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Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on
Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal
symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-
dependent. We announce the public release of MycoDB, a database of 4,010 studies (from 438 unique
publications) to aid in multi-factor meta-analyses elucidating the ecological and evolutionary context in
which mycorrhizal fungi alter plant productivity. Over 10 years with nearly 80 collaborators, we compiled
data on the response of plant biomass to mycorrhizal fungal inoculation, including meta-analysis metrics
and 24 additional explanatory variables that describe the biotic and abiotic context of each study. We also
include phylogenetic trees for all plants and fungi in the database. To our knowledge, MycoDB is the largest
ecological meta-analysis database. We aim to share these data to highlight significant gaps in mycorrhizal
research and encourage synthesis to explore the ecological and evolutionary generalities that govern
mycorrhizal functioning in ecosystems.

Design Type(s) database creation objective • observation design • data integration objective

Measurement Type(s)
symbiosis, encompassing mutualism through parasitism • phylogenetic
analysis objective

Technology Type(s) digital curation • computational phylogenetic analysis

Factor Type(s)

Sample Characteristic(s) mycorrhizal samples
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Background & Summary
Plant performance is largely a function of the plant-symbiotic microbiome1. As a result, ecosystem
functions and the vital services humans derive from them (e.g., food and fiber production, carbon
sequestration) are fundamentally dependent on the interactions plants have with symbionts. Although
symbioses are common, our knowledge of their impact on ecosystem functions and services is relatively
incomplete. Broad generalizations about the relationships between plants and their symbionts are
limited due to the context-dependent nature of such symbioses, which exist along a continuum of
possible outcomes, from mutualistic to parasitic. Examining the results of many experiments through
meta-analysis allows for larger-scale generalizations than individual experiments can provide
independently and can lead to synthesis-generated evidence2. Furthermore, including phylogenetic
information in meta-analyses can account for correlated evolutionary relationships among taxa used in
multiple studies. Understanding ecological outcomes of symbioses, and the environmental and
evolutionary context contributing to such outcomes, is crucial to maintaining and restoring the
ecosystem functions and services upon which humans depend.

Mycorrhizal fungi form an ancient symbiosis with most plants on Earth3,4. The host plant and
associated fungi form a trading partnership where the fungi increase the effective absorptive capabilities
of the plant, delivering nutrients and water in exchange for plant-derived photosynthates5. Since most
plants associate with mycorrhizal fungi, the outcome of this symbiosis can influence ecosystem structure,
function, and services mediated by plant productivity. Several empirical studies have individually
demonstrated how host plant traits and identities, fungal partners, soil biotic and abiotic conditions, and
experimental conditions can alter the structure and function of mycorrhizal symbioses6–9. The important
role of mycorrhizal fungi in global change dynamics such as N deposition, climate change, and invasive
species has also been documented10–12 as well as the key role that mycorrhizal fungi play in the
restoration and conservation management of ecosystems13–15. Understanding the generality of how
environmental context impacts the relationship of plants with their mycorrhizal symbionts should also
affect how we manage terrestrial ecosystems.

Statistical methods to simultaneously examine multiple ecological and evolutionary factors in a meta-
analysis framework have been recently developed16–18, facilitating computational analytic approaches to
studying global patterns of mycorrhizal symbioses. Large datasets with multiple moderators are vital to
such approaches because ecological meta-analyses based on small datasets can be vulnerable to spurious
interpretations resulting from unbalanced data distributions, correlated moderators, and unavailable
information regarding potentially important predictors. For example, a meta-analysis of 51 studies19

suggested the absence of synergy between mycorrhizal fungi and nitrogen-fixing bacteria likely resulted
from an overrepresentation of annual and agricultural species in the meta-analysis database; by contrast,
separate tests of late successional legumes demonstrated strong synergism20. Another meta-analysis21

suggested that the paradoxical result of declining plant growth response to mycorrhizal inoculation with
nitrogen but not phosphorus fertilization was due to the overrepresentation of studies in the dataset with
high soil phosphorus and the potential correlation among moderators. The problem of spurious
interpretations within ecological meta-analyses can be reduced by simultaneous testing of multiple
predictors, which is made possible by larger databases.

Here we present MycoDB, a large database of mycorrhizal inoculation experiments, linked with plant
and fungal phylogenies (Data Citation 1), to facilitate tests on the ecological and evolutionary contexts in
which the addition of mycorrhizal fungi is beneficial or parasitic to plant hosts. MycoDB focuses on
studies of two dominant types of mycorrhizal fungi, ectomycorrhizal (EM) fungi and arbuscular
mycorrhizal (AM) fungi, because they predominate among published studies on mycorrhizal symbioses.
MycoDB contains data on plant productivity response to mycorrhizal fungi from 4,010 studies (from 438
unique publications) and is organized in a hierarchical fashion such that a single publication can contain
multiple discrete experiments and a single experiment can contain multiple studies. The ecological and
evolutionary context of studies can be explored with 24 additional explanatory variables (e.g., plant
functional group, inoculum complexity, plant or fungal origin; Table 1 (available online only) and
Table 2) and mycorrhizal fungal and plant host phylogenetic trees (Figs 1 and 2). MycoDB can be used to
model phylogenetic heritability of plant response to mycorrhizal fungi in host plant lineages, fungal
lineages, and their interaction, as well as explore the relationship among explanatory variables and plant
response to mycorrhizal fungi, while controlling for the influence of plant and fungal phylogenies.

Methods
Overview and literature searches
MycoDB (Data Citation 1) contains data from three main phases of data collection and validation. Phase
I occurred in 2005, when we identified 1852 publications by conducting an initial literature search of the
ISI Web of Science database using the key words mycorrhiz* and inocul* (on January 22, 2005). From this
initial list, 134 publications were selected, in random order, as having met our inclusion criteria for meta-
analysis such as reporting plant biomass response, use of a mycorrhizal addition treatment, and inclusion
of a non-inoculated control (see ‘Criteria for inclusion’ below). More publications from the initial list of
1852 publications likely met our criteria, but were excluded from Phase I of database construction
because of time constraints. Data from 49 additional publications on EM fungi were added from a
previous meta-analysis22 to reduce dominance of the data by studies on AM symbioses. This process
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resulted in a total of 183 publications summarized in MycoDB during Phase I. In 2010, as part of an
NCEAS (National Center for Ecological Analysis and Synthesis) Distributed Graduate Seminar
conducted across nine institutions, we began Phase II of the data collection to dramatically increase
the size of MycoDB with several targeted literature searches. On September 21, 2010, we conducted
searches of the ISI Web of Science database using the following search terms: (1) (mycorrhiz* or ectomyc*
or endomyc* or arbuscul* or vesicular*) and inocul* resulting in 4,013 papers; (2) search terms from (1)
AND restoration or rehabilitation or reclamation or revegetation or reforestation resulting in 305 papers;
(3) search terms from (1) AND local adaptation or strain or isolate or genotype or ecotype or geograph*
resulting in 627 papers; (4) search terms from (1) AND tissue P or tissue N or shoot P or shoot N or leaf P
or leaf N resulting in 793 papers; (5) search terms from (1) AND Gigaspor* or Acaulospor* or
Scutellospora or Archaeospora resulting in 387 papers. Searches 2–5 were designed to enrich the database
in studies relevant to restoration ecology, local adaptation, influences of nutrients, and AM fungi besides
Glomus, because these topics were identified either as being of interest for planned focused meta-analyses
(restoration, local adaptation) or as under-represented in the Phase I search results (influences of
nutrients, AM fungi besides Glomus). The results from all five searches were collated, duplicates (as well
as publications already included in MycoDB) were removed, and papers were selected that appeared in at
least one of the four focused searches (2–5), resulting in a list of 1,768 publications. Again, from this
larger list, 255 publications were selected, in random order, as having met our inclusion criteria for meta-
analysis such as reporting plant biomass response, use of a mycorrhizal addition treatment, and inclusion
of a non-inoculated control (see below ‘Criteria for inclusion’), and their data were added to MycoDB.
After Phase II, MycoDB contained data from a total of 4,010 studies from 438 publications. Phase III of
the creation of MycoDB consisted of extensive data validation and the creation of phylogenetic trees for
all plant species and fungal genera in the database.

A subset of MycoDB was used to study how edaphic properties, plant functional groups, and microbial
community complexity determine the outcome of mycorrhizal symbioses21. Different subsets of these
data have been used to explore local adaptation among plants, mycorrhizal fungi, and soils (Rúa et al. in
review) as well as how partner identity, colonization levels, and P fertilization impact plant host response
to EM associations22.

Criteria for inclusion
Prior to inclusion in MycoDB, publications were screened for meta-analysis appropriateness and for an
experimental design that was amenable to our research questions. It was required that all studies compare
results of a mycorrhizal inoculation treatment (or several treatments) to a non-inoculated control. In
other words, studies must compare plant response for some addition of mycorrhizal fungi to no addition.
The method of inoculation varies among studies in MycoDB and can include the addition of spores,
roots, mycelia, pot culture, field soil, or any combination thereof. Studies that apply mycorrhizal fungi to
all treatments, eliminate fungal presence (e.g., using fungicide application), or otherwise manipulate
ecological factors to promote or suppress fungi were not included. We included studies with unsterilized
background soil, many of which likely contained propagules of mycorrhizal fungi in all treatments,
though this could not be confirmed because fungal colonization data was not consistently reported. If an
experiment contained the manipulation of a factor in addition to mycorrhizal fungi (e.g., fertilizer
treatment, soil amendment), the results are included in MycoDB as separate studies within the same
experiment. All studies report mean plant biomass data as the response variable. Studies could report
shoot biomass, total biomass, or root biomass and shoot biomass. Studies must report means, but were
still included if measures of dispersion (e.g., standard error, standard deviation, or error bars on figures)
were not given as was the case in 91% of studies. If sample size was not given, the associated parameter ‘n’
was coded as 1 for both inoculated treatments and non-inoculated controls, reducing the weight of the
study relative to what it would be if the sample size was known. Data presented in tables were extracted
directly, but data presented in figures were extracted using Engauge Digitizer software version 4.123. Data
on additional explanatory variables (e.g., plant family, plant functional group) were also extracted from
the publication text when available or looked up using supplementary peer-reviewed resources. Both lab
studies and field studies are included in MycoDB and coded separately using the variable LOCATION
(Table 1 (available online only)). No limitation was placed on the duration of study for inclusion in
MycoDB; in the case of studies that examined plant biomass over a time series, only data from the last
sampling event was included. Data were then entered into MycoDB using a custom
web-based data entry interface and database that matched inoculated treatments with non-inoculated
controls24.

Plant and fungal phylogenetic tree construction
We constructed plant and fungal phylogenetic trees for all the species in MycoDB using a composite
phylogeny approach, which combines taxonomic and phylogenetic information into a single tree16,25,26.
For plant phylogeny, we derived phylogenetic topology from existing ‘supertrees’ and assigned well-
supported divergence times to all possible internal bifurcations (evolutionary divergence event) using
TimeTree27 as a source of published divergence times. The remaining unknown branch lengths were
rooted with known divergence dates28 and arbitrarily set and scaled to yield an ultrametric tree wherein
all extant species were lined up at the present date. In cases where taxonomic nomenclature has changed
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LA_Code Plant Fungi Soil #studies

A 1 1 1 96

B 1 1 2 8

C 1 2 1 57

D 2 1 1 14

E 1 2 3 104

F 1 1 X 64

G 1 2 X 77

H 1 1 Z 30

I 1 2 Z 140

J 1 X 1 11

K 1 X 2 63

L X 1 1 96

M X 1 2 299

N Z 1 1 77

O Z 1 2 265

Table 2. Description of LA_Codes such that components of studies—plants, fungi, and soil—share the
same number if they originate from the same known location. Unknown locations are indicated by ‘X’.
Artificial soils (e.g., peat moss) or non-wild plant varieties (e.g., cultivar or hybrid variety) are indicated by ‘Z’.
For example, the database contains 299 studies, coded as ‘M’, where the source of the plant is unknown and the
soil and AM fungi came from different locations.

Pinus pinaster X Pisolithus

Nicotiana tabacum X Funneliformis

Zea mays X Rhizoglomus

Zea mays X Funneliformis

Calopogonium caeruleum X Rhizoglomus
Calopogonium caeruleum X Glomus
Acacia holosericea X Pisolithus
Eucalyptus diversicolor X Laccaria

Triticum turgidum X Funneliformis
Allium fistulosum X Gigaspora
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  All unique combinations of plant species and fungal genera in MycoDB = 669

AM

EM

Zea mays 217
Nicotiana tabacum 127
Calopogonium caeruleum 100
Glycine max 84
Trifolium repens 75
Lactuca sativa 72
Solanum lycopersicum 68
Hordeum vulgare 64
Triticum aestivum 61
Capsicum annuum 58

Eucalyptus globulus 148
Pinus pinaster 106
Eucalyptus diversicolor 92
Pinus sylvestris 73
Acacia holosericea 60
Eucalyptus urophylla 54
Picea abies 36
Pinus pinea 36
Pinus banksiana 35
Pseudotsuga menziesii 33

Figure 1. The distribution of unique plant species and fungal genus combinations contained in MycoDB.

Larger figure (a) shows the overall distribution of unique plant fungal combinations (669 total) in the database

with the most common combination being Pinus pinaster inoculated with Pisolithus (106 studies). Inset graphs

separate AM (b) and EM (c) fungal studies and highlight the 10 most common plant species in each subset.

Numbers next to plant names on insets indicate the quantity of studies in MycoDB that utilize that plant host.

Lines next to plant names indicate the number of fungal genera used to inoculate a particular plant species

across studies.
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since the creation of the original ‘supertrees’ or publication of papers used in the database, names were
changed manually to reflect current consensus taxonomy. Pairwise shared branch-lengths were then used
to calculate a variance-covariance matrix, which can be used in mixed multifactor meta-analyses.

For the fungal composite phylogeny, we manually reconstructed the evolutionary relationships among
different genera based on known or commonly accepted taxonomy using information from previously
published reports. Fungal taxonomy, particularly of AM fungi, has undergone major revisions during the
duration of the compilation of MycoDB. We traced the evolution of fungal taxa into current consensus
systematics29; however, because of ambiguity in species identification of AM fungi, we only included
fungal taxonomic identification to the genus level. Even so, some taxa formerly named Glomus could not
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Figure 2. Heat map showing the frequency of studies in MycoDB according to unique plant host and fungal
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be placed definitively within current genera and were therefore left as Glomus. In the case of the AM
fungal phylogenetic branch, the composite tree topologies between different genera of this clade were
informed by taxonomic position of the type species of each genus (when possible) in relationship with the
taxonomic position of the other type species of another genus29–31. For EM fungi, the position of each
species in the phylogenetic tree follows the online version of Index Fungorum (www.indexfungorum.org)
and recent taxonomic literature. The phylogenetic framework and tree topology were based on the 2007
AFTOL classification of Fungi32 and other recent efforts in fungal systematics33,34.

Construction and manipulation of composite phylogenies was conducted using R Statistical Software35

(version 3.0.2), the ape package in R36, Phylocom37, and Phylomatic37. The files contain the
fungal and plant composite phylogenies in the Newick tree format. The FungalTree_version1.txt file
(Data Citation 1) represents the evolutionary relationships among different fungal genera that exist in the
MycoDB database. Similarly, the PlantTree_version1.txt file (Data Citation 1) represents the evolutionary
relationships between different plant species that exist in this database, with each node of the plant’s
composite tree labeled with corresponding higher taxonomic classification.

Data attributes
Data in MycoDB are organized in a hierarchical manner as a single publication often contained data from
multiple discrete experiments and studies (i.e., trials) on multiple plant hosts. As such, the 438
publications in MycoDB contain data for 4,010 studies (Data Citation 1). A study is defined as a
comparison of average plant performance between plants that were inoculated with mycorrhizal fungi
(AM or EM, never both) and plants that were not inoculated. Table 1 (available online only) contains
detailed meta-data for all variables in MycoDB including descriptions of variables and levels. Figure 1
demonstrates the frequency and distribution of unique plant species and fungal genus combinations
(669 total) contained in MycoDB. For example, the most frequently reported mycorrhizal combination
was Pinus pinaster (maritime pine) inoculated with species from the EM fungal genus Pisolithus
(106 studies). The two inlay graphs represent the most common plant species in MycoDB, separated by
mycorrhizae type (AM vs EM). Lines to plant species indicate the number of fungal genera in association
with each plant species. For example, the most common plant species in MycoDB are Zea mays
(corn, 217 studies) and Eucalyptus globulus (blue gum, 148 studies), in association with AM fungi and
EM fungi, respectively. Figure 2 is a heat map representing the frequency of studies according to unique
plant host and fungal genus combinations and their phylogenetic relationships. For EM fungi, the most
commonly represented plant-fungal combinations in MycoDB occur between plants within the Pinaceae
growing in association with Pisolithus fungi. For AM fungi, hotspots occur within the Poaceae,
Solanaceae, and Fabaceae grown in association with Rhizoglomus and Funneliformis fungi. As these plant
families are important to forestry and agriculture, their prevalence in the literature makes sense, but the
tropics and thus a large portion of plant and fungal biodiversity are underrepresented. Figure 2 suggests
that empirical work thus far regarding the mycorrhizal symbiosis is not only limited with respect to the
plant and fungal species examined, but also relatively poorly represented among phylogenetically diverse
clades of plants and fungi.

Although this database represents the efforts of over 80 people distributed over 10 years, these data
still only represent a fraction of the total available data on plant response to mycorrhizal fungi. The
number of papers published each year that fit our search criteria has grown exponentially in the time
since our initial search. The 351 plant species in our database represent a small proportion of the 450,000
total plant species on Earth38, the majority of which likely associate with mycorrhizal fungi. Moreover, as
might be expected, the plant taxa represented are heavily biased toward species important for agriculture
and forestry (e.g., corn, tobacco, pine, eucalyptus). Similarly, the fungal taxa that are best represented in
the database are taxa that have been commercially marketed, such as the ectomycorrhizal fungus
Pisolithus tinctorius39. Given this uneven representation of plant and fungal species and potential
correlations among closely related plant and fungal species, it is important to analyze these data using
phylogenetic mixed models even when testing environmental moderators of plant responsiveness to
mycorrhizal fungal inoculation.

Statistical considerations
MycoDB was prepared in anticipation of common technical problems (and statistical solutions thereof)
encountered in meta-analyses. In particular, a difficulty in many ecological meta-analyses is the lack of
independence of the estimates. Multiple estimates (‘studies’) extracted from the same publication may be
more similar to each other than those arising from different publications due to similarities in
experimental methods or context within the same publication. Multilevel meta-analytic models (with
estimates nested within publications) can be used to account for such correlated data structures18.
Similarly, multiple estimates may represent contrasts of different treatments that are compared against a
common control condition, leading to statistical dependencies in the estimates due to reuse of
information from the control condition40. Hence, identification of estimates that share a common control
condition is of crucial importance (i.e., variable CTLTRTSETID in Table 1 (available online only)).
Moreover, multiple studies may use the same species or different species that are phylogenetically related,
and such taxonomic overrepresentation may limit the scale of inference of the meta-analysis. Inclusion of
information on phylogenetic relations within a mixed-effects model can account for these correlations
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and allow tests of generality of results. This can be done through inclusion of categorical taxonomic (e.g.,
family, genus, species) variables as random effects21 or through an analysis that includes the full
phylogeny41,42. Including phylogenetic information in meta-analyses can account for correlated
evolutionary relationships as well as allow inference on the rates and constraints of evolution on the
phenotypic character being considered18. Finally, the availability of phylogenies for both plant species and
fungi offers the possibility of modeling potential coevolution and ecological interactions using
appropriate mixed-effects models43.

As the largest database concerning this important symbiosis, MycoDB may prove particularly useful
for the development of meta-analysis educational curriculum or statistics tutorials using ecological data.
In a classroom setting, for example, the database could be used in demonstrations of single predictor
meta-analyses, which could then be followed up with comparison of multiple moderator meta-analyses to
demonstrate the consequences of correlated predictors. Subsets of the data could support investigation of
the advantages of larger datasets in overcoming problems of correlated predictors, thereby promoting
exploration of context-dependency in future meta-analyses.

Data Records
Data record 1
The database file in csv format, titled ‘MycoDB_version1.csv’ (February 5, 2016 version), was uploaded to
the Dryad Digital Repository (Data Citation 1). Detailed meta-data for each column is located in
Table 1 (available online only) of this Data Descriptor article. Taxonomic information on plant species
and fungal genera contained in the database are included in Supplementary File 1 of this article.

Data record 2
The phylogenetic tree of mycorrhizal fungal genera present in Data record 1, in txt format and titled
‘FungalTree_version1.txt’ (February 5, 2016 version), was uploaded to the Dryad Digital Repository
(Data Citation 1). The file contains the fungal genera composite phylogeny in the Newick tree format.

Data record 3
The phylogenetic tree of plant hosts present in Data record 1, in txt format and titled
‘PlantTree_version1.txt’ (February 5, 2016 version), was uploaded to the Dryad Digital Repository
(Data Citation 1). The file contains the plant composite phylogeny in the Newick tree format.

Technical Validation
We devised several layers of methods to ensure the quality of the data in MycoDB. First, random
sampling of publications that resulted from our initial searches was conducted to reduce bias in which
data were included in the database. Second, on the front end, data collection was conducted using a web-
based custom data entry system with organized fields and drop down menus to reduce data entry error24.
This approach also allowed data collection to be conducted simultaneously and remotely by multiple
users. After front-end data entry by users, database administrators conducted back-end database content
management to validate data integrity by examining distributions and outliers as well as iteratively hand-
checking random subsets of papers for accuracy. We used the United States Department of Agriculture
PLANTS Database44 and The Plant List version 1.145 to verify and update scientific names and life
histories for each species included in MycoDB. Database administrators hand checked outliers and
returned to original papers when data were missing, as well as added moderator variables and edited
moderator levels to facilitate specific meta-analyses. Finally, for the local adaptation study subset of
MycoDB, all entries were compared with the original paper and corrected when necessary. The data
validation methods used to create MycoDB satisfy all data-related compliance criteria designed to
promote methodological quality in ecological meta-analyses46.

Usage Notes
MycoDB is deposited in the Dryad Digital Repository at http://dx.doi.org/10.5061/dryad.723m1 and
publicly available under the CC0 public domain dedication, given proper scholarly citation of the version
used and this data descriptor. We recommend that, prior to publication, users validate data subsets
against original publications.
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