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Abstract— Mobile robot navigation through natural terrains
is a challenging issue with applications such as planetary explo-
ration or search and rescue. This paper proposes navigability
assessment of natural terrains scanned from ground-based
3D laser rangefinders. A continuous model of the terrain is
obtained as a fuzzy elevation map (FEM). Based on this model,
the proposed solution incorporates terrain navigability both in
terms of uncertainties of the 3D input data and slope of the
fuzzy surface. Moreover, the paper discusses the application
of this method for local path planning. For this purpose, the
Bug algorithm has been adapted to compute local paths on the
navigable region of the FEM. The method has been applied to
actual 3D point clouds on two different experimental sites.

I. INTRODUCTION

Three-dimensional (3D) point clouds provide valuable

information in mobile robotics applications such as planetary

exploration [1] [2] [3] [4], urban search and rescue [5] [6],

and navigation on natural terrain [7]. However, as point

cloud maps require coping with a huge amount of spatial

information [8] [9], a simplified and compact representation

of navigable terrain is necessary for motion planning [1] or

tele-operation [10].

Elevation maps offer a compact two dimensional model of

terrain surface. In robotics, these maps have been represented

as regular grids [11] [12] and as irregular triangular meshes

[4] [13]. Removal of artifacts (i.e., triangles in concavities

and sensor shadows) and mesh simplification algorithms,

like JADE mesh decimation [14] and QSlim vertex clus-

tering [15], provide more compact and reliable maps [1].

Nevertheless, tessellated models have limitations in the face

of incomplete and uncertain sensor data, as well as in

scalability. Alternatively, the use of Adaptive Neural-based

Fuzzy Inference System (ANFIS) [16] was proposed in [17]

to model natural terrain as a continuous Fuzzy Elevation Map

(FEM).

For tessellated terrain representations, the path planning

problem can be formulated as a graph-search problem to

minimize a cost function that combines distance and terrain

difficulty [4] [18]. Path planning in outdoors has also been

addressed with Voronoi diagrams to maintain the robot far

from non-traversable zones [19] and potential fields based

on harmonic functions to avoid local minima [20].

Nevertheless, terrain assessment is a relevant problem that

has to be solved prior to path planning and it is very depen-

dent on the environment model. In outdoor environments,

terrain difficulty has been quantified in terms of slope and

roughness [4] [19]. Besides, a major difficulty arises from

propagating uncertainties of 3D data to path planning [18]

[21].

This paper proposes navigability assessment in natural ter-

rains represented by FEMs obtained from ground-based 3D

laser scans. The assessment captures both model reliability

in terms of 3D data availability as well as terrain slope. The

proposed processing of the FEM can be useful for local path

planning, as illustrated with examples from actual 3D scans.

The paper is organized as follows. Next section reviews

natural terrain modeling with FEMs. The extraction of the

navigable area on FEMs is proposed in Section III. Section

IV presents local path planning on assessed traversable

terrain. Section V discusses experimental results. Last section

is devoted to conclusions and future work.

II. FUZZY ELEVATION MAPS

This section briefly reviews the computation of a local

FEM from a single range image taken from an onboard

laser scanner [17]. The method, which is outlined in Fig.

1, assumes that:

• The local frame of the 3D rangefinder has its Y and Z
axes pointing forwards and upwards, respectively.

• The ground surface can be represented as a function z =
H(x, y), where x and y are the Cartesian coordinates

on the XY plane and z is the corresponding elevation.

• The FEM is defined in the universe Ux =
[−umax, umax] for variable x, and Uy = [0, umax] for

y, which corresponds to a 2umax × umax rectangular

area in the forward direction of the sensor.

The method uses ANFIS [16] to identify rule parame-

ters from a set of training Cartesian points (see Fig. 1).

Representative training points are subsampled from the raw

scan by selecting the maximum height point within grid

cells of a sufficiently high resolution δ. In [17], first-order

Sugeno inference was used, which requires identifying three

consequent parameters per rule.

An uneven membership function distribution provides an

appropriate fuzzy structure if the density of MFs for variables

x and y is specified depending on the distance to the sensor.

Thus, higher detail is captured for the regions that are closest

to the robot where the next movements will take place.
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Fig. 1. Overview of the method to obtain a FEM from a raw scan [17].

The FEM filters sensor noise and interpolates missing

data from small shadowed areas. However, it can provide

completely erroneous estimations in larger regions with no

input data. These shadowed regions are frequent in ground-

based scans of natural terrain. To solve this problem, a

fuzzy reliability mask was proposed as a continuous function

v = V (x, y), where v ∈ [0, 1] for inputs x ∈ Ux and

y ∈ Uy . For this purpose, an occupancy binary matrix is

computed from the subsampled scan points. This matrix

represents an XY grid with uniform resolution δ, where

ones and zeroes are assigned to positions corresponding to

cells with or without points, respectively. Then, the reliability

training data consists of the set of all matrix values with their

corresponding XY coordinates (see Fig. 1). Regions with v
close to one mean that H(x, y) is reliable and reliability

decreases as v approaches zero. This function can be trained

with ANFIS with the same fuzzy structure as in the FEM. By

applying the fuzzy reliability mask to the FEM, unreliable

regions whose v value is under a threshold value vt can be

discarded.

III. NAVIGABLE AREA ASSESSMENT

This section proposes processing the FEM to assess re-

gions where terrain inclination is acceptable for vehicle

navigation. The gradient of the FEM can be directly obtained

without computing increments from sampled points. This

analysis will be combined with the reliable fuzzy region to

obtain the navigable area from a ground-based 3D scan.

For simplicity, let rule parameters be systematically de-

fined by triangular sets with standard fuzzy partition (SPF)

[22] as well as zero order Sugeno-type inference. SPF

triangular MFs Fi for a given variable u in the universe U
are defined as:

μFi
(u) =

⎧⎪⎨
⎪⎩

u−fi−1

fi−fi−1
if fi−1 ≤ u < fi,

fi+1−u
fi+1−fi

if fi ≤ u < fi+1,

0 otherwise,

(1)

where fi is the peak parameter, i.e., μFi
(fi) = 1. In the

proposed FEM solution, i = −k, ..., 0, 1, ..., k for the x
variable and i = 0, 1, ..., k for u = y. This definition yields

(2k + 1) MFs for x and (k + 1) MFs for y. Note that for

the upper limit of U , where fk = umax, the second case in

(1) does not apply. Similarly, the first case in (1) does not

apply for the lower limit of U .

Uneven SPF MFs are defined by computing the peak

parameter fi as:

fi = sign(i)

(
r|i| − 1

rk − 1

)
umax, (2)

where r > 1 is the expansion ratio.

Using zero-order Sugeno consequents Gij for the rule that

relates Fi(x) and Fj(y) requires just one parameter aij :

Gij(x, y) = aij . (3)

The firing strength of each rule ωij can be calculated using

the product operator:

ωij(x, y) = μFi(x)μFj (y), (4)

where SPF MFs satisfy:∑
∀i,j

ωij(x, y) = 1. (5)

Thus, the elevation z associated to (x, y) can be calculated

from the FEM as:

z = H(x, y) =
∑
∀i,j

(ωij(x, y) aij) . (6)

Then, the gradient ∇H for every (x, y) can be directly

calculated as:

∇H(x, y) =

⎛
⎝ ∂ z

∂x

∂ z
∂y

⎞
⎠ =

⎛
⎜⎝

∑
∀i,j

(
∂ μFi

(x)

∂x μFj
(y) aij

)
∑
∀i,j

(
μFi(x)

∂ μFj
(y)

∂y aij

)
⎞
⎟⎠ ,

(7)

where:

∂ μFi
(u)

∂u
=

⎧⎨
⎩

1
fi−fi−1

if fi−1 ≤ u < fi,
−1

fi+1−fi
if fi ≤ u < fi+1,

0 otherwise.

(8)

The value given by (7) is a representation of terrain

inclination. Therefore, non traversable areas can be identified

if their gradient magnitude

|∇H(x, y)| =
√(

∂ z

∂x

)2

+

(
∂ z

∂y

)2

, (9)

is above a threshold value h that depends on the locomotion

mechanism of the mobile robot. Even if the proposed assess-

ment can be applied to the complete universe of discourse,

the analysis can be restricted to the reliable regions of the

FEM for computation efficiency.



IV. LOCAL PATH PLANNING

The proposed FEM navigability assessment can be useful

for local path planning on natural terrain. This is illustrated

in this section, where we propose a simple solution based

on the well known Bug algorithm [23] to plan a continuous

path towards a goal point by avoiding non traversable areas.

An overview of the proposed approach is presented in Fig.

2.

In particular, the Bug0 algorithm [24] heads towards a

goal point until it reaches an obstacle; then, the obstacle is

circumnavigated until the goal point is visible again. This

local path planning strategy is compatible with global paths

composed of distant way points that are meant to be reached

in straight line motion from the current robot pose [25] [26].

Bug0 requires computing a 2D binary representation of the

environment that distinguishes between non navigable and

navigable areas from the 2.5D FEM. Thus, non-navigable

areas are treated as obstacles and the rest as free space.

Furthermore, as the robot is not punctual, the Minkowski

sum is applied to enlarge obstacles. The resulting binary

representation may have unconnected free space zones that

cannot be reached from the robot pose (i.e., x = y =
0). Thus, only the reachable area will be considered for

computing the local path.

Moreover, the goal point may fall beyond the range of the

reachable area, so a subgoal has to be established. In the

proposed solution, this subgoal is chosen as the point on the

border of the reachable region that minimizes the distance to

the global goal point. Then, the objective of Bug0 is heading

towards this subgoal.

V. EXPERIMENTAL RESULTS

This section discusses the application of the proposed

navigability assessment for local path planning. For this

purpose, two natural terrains have been scanned (see Fig.

3) with a 3D rangefinder [27] built by pitching a Hokuyo

UTM-30LX 2D rangefinder whose maximum range is 30 m.

The laser sensor is mounted 0.7 m above the ground on

the 4-wheel skid-steer mobile robot Quadriga [28] (see Fig.

4). Besides, Quadriga has an inertial measurement unit with

Take3Dscan 

Obtain FEM 

Navigability 
assessment 

2D binary 
representation 

Establish 
subgoal 

Bug0 

Navigate 

Fig. 2. Local path planning overview.

inclinometers and a Global Positioning System with Differ-

ential corrections (DGPS). Inclinometers can be employed

to check tipover stability during navigation. Furthermore, the

DGPS can provide the distance and heading with respect to

the next way point in outdoor missions.

The point clouds from both scans are shown in Fig. 5.

The FEMs computed from these scans with k = 9, r = 1.3,

umax = 10 m and δ = 0.1 m have been overlaid on this

figure, and as a top view in Figs. 6(a) and 7(a). Red and

blue colors mean higher and lower elevations, respectively.

In both cases, the complete terrain model is represented with

only 190 rules and a total of 219 floating point parameters.

These fuzzy surfaces contain artifacts with extreme elevation

values in regions without training data, as those around the

white patches in the top view.

The fuzzy reliability mask computed for both scans is

shown in Figs. 6(b) and 7(b). Red and blue colors mean

higher and lower reliability, respectively, according to the

availability of training data. The application of the masks

on their corresponding FEMs with a threshold of vt = 0.1
can be observed in Figs. 6(c) and 7(c). Discarded areas are

represented in white.

Fig. 3. The first (top) and second (bottom) experimental sites.

Fig. 4. Quadriga mobile robot with onboard 3D rangefinder.



Fig. 5. Point clouds from the first (top) and second (bottom) scans and
resulting FEMs.

The gradient magnitude |∇H| computed with (9) for both

scans is shown in Figs. 6(d) and 7(d). Red and blue colors

mean higher and lower sloped regions, respectively. The

application of a threshold of h = 0.5, which corresponds

to a maximum slope of arctan(h) = 26.6◦, can be observed

in Figs. 6(e) and 7(e). Discarded areas are represented in

white.

The navigable areas in the FEMs are shown in Figs.

8(a) and 9(a). The color difference between both figures is

explained by general terrain inclination of the experimental

sites, which is downwards (blue) in the first case and upwards

(green) in the second.

The reachable regions for both FEMs after applying the

Minkowski sum for the largest robot dimension and elimi-

nating unconnected areas are shown in Figs. 8(b) and 9(b).

Two different local path planning examples are illustrated in

each figure with distant goal points at ±30◦ headings, which

are shown as discontinuous red lines. The corresponding

subgoals for Bug0 are denoted as ’o’s. A 3D representation of

the resulting paths on their corresponding FEMs is presented

in Figs. 8(c) and 9(c).

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes navigable area assessment from fuzzy

elevation maps (FEMs) of natural terrain obtained from

a ground-based 3D laser scan. This solution incorporates

terrain navigability both in terms of uncertainties of the 3D

input data and slope of the fuzzy surface.

The proposed processing of the FEM can be useful for

local path planning. For this purpose, the Bug algorithm

has been adapted for obtaining local paths on the navigable

(a)

(b)

(c)

(d)

(e)

Fig. 6. Processing of the first scan: (a) Top view of the FEM, (b) fuzzy
reliability mask, (c) FEM with reliability v > 0.1, (d) FEM gradient, and
(e) FEM with |∇H| < 0.5.



(a)

(b)

(c)

(d)

(e)

Fig. 7. Processing of the second scan: (a) Top view of the FEM, (b) fuzzy
reliability mask, (c) FEM with reliability v > 0.1, (d) FEM gradient, and
(e) FEM with |∇H| < 0.5.

(a)

(b)

(c)

Fig. 8. First experimental site: Navigable area (a), local planned paths
with two hypothetical headings for the goal points (b), and 3D view of the
paths (c).

region of the FEM. This has been applied to actual 3D scans

on two different experimental sites.

Future work includes navigation tests with the Quadriga

mobile robot. Moreover, we are currently working on an

improvement of FEM-based navigability assessment by re-

moving overhanging objects like tree branches.
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