53 research outputs found

    Eco-friendly strategy for the joint valorization of invasive macroalgae and fast-growing wood to produce advanced biofuels

    Get PDF
    A novel sustainable scheme to jointly valorize Sargassum muticum (Sm) and Paulownia wood (PW) was proposed in this work, employing the advanced environmentally friendly microwave-assisted autohydrolysis (MA) as pretreatment. Sm is an invasive macroalga that has been drastically spread in the Atlantic coast of Europe, causing environmental damage. Conversely, Paulownia elongata x fortunei is a fast-growing biomass with a high biomass production and potential for biofuels production. Thus, the concomitant valorization of both biomasses may lead to benefits related to environmental protection and bioeconomy. A sequential approach was proposed: first stage of glucose production from Sm (treated by MA and enzymatic hydrolysis to obtain a glucose-rich liquor), and second stage with MA-pretreated PW followed by saccharification and fermentation, employing in this process the glucose rich solution obtained from algae, to obtain simultaneously second and third generation bioethanol. These approaches enabled to add the ethanol production from both biomasses, leading to up to 45.2 g ethanol/L (70% ethanol yield), boosting ethanol titers compared to using only one biomass (up to 27.8 g/L) and confirming the benefits of combining MA-processed biomass. Furthermore, up to 87% of the energy may be recovered, reflecting a suitable approach within an integrated strategy.Agencia Estatal de Investigación | Ref. PID2019-110031RB-I00Agencia Estatal de Investigación | Ref. CNS2022-136095Xunta de Galicia | Ref. ED431C 2017/62-GRCXunta de Galicia | Ref. ED481B-2022-020Agencia Estatal de Investigación | Ref. RYC2018-026177-IAgencia Estatal de Investigación | Ref. RYC2020-030690-IUniversidade de Vigo/CISU

    Microwave-assisted extraction of hemicellulosic oligosaccharides and phenolics from Robinia pseudoacacia wood

    Get PDF
    Financiaciado para publicación en acceso aberto: Universidade de Vigo/CISUGMicrowave-assisted autohydrolysis is an environmentally friendly intensification technology that permits the selective solubilization of hemicelluloses in form of oligosaccharides in a short time and with low energy consumption. The purpose of this work was to evaluate the suitability of microwave-assisted autohydrolysis to produce oligosaccharides and phenolics with potential prebiotic and antioxidant activities from Robinia pseudoacacia wood. The influence of treatment time (0–30 min) and temperature (200–230 ◦C) on oligosaccharide production was studied and conditions of 230 ◦C and 0.25 min resulted in maximum content of xylooligosaccharides (7.69 g XO/L) and more efficient energy consumption. Furthermore, under those conditions, liquors showed high contents of phenols (80.28 mg GAE/g of RW) and flavonoids (44.51 RE/g) with significant antioxidant activities (112.07 and 102.30 mg TE/g, measured by ABTS and FRAP tests, respectively). Additionally, the solubilized hemicelluloses were structurally characterized by HPAEC-PAD, MALDI-TOF-MS, FTIR and TGA/DSC, and HPLC-ESI-MS analysis allowed the tentative identification of 17 phytochemicals.Ministerio de Economía y Competitividad | Ref. PID2019-110031RB-I00Xunta de Galicia | Ref. ED431C 2017/62-GRCMinisterio de Ciencia e Innovación | Ref. FPU21/02446Ministerio de Ciencia e Innovación | Ref. PRE 2020 093359Ministerio de Ciencia e Innovación | Ref. RYC2018-026177-IXunta de Galicia | Ref. ED481B-2022-02

    Synergetic effect of hydrothermal and deep eutectic solvents (DES) pretreatments on Robinia wood fractionation for the manufacture of bioethanol and cellulose nanocrystals

    Get PDF
    This study dealt with the use of environmentally friendly processes based on microwave-assisted autohydrolysis (MAA) and deep eutectic solvents (DES) for the selective fractionation of Robinia pseudoacacia wood (RW) within a biorefinery approach. MAA enabled the recovery of 76% of hemicelluloses in the form of oligomers. Afterwards, different conditions were assessed for the optimal delignification of RW with the DES choline chloride combined with lactic acid reaching delignification ratios up to 86%. Two different methods were accomplished to valorize the cellulosic-rich solid fraction after delignification: (i) bioethanol via enzymatic-fermentative pathway (attaining 53.3 g ethanol/L, about 83% of ethanol yield), and (ii) cellulose nanocrystals (length of 27–550 nm, width of 2–12 nm). Hence, this study presents a novel multiproduct biorefinery to selectively separate the main components of RW and valorize its cellulosic fraction using eco-friendly proceduresUniversidade de Vigo/CISUGMinisterio de Economía| Ref. PID2019-110031RB-I00Xunta de Galicia | Ref. ED431C 2017/62-GRCMinisterio de Ciencia, Innovación y Universidades | Ref. FPU21/02446Ministerio de Ciencia, Innovación y Universidades | Ref. PRE2020-093359Ministerio de Ciencia, Innovación y Universidades | Ref. RYC2018-026177-IXunta de Galicia | Ref. ED481B-2022-02

    Microwave-assisted autohydrolysis of avocado seed for the recovery of antioxidant phenolics and glucose

    Get PDF
    This study describes the valorization of avocado seed (AS) within a green biorefinery concept using microwave-assisted autohydrolysis. After the treatment at temperatures of 150–230 ◦C for 5 min, the resulting solid and liquor were characterized. The temperature of 220 ◦C led to the simultaneous optimal values of antioxidant phenolics/flavonoids (42.15 mg GAE/g AS, 31.89 RE/g AS, respectively) and glucose + glucooligosaccharides (38.82 g/L) in the liquor. Extraction with ethyl acetate allowed the recovery of the bioactive compounds while maintaining the polysaccharides in the liquor. The extract was rich in vanillin (99.02 mg/g AS) and contained several phenolic acids and flavonoids. The solid phase and the phenolic-free liquor were subjected to enzymatic hydrolysis to produce glucose, reaching values of 9.93 and 105 g glucose/L, respectively. This work demonstrates that microwave-assisted autohydrolysis is a promising technology to obtain fermentable sugars and antioxidant phenolic compounds from avocado seeds following a biorefinery scheme.Universidade de Vigo/CISUGXunta de Galicia | Ref. ED431C 2017/62-GRCXunta de Galicia | Ref. ED431F 2020/03Xunta de Galicia | Ref. ED481B-2022-020Ministerio de Ciencia, Innovación y Universidades | Ref. FPU21/02446Ministerio de Ciencia, Innovación y Universidades | Ref. FJC2021-046978-IMinisterio de Ciencia, Innovación y Universidades | Ref. RYC2018-024846-IMinisterio de Ciencia, Innovación y Universidades | Ref. RYC2018-026177-

    Co-valorization of discarded wood pinchips and sludge from the pulp and paper industry for production of advanced biofuels

    Get PDF
    Several lignocellulosic wastes are generated in the pulp and paper industry (PPI), such as small wood chips (pinchips) and paper sludge, presenting a high cellulose content suitable to be converted into biofuels or bio-products in a forest biorefinery scheme. In this work, two schemes of biorefinery were proposed for their valorization, processing small eucalyptus wood pinchips in two different strategies: (i) autohydrolysis at 230ºC, and (ii) autohydrolysis at 195ºC followed by organosolv process (47.7% ethanol-water, 198ºC for 60 min). More than 95% of cellulose was recovered in both schemes. In the combined process, 76% of delignification was achieved and 78% of xylan was solubilized as xylooligosaccharides. To reduce operational cost of lignocellulosic biomass-to-ethanol fermentation, the mixture of the treated eucalyptus pinchips from two processes with sludge was also proposed to increase the initial glucan content and to supply a rich source of nitrogen (present in the sludge). For that, two experimental designs were carried out for ethanol production by simultaneous saccharification and fermentation (SSF) process. Ethanol from SSF assays using sludge as co-substrate at 0.6 g of sludge/g of treated wood pinchips and 16 FPU/g of pretreated solids allowed to obtain 59 g/L (90% of conversion) and 46 g/L (96% of conversion) when blended with the wood from autohydrolysis and with the wood from autohydrolysis followed by organosolv, respectively. Overall, this study shows an alternative process valorization of biomasses derived from PPI for production of advanced biofuels and bio-products (such as xylooligosaccharides and lignin) contributing to achieving a circular economy.Xunta de Galicia | Ref. ED431C 2017/62Xunta de Galicia | Ref. ED431F 2022/09Xunta de Galicia | Ref. ED481B-2022-020Agencia Estatal de Investigación | Ref. RYC2020-030690-IUniversidade de Vigo/CISU

    Recent advances in biorefineries based on lignin extraction using deep eutectic solvents: A review

    Get PDF
    Considering the urgent need for alternative biorefinery schemes based on sustainable development, this review aims to summarize the state-of-the-art in the use of deep eutectic solvent pretreatment to fractionate lignocellulose, with a focus on lignin recovery. For that, the key parameters influencing the process are discussed, as well as various strategies to enhance this pretreatment efficiency are explored. Moreover, this review describes the challenges and opportunities associated with the valorization of extraction-derived streams and highlights recent advancements in solvent recovery techniques. Furthermore, the utilization of computational models for process design and optimization is introduced, as the initial attempts at the economic and environmental assessment of this lignocellulosic bioprocess based on deep eutectic solvents. Overall, this review offers a comprehensive perspective on the recent advances in this emerging field and serves as a foundation for further research on the potential integration of deep eutectic pretreatment in sustainable multi-product biorefinery schemes.Agencia Estatal de Investigación | Ref. PID2019-110031RB-I00Agencia Estatal de Investigación | Ref. TED2021-132088B-I00Xunta de Galicia | Ref. ED431C 2021/46-GRCXunta de Galicia | Ref. ED431F 2022/09 k251Universidade de Vigo/CISU

    The chemical, microbiological and volatile composition of kefir-like beverages produced from red table grape juice in repeated 24-h fed-batch subcultures

    Get PDF
    The aim of this work was to study the production of kefir-like beverages via the fed-batch fermentation of red table grape juice at initial pHs of 3.99 (fermentation A) and 5.99 (fermentation B) with kefir grains during 4 repeated 24-h fed-batch subcultures. All kefir-like beverages (KLB) were characterized by low alcoholic grade (≤3.6%, v/v) and lactic and acetic acid concentrations. The beverages obtained from fermentation B had lower concentrations of sugars and higher microbial counts than the KLB obtained in fermentation A. Additionally, the KLB samples from fermentation B were the most aromatic and had the highest contents of alcohols, esters, aldehydes and organic acids, in contrast with the nonfermented juice and KLB from fermentation A. These results indicate the possibility of obtaining red table grape KLB with their own distinctive aromatic characteristics and high content in probiotic viable cells, contributing to the valorization of this fruit.Ministerio de Ciencia, Innovación y Universidades | Ref. FPU16/04077Universidad Nacional de Jaén (Perú) | Ref. 2017-I-PRONABEC—Per

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    corecore