5,842 research outputs found

    THE UNSYSTEMATIC SURVIVAL OF SYSTEMS: THE PARASITE, THE JOKER AND THE BRICOLEUR IN MICHEL SERRES AND CLAUDE LEVI-STRAUSS

    Get PDF
    With our increasing reliance on systems from information theory to economics, it is important to understand how systems are constructed, how they break down and how they preserve themselves. The philosopher Michel Serres in his work The Parasite showed how systems can never preserve their order in a pure manner; they always involve noise and lost signals. He explores this by employing the idea of parasitism from biology. But the problem remains of how systems maintain themselves in the face of parasitism. This paper will explore the concept of bricolage conceived by structural anthropologist Claude Levi-Strauss in his seminal work The Savage Mind. This concept can be found within a single ambiguous quotation by Serres in The Parasite, but remains undeveloped. This article will therefore develop these connections between bricolage and parasitism, and show how bricolage is important to the adaptation of any system to change

    Comparison of |Q|=1 and |Q|=2 gauge-field configurations on the lattice four-torus

    Get PDF
    It is known that exactly self-dual gauge-field configurations with topological charge |Q|=1 cannot exist on the untwisted continuum 4-torus. We explore the manifestation of this remarkable fact on the lattice 4-torus for SU(3) using advanced techniques for controlling lattice discretization errors, extending earlier work of De Forcrand et. al. for SU(2). We identify three distinct signals for the instability of |Q|=1 configurations, and show that these manifest themselves early in the cooling process, long before the would-be instanton has shrunk to a size comparable to the lattice discretization threshold. These signals do not appear for our |Q|=2 configurations. This indicates that these signals reflect the truly global nature of the instability, rather than local discretization effects. Monte-Carlo generated SU(3) gauge field configurations are cooled to the self-dual limit using an O(a^4)-improved gauge action chosen to have small but positive O(a^6) errors. This choice prevents lattice discretization errors from destroying instantons provided their size exceeds the dislocation threshold of the cooling algorithm. Lattice discretization errors are evaluated by comparing the O(a^4)-improved gauge-field action with an O(a^4)-improved action constructed from the square of an O(a^4)-improved lattice field-strength tensor, thus having different O(a^6) discretization errors. The number of action-density peaks, the instanton size and the topological charge of configurations is monitored. We observe a fluctuation in the total topological charge of |Q|=1 configurations, and demonstrate that the onset of this unusual behavior corresponds with the disappearance of multiple-peaks in the action density. At the same time discretization errors are minimal.Comment: 12 pages, 9 figures, submitted to Phys. Rev.

    Navigability Analysis of Natural Terrains with Fuzzy Elevation Maps from Ground-based 3D Range Scans

    Get PDF
    Mobile robot navigation through natural terrains is a challenging issue with applications such as planetary exploration or search and rescue. This paper proposes navigability assessment of natural terrains scanned from ground-based 3D laser rangefinders. A continuous model of the terrain is obtained as a fuzzy elevation map (FEM). Based on this model, the proposed solution incorporates terrain navigability both in terms of uncertainties of the 3D input data and slope of the fuzzy surface. Moreover, the paper discusses the application of this method for local path planning. For this purpose, the Bug algorithm has been adapted to compute local paths on the navigable region of the FEM. The method has been applied to actual 3D point clouds on two different experimental sites.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech. This work was partially supported by the Spanish CICYT project DPI 2011-22443 and the Andalusian project PE-2010 TEP-6101

    Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-Binding and Activating motif

    Get PDF
    Heterotrimeric G proteins are quintessential signalling switches activated by nucleotide exchange on Gα. Although activation is predominantly carried out by G-protein-coupled receptors (GPCRs), non-receptor guanine-nucleotide exchange factors (GEFs) have emerged as critical signalling molecules and therapeutic targets. Here we characterize the molecular mechanism of G-protein activation by a family of non-receptor GEFs containing a Gα-binding and -activating (GBA) motif. We combine NMR spectroscopy, computational modelling and biochemistry to map changes in Gα caused by binding of GBA proteins with residue-level resolution. We find that the GBA motif binds to the SwitchII/α3 cleft of Gα and induces changes in the G-1/P-loop and G-2 boxes (involved in phosphate binding), but not in the G-4/G-5 boxes (guanine binding). Our findings reveal that G-protein-binding and activation mechanisms are fundamentally different between GBA proteins and GPCRs, and that GEF-mediated perturbation of nucleotide phosphate binding is sufficient for Gα activation

    Supporting‐electrolyte‐free electrochemical methoxymethylation of alcohols using a 3D‐printed electrosynthesis continuous flow cell system

    Get PDF
    We describe the development of a novel low‐cost small‐footprint 3D‐printed electrosynthesis continuous flow cell system that was designed and adapted to fit a commercially available Electrasyn 2.0. The utility and effectiveness of the combined flow/electrochemistry system over the batch process was demonstrated in the development of an improved and supporting‐electrolyte‐free version of our anodic methoxymethylation of alcohols

    MIRA: Mental Imagery for Robotic Affordances

    Full text link
    Humans form mental images of 3D scenes to support counterfactual imagination, planning, and motor control. Our abilities to predict the appearance and affordance of the scene from previously unobserved viewpoints aid us in performing manipulation tasks (e.g., 6-DoF kitting) with a level of ease that is currently out of reach for existing robot learning frameworks. In this work, we aim to build artificial systems that can analogously plan actions on top of imagined images. To this end, we introduce Mental Imagery for Robotic Affordances (MIRA), an action reasoning framework that optimizes actions with novel-view synthesis and affordance prediction in the loop. Given a set of 2D RGB images, MIRA builds a consistent 3D scene representation, through which we synthesize novel orthographic views amenable to pixel-wise affordances prediction for action optimization. We illustrate how this optimization process enables us to generalize to unseen out-of-plane rotations for 6-DoF robotic manipulation tasks given a limited number of demonstrations, paving the way toward machines that autonomously learn to understand the world around them for planning actions.Comment: CoRL 2022, webpage: https://yenchenlin.me/mir

    Eta bound states in nuclei: a probe of flavour-singlet dynamics

    Get PDF
    We argue that eta bound states in nuclei are sensitive to the singlet component in the eta. The bigger the singlet component, the more attraction and the greater the binding. Thus, measurements of eta bound states will yield new information about axial U(1) dynamics and glue in mesons. Eta - etaprime mixing plays an important role in understanding the value of the eta-nucleon scattering length.Comment: 8 pages, version to appear in PL
    • 

    corecore