achieved by antibodies directed against highly expressed cancer cell surface receptors. We investigated the utility of linking an internalizing streptavidinconjugated HER2 antibody to an endosome-disruptive biotinylated polymeric nanocarrier to improve the functional cytoplasmic delivery of siRNA in breast and ovarian cancer cells in vitro and in an intraperitoneal ovarian cancer xenograft model in vivo, yielding an 80% reduction of target mRNA and protein levels with sustained repression for at least 96 hours. RNAi-mediated site specific cleavage of target mRNA was demonstrated using the 5\u27 RLM-RACE (RNA ligase mediated-rapid amplification of cDNA ends) assay. Mice bearing intraperitoneal human ovarian tumor xenografts demonstrated increased tumor accumulation of Cy5.5 fluorescently labeled siRNA and 70% target gene suppression after treatment with HER2 antibody-directed siRNA nanocarriers. Detection of the expected mRNA cleavage product by 5\u27 RLM-RACE assay confirmed that suppression occurs via the expected RNAi pathway. Delivery of siRNA via antibody-directed endosomolytic nanoparticles may be a promising strategy for cancer therapy

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Normally occurring NKG2D+CD4+ T cells are immunosuppressive and inversely correlated with disease activity in juvenile-onset lupus

    Get PDF
    The NKG2D receptor stimulates natural killer cell and T cell responses upon engagement of ligands associated with malignancies and certain autoimmune diseases. However, conditions of persistent NKG2D ligand expression can lead to immunosuppression. In cancer patients, tumor expression and shedding of the MHC class I–related chain A (MICA) ligand of NKG2D drives proliferative expansions of NKG2D+CD4+ T cells that produce interleukin-10 (IL-10) and transforming growth factor-β, as well as Fas ligand, which inhibits bystander T cell proliferation in vitro. Here, we show that increased frequencies of functionally equivalent NKG2D+CD4+ T cells are inversely correlated with disease activity in juvenile-onset systemic lupus erythematosus (SLE), suggesting that these T cells may have regulatory effects. The NKG2D+CD4+ T cells correspond to a normally occurring small CD4 T cell subset that is autoreactive, primed to produce IL-10, and clearly distinct from proinflammatory and cytolytic CD4 T cells with cytokine-induced NKG2D expression that occur in rheumatoid arthritis and Crohn's disease. As classical regulatory T cell functions are typically impaired in SLE, it may be clinically significant that the immunosuppressive NKG2D+CD4+ T cells appear functionally uncompromised in this disease

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing
    corecore