1,040 research outputs found

    Proxying the socio-economic background through real estate values. An application on performances of university students

    Get PDF
    This study shows how the socio-economic background of students in tertiary education can influence their performances and, in particular, the obtained graduation mark. Relying on administrative records on graduated students of the University of Modena and Reggio Emilia (UNIMORE) and aggregated statistics from the Immobiliare.it website, we explore the role of socio-economic background on students’ performances through two different proxies. One refers to the group of the Italian indicator of the household equivalised economic situation (or ISEE) which the student belongs, while the other consists of the average real estate price featuring the postcode where the student resides. Econometric results show a positive influence of both proxies of the socio-economic background on the graduation mark. Specifically, we observe that belonging to highest ISEE groups has on the graduation mark a similar effect with respect to the average real estate price of the student’s postcode of residence. This evidence confirms that the latter may be an effective alternative dimension to proxy the individuals’ socio-economic background when income/wealth variables are not available, interval-censored, or also present relevant issues of reliability

    Cytomegalovirus-Specific T Cell Epitope Recognition in Congenital Cytomegalovirus Mother-Infant Pairs

    Get PDF
    Background: Congenital cytomegalovirus (cCMV) infection is the most common infection acquired before birth and from which about 20% of infants develop permanent neurodevelopmental effects regardless of presence or absence of symptoms at birth. Viral escape from host immune control may be a mechanism of CMV transmission and infant disease severity. We sought to identify and compare CMV epitopes recognized by mother-infant pairs. We also hypothesized that if immune escape were occurring, then one pattern of longitudinal CD8 T cell responses restricted by shared HLA alleles would be maternal loss (by viral escape) and infant gain (by viral reversion to wildtype) of CMV epitope recognition. Methods: The study population consisted of 6 women with primary CMV infection during pregnancy and their infants with cCMV infection. CMV UL83 and UL123 peptides with known or predicted restriction by maternal MHC class I alleles were identified, and a subset was selected for testing based on several criteria. Maternal or infant cells were stimulated with CMV peptides in the IFN-gamma ELISpot assay. Results: Overall, 14 of 25 (56%; 8 UL83 and 6 UL123) peptides recognized by mother-infant pairs were not previously reported as CD8 T cell epitopes. Of three pairs with longitudinal samples, one showed maternal loss and infant gain of responses to a CMV epitope restricted by a shared HLA allele. Conclusions: CD8 T cell responses to multiple novel CMV epitopes were identified, particularly in infants. Moreover, the hypothesized pattern of CMV immune escape was observed in one mother-infant pair. These findings emphasize that knowledge of paired CMV epitope recognition allows exploration of viral immune escape that may operate within the maternal-fetal system. Our work provides rationale for future studies of this potential mechanism of CMV transmission during pregnancy or clinical outcomes of infants with cCMV infection

    Prenatal and postnatal determinants in shaping offspring's microbiome in the first 1000 days: Study protocol and preliminary results at one month of life

    Get PDF
    Background: Fetal programming during in utero life defines the set point of physiological and metabolic responses that lead into adulthood; events happening in "the first 1,000 days" (from conception to 2-years of age), play a role in the development of non-communicable diseases (NCDs). The infant gut microbiome is a highly dynamic organ, which is sensitive to maternal and environmental factors and is one of the elements driving intergenerational NCDs' transmission. The A.MA.MI (Alimentazione MAmma e bambino nei primi MIlle giorni) project aims at investigating the correlation between several factors, from conception to the first year of life, and infant gut microbiome composition. We described the study design of the A.MA.MI study and presented some preliminary results. Methods: A.MA.MI is a longitudinal, prospective, observational study conducted on a group of mother-infant pairs (n = 60) attending the Neonatal Unit, Fondazione IRCCS Policlinico San Matteo, Pavia (Italy). The study was planned to provide data collected at T0, T1, T2 and T3, respectively before discharge, 1,6 and 12 months after birth. Maternal and infant anthropometric measurements were assessed at each time. Other variables evaluated were: Pre-pregnancy/gestational weight status (T0), maternal dietary habits/physical activity (T1-T3); infant medical history, type of feeding, antibiotics/probiotics/supplements use, environment exposures (e.g cigarette smoking, pets, environmental temperature) (T1-T3). Infant stool samples were planned to be collected at each time and analyzed using metagenomics 16S ribosomal RNA gene sequence-based methods. Results: Birth mode (cesarean section vs. vaginal delivery) and maternal pre pregnancy BMI (BMI < 25 Kg/m2 vs. BMI ≥ 25 Kg/m2), significant differences were found at genera and species levels (T0). Concerning type of feeding (breastfed vs. formula-fed), gut microbiota composition differed significantly at genus and species level (T1). Conclusion: These preliminary and explorative results confirmed that pre-pregnancy, mode of delivery and infant factors likely impact infant microbiota composition at different levels. Trial registration: ClinicalTrials.gov identifier: NCT04122612

    Triangulation of gravitational wave sources with a network of detectors

    Get PDF
    There is significant benefit to be gained by pursuing multi-messenger astronomy with gravitational wave and electromagnetic observations. In order to undertake electromagnetic follow-ups of gravitational wave signals, it will be necessary to accurately localize them in the sky. Since gravitational wave detectors are not inherently pointing instruments, localization will occur primarily through triangulation with a network of detectors. We investigate the expected timing accuracy for observed signals and the consequences for localization. In addition, we discuss the effect of systematic uncertainties in the waveform and calibration of the instruments on the localization of sources. We provide illustrative results of timing and localization accuracy as well as systematic effects for coalescing binary waveforms.Comment: 20 pages, 5 figure

    Radiation damage in the LHCb vertex locator

    Get PDF
    The LHCb Vertex Locator (VELO) is a silicon strip detector designed to reconstruct charged particle trajectories and vertices produced at the LHCb interaction region. During the first two years of data collection, the 84 VELO sensors have been exposed to a range of fluences up to a maximum value of approximately 45 × 1012 1 MeV neutron equivalent (1 MeV neq). At the operational sensor temperature of approximately −7 °C, the average rate of sensor current increase is 18 μA per fb−1, in excellent agreement with predictions. The silicon effective bandgap has been determined using current versus temperature scan data after irradiation, with an average value of Eg = 1.16±0.03±0.04 eV obtained. The first observation of n+-on-n sensor type inversion at the LHC has been made, occurring at a fluence of around 15 × 1012 of 1 MeV neq. The only n+-on-p sensors in use at the LHC have also been studied. With an initial fluence of approximately 3 × 1012 1 MeV neq, a decrease in the Effective Depletion Voltage (EDV) of around 25 V is observed. Following this initial decrease, the EDV increases at a comparable rate to the type inverted n+-on-n type sensors, with rates of (1.43±0.16) × 10−12 V/ 1 MeV neq and (1.35±0.25) × 10−12 V/ 1 MeV neq measured for n+-on-p and n+-on-n type sensors, respectively. A reduction in the charge collection efficiency due to an unexpected effect involving the second metal layer readout lines is observed

    Precision luminosity measurements at LHCb

    Get PDF
    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √sNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider

    Performance of the LHCb vertex locator

    Get PDF
    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    Search for gravitational-wave bursts in LIGO data from the fourth science run

    Get PDF
    The fourth science run of the LIGO and GEO 600 gravitational-wave detectors, carried out in early 2005, collected data with significantly lower noise than previous science runs. We report on a search for short-duration gravitational-wave bursts with arbitrary waveform in the 64-1600 Hz frequency range appearing in all three LIGO interferometers. Signal consistency tests, data quality cuts, and auxiliary-channel vetoes are applied to reduce the rate of spurious triggers. No gravitational-wave signals are detected in 15.5 days of live observation time; we set a frequentist upper limit of 0.15 per day (at 90% confidence level) on the rate of bursts with large enough amplitudes to be detected reliably. The amplitude sensitivity of the search, characterized using Monte Carlo simulations, is several times better than that of previous searches. We also provide rough estimates of the distances at which representative supernova and binary black hole merger signals could be detected with 50% efficiency by this analysis.Comment: Corrected amplitude sensitivities (7% change on average); 30 pages, submitted to Classical and Quantum Gravit

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08 ^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical, the second systematic and the third is associated to the ratio of fragmentation fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/- 0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table
    corecore