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It is known that exactly self-dual gauge-field configurations with topological charge |Q| = 1 cannot
exist on the untwisted continuum 4-torus. We explore the manifestation of this remarkable fact on
the lattice 4-torus for SU(3) using advanced techniques for controlling lattice discretization errors,
extending earlier work of De Forcrand et al for SU(2). We identify three distinct signals for the
instability of |Q| = 1 configurations, and show that these signals manifest themselves early in the
cooling process, long before the would-be instanton has shrunk to a size comparable to the lattice
discretization threshold. These signals do not appear for the individual instantons which make up
our |Q| = 2 configurations. This indicates that these signals reflect the truly global nature of the
instability, rather than the local discretization effects which cause the eventual disappearance of the
would-be single instanton. Monte-Carlo generated SU(3) gauge field configurations are cooled to
the self-dual limit using an O(a4)-improved gauge action chosen to have small but positive O(a6)
errors. This choice prevents lattice discretization errors from destroying instantons provided their
size exceeds the dislocation threshold of the cooling algorithm. Lattice discretization errors are
evaluated by comparing the O(a4)-improved gauge-field action with an O(a4)-improved action con-
structed from the square of an O(a4)-improved lattice field-strength tensor, thus having different
O(a6) discretization errors. The number of action-density peaks, the instanton size and the topolog-
ical charge of configurations is monitored. We observe a fluctuation in the total topological charge
of |Q| = 1 configurations, and demonstrate that the onset of this unusual behavior corresponds with
the disappearance of multiple-peaks in the action density. At the same time discretization errors
are minimal.

PACS numbers: 12.38.Gc, 11.15.Ha, 11.15.Kc

I. INTRODUCTION

Instantons are self-dual classical solutions of the Yang-
Mills equations which play several important roles in
Quantum Chromodynamics (QCD) [1, 2, 3, 4, 5]. Much
is known about their properties and their semiclassical
consequences in flat four-dimensional spacetime. On the
other hand, at present the most powerful nonperturba-
tive approach to QCD is lattice QCD, where spacetime
is discretized. A discrete lattice with periodic boundary
conditions is in fact a four-toroidal mesh that approaches
a continuum 4-torus in the continuum limit (a → 0).
The properties of instantons on a continuum four-torus
T

4 differ in interesting ways from those of instantons on
R

4 [6]. In particular, while simple explicit expressions
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for multi-instantons are known on R
4 (and on S

4) via
the ADHM construction [7, 8], no such concrete results
are known on the continuum four-torus. The only known
explicit instanton solutions on T

4 are quasi-abelian and
of constant field strength [9]. This lack of analytic in-
formation gives additional motivation to the study of in-
stantons in lattice QCD, where instanton (i.e. self-dual)
configurations can be obtained by the technique of cool-
ing, which has the goal of lowering the action S of the
configuration without changing its topological charge Q.
The action is bounded below by the topological charge
(in suitable units), and a numerical instanton configura-
tion is obtained when this bound is saturated.

The existence on T
4 of instantons of topological charge

|Q| ≥ 2 was proved long ago by Taubes [10]. However,
for periodic boundary conditions it can be proved that
|Q| = 1 instantons cannot exist on T

4 [11]. This is an
elegant corollary of a result known as the Nahm Trans-
form [12], which is an involution that maps an SU(N)
instanton of charge Q on T

4 to an SU(Q) instanton of

charge N on the dual torus T̂
4. Since U(1) does not sup-

port instantons, the Nahm transform implies that SU(N)
cannot support Q = 1 instantons. The unfortunate lack
of exact torus instanton solutions makes explicit study
of Nahm’s transform difficult, although it has been ver-
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ified in great detail [13] for the quasi-abelian constant
field torus instantons. Nahm’s construction has been
generalized [14] to incorporate twisted boundary condi-
tions, which describe additional non-abelian fluxes [15].
With such twisted boundary conditions it is possible to
have a Q = 1 instanton solution, and powerful lattice
techniques have been developed to numerically imple-
ment the Nahm transform including twisted boundary
conditions [16]. This is a tour de force of lattice gauge
theory, as it involves several highly nontrivial numeri-
cal steps: cooling the configuration; finding zero modes
of an associated Weyl-Dirac operator; reconstructing the
Nahm transformed gauge field from the zero modes; and
finally probing the self-duality properties of the trans-
formed configuration. The results provide spectacular
confirmation of the twisted Nahm transform construc-
tion [17, 18].

In this paper we address a somewhat different ques-
tion, relevant for instantons on an untwisted lattice.
We accurately cool Monte-Carlo generated configura-
tions in SU(3) with a highly improved action to produce
highly self-dual configurations with a range of topological
charges. Our goal is to probe in a detailed manner the
difference(s) between the behavior under cooling of (un-
twisted) configurations with topological charge |Q| = 1
and topological charge |Q| = 2. The possibility of ob-
serving the non-existence of self-dual |Q| = 1 configu-
rations in numerical simulations of lattice gauge theory
on the 4-torus caught the attention of the lattice QCD
community some time ago [19]. There, configurations
with |Q| = 1 were prepared by cooling Monte-Carlo gen-
erated SU(2) configurations with the standard Wilson-
Gauge action [20]. The |Q| = 1 configurations were then
cooled with improved actions toward the self-dual limit
and were observed to be unstable to improved cooling.
The topological structures were observed to shrink in size
and eventually disappear from the lattice. This was pro-
posed as lattice evidence for the non-existence of |Q| = 1
instantons on the four-torus [19].

Here, we extend this analysis in several ways, with
the goal of identifying and quantifying the impact of the
Nahm transform corollary on |Q| = 1 configurations in
SU(3) gauge theory. We find three distinct signals of
instability for the |Q| = 1 configurations. Interestingly,
these signals appear long before the would-be instantons
have shrunk to the point where they ”fall through the
lattice”. Furthermore, we show that these signals oc-
cur only for the |Q| = 1 configurations, and not for the
individual separated lumps that make up our |Q| = 2
configurations, which shows that this is really a global
rather than a local effect, as expected for the continuum
Nahm transform corollary [11].

A key part of our analysis is a precise monitoring and
minimizing of lattice discretization errors, which is cru-
cial to interpreting the results of cooling studies. Er-
rors in the discretization of the action can destabilize
instantons without regard to the topological charge of
the configuration. Improved actions are formulated to

algebraically eliminate the leading finite lattice-spacing
errors that arise as a result of approximating continuous
space-time by a discrete mesh of points. This enables
simulations to more accurately approach continuum be-
havior while still retaining a finite lattice spacing [21].
The use of such improved actions in cooling algorithms
has been shown to facilitate high-precision studies of the
properties of lattice gauge fields [19, 20, 22, 23].

A convincing demonstration of the instability of |Q| =
1 lattice instantons requires careful monitoring of the in-
stanton size and discretization errors. These are particu-
larly important, as any instanton with a size smaller than
the dislocation threshold of the cooling algorithm is elim-
inated under improved cooling, again without regard to
the topological charge of the configuration. The process
is signified by large discretization errors associated with
the small size of the object as it falls through the lattice.

This point was recognized as a caveat in the interpreta-
tion of the results of Ref. [19], as the size of the topologi-
cal structures in the configurations studied were initially
very close to the dislocation threshold of the cooling al-
gorithm. Thus, it was not possible to determine whether
the disappearance of the structure was associated with
the Nahm transform corollary, or simply the removal of a
dislocation under improved cooling. Our results suggest
that this disappearance stage of the topological charge
evolution under cooling is in fact the final stage of an
instability that manifests itself much earlier in the cool-
ing process, when the topological objects are much larger
than the dislocation threshold.

Following from the discussion above, we propose the
following criteria to identify convincingly the impact of
the Nahm transform corollary:

1. The lattice-discretized cooling action must be accu-
rate with remaining errors acting to stabilize topo-
logical structure.

2. The action and topological charge density of a
|Q| = 1 configuration must be distributed over
length scales much larger than the dislocation
threshold of the improved cooling algorithm.

3. Evidence must be presented to confirm that dis-
cretization errors in the action are minimal where
the Nahm transform corollary manifests itself.

4. Evidence that the action of the |Q| = 1 configu-
ration is approaching the self-dual limit of 8π2/g2

must be provided.

5. Moreover, one must demonstrate that the distribu-
tion of action and topological charge distributions
are approaching the classical form.

We achieve each of these criteria, in the following manner:

1. We utilize a highly-improved action free from O(a4)
errors and with slightly positive O(a6) errors [22]
to ensure the stability of instantons over several
thousands of cooling sweeps. This action is known
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as a three-loop improved action and appears better
adapted to stabilizing topology than the five-loop
improved action.

2. The size of the action and topological charge dis-
tributions are estimated by fitting the shape of the
distribution surrounding the peak of the distribu-
tion to the classical single-instanton density pro-
file. The position and size, ρ, of the distributions
are determined and compared with the dislocation
threshold of the cooling action.

3. Remaining lattice discretization errors are eval-
uated by comparing the O(a4)-improved gauge-
field action with an O(a4)-improved “reconstructed
action” obtained from the square of an O(a4)-
improved lattice field-strength tensor [22], thus
having different O(a6) discretization errors.

4. Action and “reconstructed action” results will be
reported in units of the single instanton action S0 =
8π2/g2.

5. During the cooling process we also monitor the
number of peaks in the action density. Even as
the action approaches the single instanton action,
numerous peaks in the action density can be iden-
tified. Their position and size are also monitored
as a function of cooling sweep.

This paper is set out as follows. In Section II we
briefly describe the highly-improved lattice discretiza-
tion of the continuum action, field-strength tensor, re-
constructed action, and topological charge operators. In
Section III we outline the simulation techniques and pa-
rameters. Section IV examines the evolution of |Q| = 1
configurations under improved cooling and puts the re-
sults in perspective through a direct comparison with the
behavior of |Q| = 2 configurations. Our conclusions are
presented in Section V.

II. LATTICE ACTION AND TOPOLOGICAL

CHARGE OPERATORS

The lattice version of the Yang-Mills action was first
proposed by Wilson [24]. The action is calculated from

the plaquette, W
(1×1)
µν , a closed product of four link op-

erators incorporating the link Uµ,

SWil = β
∑

x

∑

µ<ν

(

1 −
1

N
Re trW (1×1)

µν (x)

)

, (1)

=
1

2

∫

d4x tr F 2
µν(x) + O(a2) , (2)

provided β = 2N/g2 for an SU(N) field theory. We will

use the notation W
(m×n)
µν to denote the closed loop prod-

uct (Wilson loop) in the µ−ν plane with extent m lattice
spacings in the µ-direction and n lattice spacings in the

ν-direction. Similarly, the lattice topological charge is
obtained by summing the charge density over each lat-
tice site,

Q =
∑

x

g2

32π2
ǫµνρσ tr{Fµν(x)Fρσ(x)} (3)

where µ, ν, ρ, σ sum over the directions of the lattice axes.
Since the action and topological charge constructed

from different Wilson loops have different O(a2) and
higher terms we may cancel leading discretization errors
by combining the contributions of different loops. For ex-
ample, de Forcrand et al. [19, 20] have used tree-level im-
provement to construct a lattice action which eliminates
O(a2) and O(a4) errors, by using combinations of up to
five Wilson loop operators, which we denote L1, ..., L5.
In the case of rectangular loops m 6= n the contribution
of the loops in each direction is averaged, so that

L1 ≡ W (1×1)
µν ,

L2 ≡ W (2×2)
µν ,

L3 ≡
1

2

{

W (2×1)
µν + W (1×2)

µν

}

,

L4 ≡
1

2

{

W (3×1)
µν + W (1×3)

µν

}

,

L5 ≡ W (3×3)
µν . (4)

The improved action of de Forcrand et al. is a linear com-
bination of the Wilson actions calculated from L1, ..., L5,
each divided by the relevant loop area squared (in units
of a4), and respectively weighted by the constants

c1 = (19 − 55c5)/9 ,

c2 = (1 − 64c5)/9 ,

c3 = (640c5 − 64)/45 ,

c4 = 1/5 − 2c5 , (5)

with c5 as a free variable, i.e.,

S = c1S(L1)+
c2

16
S(L2)+

c3

4
S(L3)+

c4

9
S(L4)+

c5

81
S(L5).

(6)
Selecting appropriate values for c5 enables one to set the
contribution of certain loops to zero, creating so-called
3-loop (c5 = 1/10), or 4-loop (c5 = 0) improved actions.
Other values of c5 lead to 5-loop improved actions. Fol-
lowing Ref. [19, 20], we consider c5 = 1/20 (midway be-
tween the 3-loop and 4-loop values) to define the “stan-
dard” 5-loop action.

All of these actions have the same level of improve-
ment, but in general they will have different O(a6) errors.
We refer to the Wilson action, Eq. (2), constructed from
the plaquette as a 1-loop action. A 2-loop action may
be constructed [25] from 5

3L1 − 1
6L3. These definitions

of the variously-improved actions are used in our cooling
algorithm.

We construct a highly-improved lattice field-strength
tensor, analogously to the construction of the cooling ac-
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tion. The relations

W (1×1)
µν =

{

1 + ig

∮

A.dx −
g2

2
(

∮

A.dx)2 + O(g3)

}

,

W (1×1)†
µν =

{

1 − ig

∮

A.dx −
g2

2
(

∮

A.dx)2 + O(g3)

}

,

indicate the field-strength tensor may be accessed via

−i

2

(

W (1×1)
µν − W (1×1)† −

1

3
tr

(

W (1×1)
µν − W (1×1)†

µν

)

)

= g

∮

A.dx + O(g3)

= ga2Fµν(x0) + O(ga4) + O(g3a4) , (7)

where we have subtracted one-third of the trace to en-
force the traceless aspect of the Gell-Mann matrices. As
with the improved action, the improved field-strength
tensor is constructed from a combination of Wilson loops.
Our improved field-strength tensor is given by

g F Imp
µν =

[

k1C
(1,1)
µν + k2C

(2,2)
µν + k3C

(1,2)
µν +

k4C
(1,3)
µν + k5C

(3,3)
µν

]

, (8)

where C
(m,n)
µν are the clover averages of m × n and n ×

m path-ordered link products [22]. The improvement
constants take the values

k1 = 19/9− 55k5 ,

k2 = 1/36− 16k5 ,

k3 = 64k5 − 32/45 ,

k4 = 1/15− 6k5 ,

and in this case k5 is the tunable free parameter. F Imp
µν

may be inserted directly into Eq. (3) to create an im-
proved topological charge operator, or into the equation
[22, 26]

SR = β
∑

x

∑

µ,ν

1

12
tr

[

g2 F 2
µν(x)

]

. (9)

to create a “reconstructed” improved action, SR. Both
improved operators will have errors of O(a6). Errors as-
sociated with g are rapidly suppressed in the process of
cooling. Appropriate choices of k5 enable us to create
3-loop or 4-loop improved versions of the field-strength.
Our 5-loop improved field-strength tensor is defined with
k5 = 1/180, midway between the 3-loop and 4-loop values
of k5 = 1/90 and 0 respectively [22]. While the 5-loop im-
proved field-strength tensor is marginally more accurate,
it is computationally expensive. We adopt the 3-loop
improved field-strength tensor to construct the O(a4)-
improved topological charge and reconstructed action op-
erators.

Tadpole corrections to the improvement coefficients
[25] are included and updated after every cooling sweep.

Our experience [22] is that tadpole improvement factors
are beneficial in the early stages of cooling and remain
beneficial even as u0 → 1.

Previous investigations [22] have indicated the 3-loop
and 5-loop improved actions are similarly accurate in re-
producing the classical action of approximately self-dual
configurations. In some cases, the 5-loop action would
underestimate the classical action. Such errors open
the possibility of destabilizing topological structures over
several thousand cooling sweeps, regardless of the topo-
logical charge of the configuration. For the configurations
investigated in Ref. [22] the errors in the 3-loop improved
action were consistently positive; thus acting to stabilize
topology. In the following, we adopt the 3-loop improved
action.

III. LATTICE APPROACH

To investigate the stability of self-dual gauge field
configurations on the (untwisted) 4-torus, we construct
an ensemble of field configurations using the Cabibbo-
Marinari [27] pseudo-heatbath algorithm with three diag-
onal SU(2) subgroups looped over twice. We thermalize
for 5000 sweeps with an O(a2)-improved action from a
cold start (all links set to the identity) and select config-
urations every 500 sweeps thereafter [28]. Configurations
are numbered consecutively in the order that they are
produced in the Markov-chain process. Hence configura-
tion 1 was saved after 5000 thermalization sweeps from
a cold start, configuration 2 was saved 500 sweeps after
configuration 1, and so on. Our results are generated
on a 123 × 24 periodic lattice at β = 4.60, with a lattice
spacing of a = 0.122(2) fm determined by a string tension
analysis incorporating the lattice coulomb term. Cooling
is performed with a 3-loop improved action with tadpole
improvement (using the plaquette definition of the mean
link) and the topological charge is assessed with the 3-
loop improved operator. Links which may be updated in
parallel are identified and partitioned [29]. Updating the
partitioned links in parallel minimizes the drift of objects
in the cooled configurations.

As a thermalized configuration is cooled, over the
course of many hundreds of sweeps the action S of the
configuration monotonically decreases. This occurs be-
cause the cooling algorithm smooths out short-range fluc-
tuations in the field. As the high-frequency components
of the field are suppressed the underlying semi-classical
structure of the field is revealed. If cooling proceeds for
long enough the configurations will become self-dual con-
sisting only of instantons or anti-instantons.

The action, S, is bounded below by the magnitude of
the topological charge, Q, i.e.,

S ≥ S0 |Q| =
8π2

g2
|Q| , (10)

where in the continuum Q assumes an integer value [3, 4].
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The quantity S0 = 8π2

g2 is the action associated with a

single instanton and is independent of the instanton size.
As cooling is applied uniformly over the 4-volume of

the torus, configurations become locally self-dual. In
the infinite volume limit where well-separated instantons
and anti-instantons can simultaneously be present, the
total action and topological charge will approach dis-
crete values, satisfying the relations S/S0 = nI + nA

and Q = nI − nA, where nI and nA are the number of
instantons and anti-instantons present respectively. On
a finite volume, one might expect to see some plateauing
in the action density as a function of cooling sweep, when
these conditions are satisfied. However, further cooling
will lead to the annihilation of instanton–anti-instanton
pairs in the finite volume, until only instantons or only
anti-instantons remain. The configuration will then con-
tinue to cool until it achieves complete global self-duality,
i.e., S/S0 = |Q|.

As discussed in the Introduction, self-dual configura-
tions with |Q| = 1 (i.e. a single instanton or a single
anti-instanton) do not exist on the untwisted continuum
four-torus [11]. Note, of course, that configurations with
topological charge |Q| = 1 do exist; they just cannot be
made self-dual. In other words, the lower bound S ≥ S0

cannot be exactly saturated. We therefore expect to see
different behavior of |Q| = 1 and |Q| = 2 lattice config-
urations under cooling. The next section is devoted to a
study of signatures of this different behavior.

IV. COOLING COMPARISON FOR Q = 1 AND

Q = 2 CONFIGURATIONS

A. Action and Charge Evolution

Throughout the discussion of the results we will use the
following notation: the cooling action will be denoted by
S, the reconstructed action by SR and the topological
charge by Q. The type of improvement scheme used will
be denoted by a number in parentheses. Hence the 2-loop
improved cooling action, constructed from L1 and L3 is
written as S(2), our topological charge calculated from a
3-loop improved field-strength tensor is written as Q(3),
our 3-loop reconstructed action (calculated from a 3-loop
improved field-strength tensor) is written as SR(3), and
so on. The action reported throughout the cooling pro-
cess will typically be divided by S0 to facilitate the com-
parison with |Q|. Hence the curves in figures labeled as
S(n) and SR(n) actually represent the normalized action
values S(n)/S0 and SR(n)/S0 respectively.

1. |Q| = 1 Configurations

In Fig. 1 we show S(3)/S0 and |Q(3)| for configuration
64. After a small number of cooling sweeps this config-
uration rapidly settles down to a topological charge of
one. Hence we expect that under continued cooling with

FIG. 1: Topological charge, Q(3), and normalized action,
S(3)/S0, for configuration 64. Notation is described in the
text. In particular, Q and S are assessed here with the 3-loop
improved topological charge and action operators. The action
evolution flattens around 300 sweeps characteristic of a well
separated instanton anti-instanton pair. Annihilation of the
instanton anti-instanton pair follows as signified by the reduc-
tion of the action by two units, while the topological charge
remains unchanged. The nearly self-dual single instanton con-
figuration destabilizes around sweep 2700.

negligible discretization errors, it should never reach true
self-duality. We do observe a long plateau where the con-
figuration appears to closely approach self-duality. How-
ever, around cooling sweep 2700 it eventually destabilizes
and collapses to triviality. This behavior is consistent
with earlier results [19] for SU(2). We will argue in the
following that this final destabilization of the instanton is
in fact the final stage of a series of evolution stages, with
this final disappearance of the would-be instanton being
due to its small size relative to the dislocation threshold
of the cooling algorithm.

Let us now examine the same configuration with an
enhanced vertical scale as in Fig. 2. The configuration
fails to achieve self-duality before it destabilizes and be-
comes trivial. However, a very high level of accuracy is
obtained for the topological charge, Q, between sweeps
200–400. This is the region in which the action evolution
flattens with S/S0 ≃ 3 signaling approximate local self-
duality. This region provides a benchmark for the level of
accuracy that may be achieved through the use of highly
improved operators.

For sweeps 400-1400 we see the value of Q rise away
from the integer value of one. This “cresting behavior”
commences at the same time that the action leaves the
regime of S/S0 ≃ 3 and approaches the classical instan-
ton action. We note that it is well separated from the
ultimate collapse of the configuration.

The two 3-loop improved actions (S(3) and SR(3)) re-
main greater than S0|Q| as required. The two actions
deviate significantly from one another when the configu-
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ration collapses to triviality, which is indicative of large
discretization errors. Thus, this destabilization, at this
stage of the cooling process, should not be attributed to
the Nahm transform corollary. In contrast, the two ac-
tion measures agree relatively well even at the peak in
the topological charge cresting. Note that S(3)/S0 > 1,
so that errors should act to stabilize the configuration.

To illustrate the reproducible nature of these results we
also present results in Fig. 3 for configuration 11; another
|Q| = 1 configuration. Beyond 200 sweeps, the behavior
is nearly identical. Beyond approximately 1500 cooling
sweeps we see a crossing followed by a large divergence
of the action values and a sudden drop in the topological
charge. This indicates the onset of severe discretization
errors, again suggesting a small size for the nontrivial
topological structure, the “would-be” instanton.

Based on these results, we propose that the cresting of
the topological charge early in the cooling process, and
associated with the departure of S(3)/S0 from the regime
of 3 toward 1, is a distinct signature of the ultimate insta-
bility of the single instanton on the lattice. The eventual
disappearance of the would-be instanton happens much
later in the cooling process, and appears to rather be a
consequence of large discretization errors in that region.
In the next sub-section, we contrast this directly with the
behavior of |Q| = 2 configurations under cooling.

2. |Q| = 2 Configurations

To show that this cresting behavior is specific to |Q| =
1 configurations, we compare one and two instanton con-
figurations in Figs. 4 and 5. In these figures we consider
the three-loop quantities S(3)/S0 and |Q(3)|. For the
two-instanton case, we plot (S(3)/S0)−1 and |Q(3)|−1,
so that the curves for the |Q| = 1 and |Q| = 2 cases may
be directly compared. The level of self-duality achieved
by the two-instanton configurations is far superior to that
of the single-instanton configurations. The cresting be-
havior observed in the topological charge of the |Q| = 1
configurations is not seen at all for the |Q| = 2 configu-
rations.

We stress that the behavior of the |Q| = 1 configura-
tions differ significantly from that of the |Q| = 2 configu-
rations long before the |Q| = 1 configurations collapse to
triviality. Indeed, this deviation becomes manifest rela-
tively early in the cooling process. For configuration 64
of Figs. 1 and 2 the cresting behavior begins as the num-
ber of locally self-dual objects on the lattice drops from
three to one.

To confirm the consistency of this picture, it is im-
portant to know the size of these objects in order to
evaluate whether the dislocation threshold of the cool-
ing algorithm is playing a role in the evolution of the
configurations, and at what stage of the cooling process
this is important. This is the subject of the next section.

FIG. 2: Plot showing the fine detail of the |Q| = 1 configu-
ration illustrated in Fig. 1; configuration 64. The three-loop
cooling action, S(3), three-loop reconstructed action, SR(3),
and the three-loop topological charge, Q(3) are plotted. A
very high level of accuracy is obtained for the topological
charge between sweeps 200–400. A “cresting behavior” ap-
pears as S/S0 drops from ∼ 3 toward 1.

FIG. 3: The fine detail of another |Q| = 1 configuration;
configuration 11. Beyond 200 sweeps, the behavior is nearly
identical to that illustrated in Fig. 2.

B. Instanton size evolution

To investigate further the behavior of the topological
structure of these |Q| = 1 and |Q| = 2 configurations
under cooling, we implement an algorithm which iden-
tifies local peaks in the action and topological charge
densities. Peaks in the action density are identified by
finding a point at the center of a 34 hypercube whose
action density exceeds that of the neighboring 80 points
of the hypercube. The algorithm may also be applied to
the topological charge density in two steps, reversing the
sign of the topological charge density to convert valleys
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FIG. 4: Comparison of the |Q| = 1 configuration (configu-
ration 64, solid line) with a |Q| = 2 configuration (configu-
ration 90, dashed line). For the two-instanton configuration
both S(3)/S0 and |Q| have been reduced by unity so that the
curves may be directly compared with the |Q| = 1 configura-
tion. The accurate behavior of the two-instanton configura-
tion contrasts the single-instanton case.

FIG. 5: A similar comparison of a |Q| = 1 configuration (con-
figuration 11, solid line) with a |Q| = 2 configuration (config-
uration 27, dashed line). As in Fig. 4, S(3)/S0 and |Q| for
the two-instanton configuration have been reduced by unity
to allow a direct comparison of the curves with the |Q| = 1
configuration.

to peaks.
The algorithm then fits the structure of the gauge fields

around these peaks to the classical instanton form for the
action density

S(x) = ξ
6

π2

ρ4

((x − x0)2 + ρ2))4
, (11)

generalized by the inclusion of ξ to allow for an over-
all normalization different from 1 due to periodic images

of the action density [30]. For an instanton in infinite
volume on R

4, ξ = 1. The fit parameters returned by
this algorithm are the coordinates of the center of each
instanton-like peak, x0, the instanton-size parameter for
each peak, ρ, and the overall scale factor for the peak, ξ.

It should be noted that not every peak found by this
algorithm is an instanton, particularly during the early
stages of the cooling process. However, we certainly an-
ticipate that the peaks which survive under cooling will
approach the form of instantons or anti-instantons as
the cooling proceeds. Peaks which do not correspond to
instanton-like structures will disappear in the early stages
of cooling. Of the larger would-be instantons and anti-
instantons surviving these early cooling steps, all but |Q|
of them will ultimately disappear due to the annihilation
of instanton–anti-instanton pairs.

We use this algorithm to investigate the topological
properties of configurations 11 and 64 (corresponding to
|Q| = 1) and in configurations 27 and 90 (corresponding
to |Q| = 2). In Fig. 6 we illustrate how the instanton
size, ρ, varies with sweep number for configurations 64
and 11. Three initial instanton-like peaks are identified
in configuration 64 and four are identified in configura-
tion 11. The solid line in each of these figures denotes
the peak which survives long-term cooling and becomes
the approximately self-dual object in each configuration.
The dashed lines denote the temporary peaks, which dis-
appear under cooling.

In configuration 64 we see that all peaks rapidly grow
in size initially. Both of the temporary peaks are seen to
expand in size with the associated peak height decreasing
until the peaks “melt” away. These peaks are associated
with the plateau in the action observed in Fig. 1. Hence
we see that topological objects can disappear on the lat-
tice by “melting away” where ρ → ∞, which is a different
mechanism from the behavior of “falling through the lat-
tice” where ρ → 0.

The remaining topological object reacts by slowing its
growth. Once all of the other structures have disap-
peared, the surviving object shrinks rapidly. In minimiz-
ing its size relative to the finite volume of the 4-torus,
the object can best approximate the self-dual nature of
an instanton and temporarily evade the ultimate conse-
quence of the Nahm transform. The rate of shrinkage is
related to the size of the object. The shrinkage slowly
continues until the instanton size is approximately two
lattice spacings, at which time the object is smaller than
the dislocation threshold of the cooling algorithm and is
rapidly suppressed.

Similar results are observed for configuration 11 (an-
other |Q| = 1 configuration), as shown in the lower plot of
Fig. 6. Again all peaks rapidly grow in size initially, but
as each of the three temporary peaks expands and “melts
away”, the single instanton reacts by slowing its growth.
Once all of the other structures have disappeared, we see
that the surviving single (anti-)instanton shrinks rapidly
due to its large size. The shrinkage continues until the
dislocation threshold is encountered, at which point it is
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FIG. 6: Size of the single instanton (ρ measured in lattice
units) in configuration 64 (upper figure) and configuration
11 (lower figure). An abrupt change in the size evolution
occurs as other peaks in the distribution disappear through
the process of “melting” as described in the text. After sweep
2500 the instanton in each configuration rapidly disappears
and hence the associated size parameter cannot be measured
accurately. Dashed lines represent the size of transitory peaks.

rapidly suppressed.

The point of inflection seen in the evolution of the
single-instanton size around 1900 sweeps in Fig. 6 signi-
fies the dislocation threshold of the S(3) improved cool-
ing algorithm. For both configurations ρ ≃ 2.2 at the
point of inflection. This dislocation threshold is similar
to ρD = 2.23 for S(5) as determined in Ref. [19].

In the continuum infinite volume limit, instantons have
no implicit scale and can be any size with the same ac-
tion S0. On a finite 4-torus in the continuum, the only
relevant quantity is the relative size of the instanton to
the 4-torus size. On the continuum 4-torus, we therefore
expect that in the limit where the size of the would-be in-
stanton vanishes with respect to the 4-torus size, it should
able to approach arbitrarily closely to self-duality. Thus,

under continued cooling on the lattice a |Q| = 1 con-
figuration will approach the self-dual limit by decreasing
its size. As it does so, discretization errors will become
increasingly large until the object encounters the disloca-
tion threshold, at which point the object will be removed
by the cooling algorithm. This is the ultimate fate of a
|Q| = 1 configuration under cooling.

In both |Q| = 1 cases, the onset of the cresting in
the topological charge occurs when the size of the object
is seven to eight lattice spacings, well above the size of
two lattice spacings where the dislocation threshold of
the cooling algorithm removes the objects. Thus, at the
onset of the cresting of |Q| the objects are large enough
that the dislocation threshold of the cooling algorithm is
irrelevant. Since the cresting behavior appears to be a
distinct signal of the ultimate disappearance of the |Q| =
1 objects, this suggests that the dislocation threshold is
not the primary reason for the instability of the |Q| = 1
configurations, even though it is the reason for its final
disappearance.

To make this even more concrete, we contrast these re-
sults for the size dependence of the |Q| = 1 objects under
cooling, with the corresponding results for the |Q| = 2
configurations.

The sizes of the two instantons in each of configura-
tions 27 and 90 (which each have |Q| = 2) are shown in
Fig. 7. First, note that in each case the configuration
consists of two identifiably separate topological objects,
rather than one single object of instanton number 2. For
each configuration, the two instantons drift apart under
cooling, appearing to repel one another. More interest-
ingly, in each case, the size of one instanton grows while
the other shrinks, until they each settle (after roughly
1000 sweeps) to approximately the same size. We do not
know if this behavior is necessary – however, the fact
that the same thing happened in these two independent
cases is suggestive. Perhaps this symmetry between the
sizes of the cooled two-instanton configuration is due to
an image effect that balances two objects at equal sizes
roughly at “opposite ends” of the lattice. It would be in-
teresting to probe this question more deeply, both on the
lattice and for the continuum four-torus. For example,
for SU(2) ADHM instantons on R

4 it is known that the
behavior of Q = 2 instantons depends crucially on the
relative SU(2) orientation of the two constituent instan-
tons, which has important implications for the instanton
size distribution [31].

Another striking contrast between the size-dependence
of the |Q| = 2 and |Q| = 1 configurations is that the
|Q| ≃ 1 objects shrink in size by a factor of approxi-
mately three as the cooling proceeds over the course of
two thousand sweeps, while in the |Q| = 2 configurations,
each object changes size by no more than 10%. This in-
dicates a significant level of stability throughout most
of the course of the cooling process. Since the |Q| = 2
configurations consist of two distinct topological objects,
each of which may be thought of as a single instanton,
it is striking that for these configurations the single in-
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FIG. 7: Size evolution of the two instantons (ρ measured in
lattice units) in configuration 27, and the two instantons in
configuration 90. The solid and dashed lines represent the
size of one of the two instantons present in each configura-
tion. The discontinuity in the lower figure (configuration 27)
is believed to be caused by a sudden change in parameter
values as the fitting program used to calculate the single in-
stanton size from our lattice data jumped from one local χ2

minimum to another.

stantons do not shrink in the same way that the |Q| = 1
would-be instantons do. This shows that the distinction
between the |Q| = 1 and |Q| = 2 configurations is really
a global effect, not a local one, and this is exactly what
we would expect from the Nahm transform corollary [11].
So, this difference in the size dependence under cooling
is another signal (in addition to the cresting behavior of
|Q| identified in the previous section) of the instability of
|Q| = 1 configurations under cooling, and once again we
note that the difference can be seen already very early
in the cooling process, rather than just at the late time
when the |Q| = 1 objects vanish due to discretization
errors.

C. Discretization Errors

In this last section we identify a third distinct signal of
the instability of the |Q| = 1 configurations under cool-
ing, and show that it can also be seen early in the cooling
process. It was noted already in Figs. 2 and 3 that S and
SR diverge rapidly in the period prior to the collapse of
the |Q| = 1 configurations. Actually, for the |Q| = 1
configurations, the deviation between these two actions
appears much earlier, as is shown in Fig. 8. In Fig. 8 we
present plots of the ratio of S to SR, for both |Q| = 1
configurations (11 and 64) and |Q| = 2 configurations (27
and 90). Since the cooling action and reconstructed ac-
tion are improved differently, they are expected to have
different O(a6) discretization errors. The ratio of S to SR

therefore indicates the relative scale of the O(a6) errors

FIG. 8: Ratio of the cooling action to the reconstructed action
for configurations 64 and 90 (top) and 11 and 27 (bottom).
Configurations 11 and 64 are |Q| ≃ 1 configurations, whereas
configurations 27 and 90 are |Q| = 2 configurations.

present.

Early in the cooling evolution, peaks in S/SR are seen
to be associated with the disappearance with topolog-
ical structures as illustrated in Fig. 6. In the case of
the single-instanton configurations, the ratio of the cool-
ing action to reconstructed action, S/SR, diverges from
unity slowly during the middle stages of the cooling pro-
cess. The point where this ratio starts falling below 1
corresponds to the beginning of the cresting behavior of
|Q| which was identified for the |Q| = 1 configurations in
Section IV A . This corresponds to the early stage where
the difference between the size evolutions of the |Q| = 1
and |Q| = 2 configurations becomes clear. Also, the po-
sition of the valley in the ratio S/SR corresponds to the
peak of the cresting of the topological charge illustrated
in Figs. 2 and 3.

Finally, S/SR diverges rapidly as the object present
in each configuration falls through the lattice. As the
instanton shrinks, the O(a6) errors overwhelm the im-
proved action operator and large errors allow the disap-
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pearance of the object. By contrast, in the two |Q| = 2
configurations the ratio S/SR remains within 0.02% of
unity indefinitely.

V. CONCLUSIONS

In this paper we have compared the cooling of |Q| = 1
and |Q| = 2 configurations in SU(3) gauge theory, us-
ing improved lattice actions and precise monitoring of
the sizes of the topological objects and of the lattice dis-
cretization errors. In the continuum it is not possible to
have a self-dual |Q| = 1 configuration on the untwisted
four-torus [11], and the results from our lattice analysis
suggests three distinct signals, each of which occurs very
early in the cooling process, that the |Q| = 1 configu-
rations behave differently from the |Q| = 2 ones, and
that they will ultimately shrink to below the discretiza-
tion threshold and then disappear much later in the cool-
ing process. These instability signals occur at a stage in
the cooling when the topological objects are still much
larger than the lattice discretization threshold. None of
these signals is present for the |Q| = 2 configurations we
studied, even though these consisted of two isolated sin-
gle instantons. This fact is a clear indication that these
|Q| = 1 instability signals are reflecting the global prop-
erties of the torus, which is the essence of the continuum
torus result [11], rather than local effects such as those
that ultimately cause a very small |Q| = 1 object to fall
through the lattice due to discretization errors.

The three instability signals we have found to be char-
acteristic of the |Q| = 1 configurations are as follows.
First, there is a cresting behavior of the topological
charge |Q| away from its precise integer value of 1, as
shown in Figures 2 and 3. This does not happen for
the |Q| = 2 configurations, as shown in Figures 4 and 5.
Second, for the |Q| = 1 configurations there is an initial
swelling of the size of the would-be instanton, but then
a steady shrinkage begins at the same point where the
cresting in |Q| is observed. This is illustrated in Figure
6. Once again, this is completely different from the be-
havior for the |Q| = 2 configurations, which is shown in
Figure 7. The third signal is that for the |Q| = 1 con-
figurations the ratio S/SR of the cooling action to the
reconstructed action begins a steady fall below one, be-
fore bottoming out and eventually diverging much later
in the cooling process, as shown in Figure 8. This devi-
ation below a ratio of 1 begins at the same point, early
in the cooling process, where the cresting of |Q| and the
rapid shrinkage of the object begin. This is also very dif-
ferent from the behavior of the |Q| = 2 configurations,
already at this early stage where the topological objects
are large.

These results suggest the following picture of the insta-
bility, and ultimate disappearance, of |Q| = 1 configura-
tions under cooling. The first stage sees the rapid growth
and disappearance of temporary peak structures. The
second stage, whose onset is indicated by the three sig-

FIG. 9: The behavior of instanton peak size, ρ (upper solid
line, right scale), against topological charge (lower solid line,
left scale) and SR−S+1 (dashed line, left scale), as a function
of sweep number, for |Q| ≃ 1 configurations 64 (upper figure)
and 11 (lower figure). Notice that SR − S + 1 and Q move
away from integer values at the same time that the instanton
starts to shrink. Cooling is performed with the S(3) action,
and the topological charge is Q(3). We have taken the value
SR − S + 1 rather than SR − S so that the action and charge
curves can be plotted on the same precise scale.

nals listed in the previous paragraph, sees the shrinkage
with cooling of the single instanton. This type of shrink-
age does not happen for the separate constituents of the
|Q| = 2 configurations. During this shrinkage stage the
topological charge deviates slightly from its integer value
of 1. The third and final stage is the rapid disappear-
ance of the single instantons due to dislocation errors at
an instanton size of approximately two lattice spacings.

To emphasize these points, we show in Fig. 9 the in-
stanton size ρ, the topological charge Q, and the differ-
ence SR − S + 1 between the reconstructed action and
cooling action for the |Q| = 1 configurations 64 and 11 in
the region where the Nahm transform corollary manifests
itself. (The addition of one unit to the difference serves
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to plot the action and charge curves on the same precise
scale.) Since SR and S have different O(a6) errors, their
difference is an extremely effective probe of the scale of
discretization errors in the configuration. As the instan-
ton changes from expanding behavior to shrinking behav-
ior, the topological charge and difference SR − S + 1 are
both almost identically equal to one, indicating minimal
discretization errors at the onset of the Nahm transform
corollary. This strongly suggests that the sudden change
in behavior of the would-be instanton is due to the global
nature of the field on the toroidal lattice, and not to local
discretization errors.

The |Q| = 2 configurations behave very differently
from the |Q| = 1 configurations. For each of the two
|Q| = 2 configurations we studied, the configuration con-
sisted of two isolated lumps that drift apart under cooling
and have the remarkable property that one lump shrinks,
while the other swells, until they reach the same size. It
would be interesting to know if this behavior is generic,
due to some torus periodicity-induced balance, and if
there is any trace of such behavior in the continuum. Un-
fortunately, this final question is a difficult one, as there
are no known nontrivial (i.e. inhomogeneous) analytic
torus instantons.

We close by noting that all five criteria outlined in the
introduction have been met. In particular:

1. The S(3) cooling action is very accurate with re-
maining errors positive, acting to stabilize topolog-
ical structure.

2. The action and topological charge density of the
|Q| ≃ 1 configurations are seen to be distributed

over large length scales of 7 to 8 lattice spacings,
much larger than the dislocation threshold of the
improved cooling algorithm at 2.2 lattice spacings.

3. Comparisons of the reconstructed action with the
more traditionally constructed improved action
have provided a powerful way of investigating the
scale of discretization errors in the configurations
under investigation.

4. |Q| = 1 configurations have been shown to be stable
until the action S drops below 3 S0 and approaches
the self-dual limit of S0 = 8π2/g2. Extra peaks in
the action density disappear as S/S0 drops from 3
toward 1.

5. Finally, the action and topological charge distribu-
tions are seen to approach the classical instanton
form with only a single peak appearing and the in-
stanton scale parameter ξ → 1 as cooling proceeds.

Acknowledgments

The calculations reported here were carried out on the
Orion supercomputer at the Australian National Com-
puting Facility for Lattice Gauge Theory (NCFLGT) at
the University of Adelaide. GD thanks the CSSM at
Adelaide for hospitality while this work was begun, and
the U.S. DOE for support through the grant DE-FG02-
92ER40716. Financial support from the Australian Re-
search Council is gratefully acknowledged.

[1] R. Jackiw, “Quantum Meaning Of Classical Field The-
ory,” Rev. Mod. Phys. 49, 681 (1977).

[2] G. ’t Hooft, “How Instantons Solve The U(1) Problem,”
Phys. Rept. 142, 357 (1986).

[3] M. A. Shifman, Instantons In Gauge Theories, (World
Scientific, Singapore, 1994).

[4] T. Schafer and E. V. Shuryak, “Instantons in QCD,” Rev.
Mod. Phys. 70, 323 (1998) [arXiv:hep-ph/9610451].

[5] P. van Baal, “The QCD vacuum,” Nucl. Phys. Proc.
Suppl. 63, 126 (1998) [arXiv:hep-lat/9709066].

[6] For an excellent review, see: A. Gonzalez-Arroyo, “Yang-
Mills fields on the 4-dimensional torus. (Classical the-
ory),” in Advanced school on non-perturbative quantum

field physics, M. Asorey and A. Dobado (Eds.), (World
Scientific, Singapore, 1998) 57-91; arXiv:hep-th/9807108.

[7] A. A. Belavin, A. M. Polyakov, A. S. Shvarts and
Y. S. Tyupkin, “Pseudoparticle Solutions Of The Yang-
Mills Equations,” Phys. Lett. B 59, 85 (1975).

[8] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and
Y. I. Manin, “Construction Of Instantons,” Phys. Lett.
A 65, 185 (1978).

[9] G. ’t Hooft, “Some Twisted Selfdual Solutions For The
Yang-Mills Equations On A Hypertorus,” Commun.
Math. Phys. 81, 267 (1981); P. van Baal, “SU(N) Yang-

Mills Solutions With Constant Field Strength On T*4,”
Commun. Math. Phys. 94, 397 (1984).

[10] C. Taubes, “Self-dual connections on 4-manifolds with
indefinite intersection matrix”, J. Diff. Geom. 19, 517-
560 (1984).

[11] P. J. Braam and P. van Baal, “Nahm’s Transformation
For Instantons,” Commun. Math. Phys. 122, 267 (1989).

[12] W. Nahm, “A Simple Formalism For The Bps
Monopole,” Phys. Lett. B 90, 413 (1980); “Selfdual
Monopoles And Calorons,” Presented at 12th Colloq. on

Group Theoretical Methods in Physics, Trieste, Italy,

Sep, 1983, G. Denardo et al (Eds.), Lecture Notes in
Physics, 201, (Springer-Verlag, Berlin, 1984)

[13] P. van Baal, “Instanton moduli for T(3) x R,” Nucl. Phys.
Proc. Suppl. 49, 238 (1996) [arXiv:hep-th/9512223].

[14] A. Gonzalez-Arroyo, “On Nahm’s transformation with
twisted boundary conditions,” Nucl. Phys. B 548, 626
(1999) [arXiv:hep-th/9811041].

[15] G. ’t Hooft, “A Property Of Electric And Magnetic Flux
In Nonabelian Gauge Theories,” Nucl. Phys. B 153,
141 (1979). Hypertorus,” Commun. Math. Phys. 85, 529
(1982); P. van Baal, “Twisted Boundary Conditions: A
Nonperturbative Probe For Pure Nonabelian Gauge The-
ories,” PhD Thesis, Utrecht U., 1984, INIS-mf-9631.

http://arXiv.org/abs/hep-ph/9610451
http://arXiv.org/abs/hep-lat/9709066
http://arXiv.org/abs/hep-th/9807108
http://arXiv.org/abs/hep-th/9512223
http://arXiv.org/abs/hep-th/9811041


12

[16] A. Gonzalez-Arroyo and C. Pena, “Nahm transfor-
mation on the lattice,” JHEP 9809, 013 (1998)
[arXiv:hep-th/9807172], “Nahm transformation on the
lattice,” Nucl. Phys. Proc. Suppl. 83, 533 (2000)
[arXiv:hep-lat/9909016].

[17] M. Garcia Perez, A. Gonzalez-Arroyo, C. Pena and P. van
Baal, “Nahm dualities on the torus: A synthesis,” Nucl.
Phys. B 564, 159 (2000) [arXiv:hep-th/9905138].

[18] M. Garcia Perez, A. Gonzalez-Arroyo and C. Pena, “Per-
turbative construction of self-dual configurations on the
torus,” JHEP 0009, 033 (2000) [arXiv:hep-th/0007113].

[19] P. de Forcrand, M. Garcia Perez and I. O. Stamatescu,
“Topology of the SU(2) vacuum: A lattice study us-
ing improved cooling,” Nucl. Phys. B 499, 409 (1997)
[arXiv:hep-lat/9701012].

[20] P. de Forcrand, M. Garcia Perez and I. O. Sta-
matescu, “Improved cooling algorithm for gauge the-
ories,” Nucl. Phys. Proc. Suppl. 47, 777 (1996)
[arXiv:hep-lat/9509064]; “Topology by improved cooling:
Susceptibility and size distributions,” Nucl. Phys. Proc.
Suppl. 53, 557 (1997) [arXiv:hep-lat/9608032].

[21] K. Symanzik, “Continuum Limit And Improved Action
In Lattice Theories. 1. Principles And Phi*4 Theory,”
Nucl. Phys. B 226, 187 (1983).

[22] S. O. Bilson-Thompson, D. B. Leinweber and
A. G. Williams, “Highly-improved lattice field-
strength tensor,” Annals Phys. 304, 1 (2003)
[arXiv:hep-lat/0203008].

[23] M. Garcia Perez, A. Gonzalez-Arroyo, J. Snippe and
P. van Baal, “Instantons From Over - Improved Cooling,”
Nucl. Phys. B 413, 535 (1994) [arXiv:hep-lat/9309009].

[24] K. G. Wilson, “Confinement Of Quarks,” Phys. Rev. D

10, 2445 (1974).
[25] G. P. Lepage, “Redesigning lattice QCD,” In Schladming

1996, Perturbative and nonperturbative aspects of quan-

tum field theory, H. Latal and W. Schweiger (Eds.), Lec-
ture Notes in Physics 479, 1-48, (Springer-Verlag, Berlin,
1997); arXiv:hep-lat/9607076.

[26] Here we correct a typographical error in Ref. [22] where
the normalization was incorrectly stated as 1/2 as op-
posed to 1/12.

[27] N. Cabibbo and E. Marinari, “A New Method For Updat-
ing SU(N) Matrices In Computer Simulations Of Gauge
Theories,” Phys. Lett. B 119, 387 (1982).

[28] F. D. Bonnet, D. B. Leinweber, A. G. Williams and
J. M. Zanotti, “Improved smoothing algorithms for lat-
tice gauge theory,” Phys. Rev. D 65, 114510 (2002)
[arXiv:hep-lat/0106023].

[29] F. D. Bonnet, D. B. Leinweber and A. G. Williams,
“General algorithm for improved lattice actions on par-
allel computing architectures,” J. Comput. Phys. 170, 1
(2001) [arXiv:hep-lat/0001017].

[30] D. J. Kusterer, J. Hedditch, W. Kamleh, D. B. Lein-
weber and A. G. Williams, “Low-lying eigenmodes
of the Wilson-Dirac operator and correlations with
topological objects,” Nucl. Phys. B 628, 253 (2002)
[arXiv:hep-lat/0111029].

[31] M. Garcia Perez, T. G. Kovacs and P. van Baal, “Com-
ments on the instanton size distribution,” Phys. Lett. B
472, 295 (2000) [arXiv:hep-ph/9911485]; “Overlapping
instantons,” arXiv:hep-ph/0006155, Published in Pro-
ceedings of Continuous advances in QCD, 2000, pp 79-
89, M.B. Voloshin (Ed.), (World Scientific, Singapore,
2001).

http://arXiv.org/abs/hep-th/9807172
http://arXiv.org/abs/hep-lat/9909016
http://arXiv.org/abs/hep-th/9905138
http://arXiv.org/abs/hep-th/0007113
http://arXiv.org/abs/hep-lat/9701012
http://arXiv.org/abs/hep-lat/9509064
http://arXiv.org/abs/hep-lat/9608032
http://arXiv.org/abs/hep-lat/0203008
http://arXiv.org/abs/hep-lat/9309009
http://arXiv.org/abs/hep-lat/9607076
http://arXiv.org/abs/hep-lat/0106023
http://arXiv.org/abs/hep-lat/0001017
http://arXiv.org/abs/hep-lat/0111029
http://arXiv.org/abs/hep-ph/9911485
http://arXiv.org/abs/hep-ph/0006155

