97 research outputs found

    Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems

    Get PDF
    Ectomycorrhizas, the dominating mycorrhizal symbiosis in boreal, temperate and some tropical forests, are formed by 5000-6000 species of the asco- and basidiomycetes. This high diversity of fungal partners allows optimal foraging and mobilisation of various nitrogen and phosphorus forms from organic soil layers. In this review, two approaches to study the functioning of this multitude of symbiotic associations are presented. On selected culture models, physiological and molecular investigations have shown that the supply of hexoses has a key function in controlling the plant^fungus interaction via partner-specific regulation of gene expression. Environmental factors which affect fungal carbon supply, such as increased nitrogen availability, also affect mycorrhiza formation. Based on such laboratory results, the adaptative capability of ectomycorrhizas to changing field conditions is discussed. The second approach consists of analysing the distribution of mycorrhizas in ecosystem compartments and to relate distribution patterns to variations of ecological factors. Recent advances in identification of fungal partners in ectomycorrhizas by analysing the internal transcribed spacer of ribosomal DNA are presented, which can help to resolve sampling problems in field studies. The limits of the laboratory and the field approaches are discussed. Despite some problems, this combined approach is the most promising. Direct investigation of gene expression, which has been introduced for soil bacteria, will be difficult in the case of mycorrhizal fungi which constitute organisms with functionally varying structure

    Comparative phylogenies and host specialization in the alder ectomycorrhizal fungi Alnicola, Alpova and Lactarius (Basidiomycota) in Europe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mycorrhizal fungi form intimate associations with their host plants that constitute their carbon resource and habitat. <it>Alnus </it>spp. (Betulaceae) are known to host an exceptional species-poor and specialized ectomycorrhizal (ECM) fungal community compared to other tree species, but the host-specificity pattern and its significance in terms of fungal diversification and speciation remain poorly documented. The degree of parallel speciation, host switching, and patterns of biogeography were explored in the historical associations between alders and three ECM taxa of Basidiomycetes: <it>Alnicola </it>(Agaricales), <it>Alpova </it>(Boletales), and <it>Lactarius </it>(Russulales). The aim was to develop an evolutionary framework on host specificity and diversification of Basidiomycetes in this highly specialized plant-fungus symbiosis.</p> <p>Results</p> <p>Sporocarps of <it>Alnicola </it>(220), <it>Lactarius </it>(61) and <it>Alpova </it>(29) were collected from stands of the four European alder species (<it>A. alnobetula </it>including the endemic subsp. <it>suaveolens </it>in Corsica, <it>A. cordata</it>, <it>A. glutinosa</it>, <it>A. incana</it>) in Western Europe (mainly in France and Austria), from 1995 to 2009. Specimens were morphologically identified to the species level. From these, 402 sequences of four DNA regions (ITS, rpb2, gpd, and the V9 domain of the mit-SSU rDNA) were successfully obtained and analyzed in addition with 89 sequences available in GenBank and UNITE databases. Phylogenetic analyses were conducted on all sequence data sets (individual and combined) using maximum likelihood reconstruction and Bayesian inference. Fungal phylogenies are compared and discussed in relation to the host, with a focus on species boundaries by associating taxonomic, systematic and molecular information.</p> <p>Conclusions</p> <p>Patterns of host specificity and phylogenies of <it>Alnicola </it>and <it>Lactarius </it>suggest coevolution as a basal factor of speciation in relation with the subgeneric diversification of <it>Alnus</it>, possibly due to the very selective pressure of the host. A second element of the historical associations between <it>Alnus </it>and its fungal symbionts is a host-dependent speciation (radiation without host change), here observed in <it>Alnicola </it>and <it>Alpova </it>in relation with <it>Alnus </it>subgen. <it>Alnus</it>. Finally host shifts from <it>Alnus </it>subgen. <it>Alnus </it>to <it>A. alnobetula </it>are found in most lineages of <it>Alnicola </it>(at least four times), <it>Alpova </it>(twice) and <it>Lactarius </it>(once), but they do not represent such a common event as could be expected by geographic proximity of trees from the two subgenera. However, active or very recent host extensions clearly occurred in Corsica, where some fungi usually associated with <it>Alnus glutinosa </it>on mainland Europe locally extend there to <it>A. alnobetula </it>subsp. <it>suaveolens </it>without significant genetic or morphological deviation.</p

    Genetic diversity in Tetrachaetum elegans, a mitosporic aquatic fungus.

    Get PDF
    Tetrachaetum elegans Ingold is a saprobic aquatic hyphomycete for which no sexual stage has yet been described. It occurs most commonly during the initial decay of tree leaves in temperate freshwater habitats and typically sporulates under water. Dispersal of the aquatic fungus takes place primarily in the water column and has a large passive component. Differences in substrate composition (e.g. quality of leaf litter) may also play a role in the distribution of different species or genotypes. The population genetic structure of T. elegans was studied using amplified fragment length polymorphism (AFLP) multilocus fingerprints. The populations were isolated from the leaf litter of three different tree genera, sampled in nine streams distributed throughout a mixed deciduous forest. Molecular markers were developed for 97 monosporic isolates using four selective primer pairs. A total of 247 fragments were scored, of which only 32 were polymorphic. Significant stream differentiation was detected for the isolates considered in this study. Analysis of molecular variance revealed that 20% of the genetic variation observed was the result of differences between streams. No correlation between genetic and geographical distances was found but a few multilocus genotypes were observed in different locations. Altogether these results suggest that environmental barriers play a role in the population structure of this aquatic fungus. No clear-cut effect of leaf litter composition on genetic variation could be demonstrated. Finally, tests of linkage disequilibrium between the 32 polymorphic AFLP loci as well as simulations did not provide a final answer regarding clonality in T. elegans. Indeed, it was possible to reject linkage equilibrium at different sampling levels and show that full linkage was unlikely

    Facilitation of Balsam Fir by Trembling Aspen in the Boreal Forest: Do Ectomycorrhizal Communities Matter?

    Get PDF
    Succession is generally well described above-ground in the boreal forest, and several studies have demonstrated the role of interspecific facilitation in tree species establishment. However, the role of mycorrhizal communities for tree establishment and interspecific facilitation, has been little explored. At the ecotone between the mixed boreal forest, dominated by balsam fir and hardwood species, and the boreal forest, dominated by black spruce, several stands of trembling aspen can be found, surrounded by black spruce forest. Regeneration of balsam fir seems to have increased in the recent decades within the boreal forest, and it seems better adapted to grow in trembling aspen stands than in black spruce stands, even when located in similar abiotic conditions. As black spruce stands are also covered by ericaceous shrubs, we investigated if differences in soil fungal communities and ericaceous shrubs abundance could explain the differences observed in balsam fir growth and nutrition. We conducted a study centered on individual saplings to link growth and foliar nutrient concentrations to local vegetation cover, mycorrhization rate, and mycorrhizal communities associated with balsam fir roots. We found that foliar nutrient concentrations and ramification indices (colonization by mycorrhiza per length of root) were greater in trembling aspen stands and were positively correlated to apical and lateral growth of balsam fir saplings. In black spruce stands, the presence of ericaceous shrubs near balsam fir saplings affected ectomycorrhizal communities associated with tree roots which in turn negatively correlated with N foliar concentrations. Our results reveal that fungal communities observed under aspen are drivers of balsam fir early growth and nutrition in boreal forest stands and may facilitate ecotone migration in a context of climate change

    MycoDB, a global database of plant response to mycorrhizal fungi

    Get PDF
    Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-dependent. We announce the public release of MycoDB, a database of 4,010 studies (from 438 unique publications) to aid in multi-factor meta-analyses elucidating the ecological and evolutionary context in which mycorrhizal fungi alter plant productivity. Over 10 years with nearly 80 collaborators, we compiled data on the response of plant biomass to mycorrhizal fungal inoculation, including meta-analysis metrics and 24 additional explanatory variables that describe the biotic and abiotic context of each study. We also include phylogenetic trees for all plants and fungi in the database. To our knowledge, MycoDB is the largest ecological meta-analysis database. We aim to share these data to highlight significant gaps in mycorrhizal research and encourage synthesis to explore the ecological and evolutionary generalities that govern mycorrhizal functioning in ecosystems

    Genetic Structure, Linkage Disequilibrium and Signature of Selection in Sorghum: Lessons from Physically Anchored DArT Markers

    Get PDF
    Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r2 decreased from 0.18 (between 0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. structure groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    Les champignons ectomycorhiziens du chêne vert (Quercus ilex L.) en Corse (diversité et rôle de la symbiose)

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF
    corecore