102 research outputs found

    Integrating molecular biogeography and community ecology to understand the evolution of habitat specialization in Amazonian forests

    Get PDF
    I investigated the origin of western Amazonian white-sand vegetation and the evolution of plant habitat specialization to different edaphic conditions in Neotropical lowland forests. In order to address these goals I used complementary ecological as well as molecular phylogenetic approaches. Amazonian white-sand forests harbour a flora specialized to nutrient-poor sandy soils, which is distributed as habitat-islands across the Amazon and Guiana Shield regions. This flora has been suggested to have many local and regional endemics, therefore making an important contribution to overall Neotropical plant diversity. The role of habitat specialization in the origin of this flora and its relationships with other floras within the Amazon- Guiana regions is not well understood. To shed light onto these questions, this thesis studies the floristic composition of these forests as well as molecular phylogenetic patterns of selected plant lineages containing white-sand species. The floristic study focused on the white-sand forests of the western Amazon region, which contained 1180 species of vascular plants whereas the non-white-sand Amazon and Guiana Shield dataset consisted of 26,887 vascular plant species. 77% of these species occurred outside white-sand habitats, in other habitat types of the Amazon region, while 23% were white-sand specialists. This demonstrates lower endemism in western Amazonian white-sand forests than previously estimated. 88% of the total westen Amazon white-sand specialist occur within the limits of the Guiana Shield region with the remaining 12% being endemics to the white-sand forests of the western Amazon. Within the Guiana-Shield region, Caquetá Moist Forests (56%), Guayanan Highlands (55%), and Negro-Branco Moist Forests (53%) were the biogeographic regions with the highest proportions of western Amazonian whitesand specialists. Cluster analysis of province level floristic checklists across the Amazon and Guiana regions showed that western Amazonian white-sand forests are nested within floras of the western Guiana-Shield region compared to other floras in the Amazon. Molecular phylogenetic analyses were carried out for the widespread and species-rich families Sapotaceae and Chrysobalanaceae, which display an uneven number of white-sand specialists. Sapotaceae had only three white-sand specialists but Chrysobalanaceae had a larger number of white-sand specialists (14 species). Phylogenetic analysis showed that white-sand specialist species in both studied families were scattered across the phylogenies. Both families show a marked absence of edaphic niche conservatism, suggesting that evolutionary switching amongst habitat types has been frequent. Ancestral state reconstruction of habitat specialization under a maximum likelihood approach suggests that preference for poor soils may be ancestral in these clades, especially in Chrysobalanaceae, but that the evolution of species entirely restricted to white-sand soils is in general much more recent and has multiple origins. For the white-sand flora of the western Amazon in particular, there is little evidence that it comprises ancient lineages as previously hypothesized. The historical construction of the Amazonian white sand flora is more likely to be the result of a gradual accumulation of species with different degrees of edaphic specialization, both by on-going speciation driven via habitat switching from non-white-sand specialists and via regional dispersal events after these habitats became available in regions such as the western Amazon. Edaphic transitions between different habitat types were not evolutionary constrained, which may have favoured edaphic niche evolution and the accumulation of plant species diversity in Neotropical lowland forests

    Diversity, composition, and structure of a highly endangered habitat: the seasonally dry forests of Tarapoto, Peru

    Get PDF
    Entre marzo y abril de 2006, la flora de los bosques estacionalmente secos en Tarapoto, San Martín fue estudiada en diez localidades. En cada una de estas localidades se estableció una parcela de 0,1 ha; cada tallo mayor de 2,5 cm de diámetro fue medido, contado e identificado a especie. Se encontraron 146 especies en 2814 individuos. En toda la zona de estudio, Myrtaceae fue la familia más diversa con 14 especies, seguida por Leguminosae con 12 especies. Igualmente, Annonaceae y Myrtaceae fueron las familias más abundantes en numero de tallos en toda la zona de estudio (461, y 412 tallos totales), mientras que Sapotaceae, con sólo 160 tallos totales, tuvo el valor más alto en área basal, debido a la Quinilla, Manilkara bidentata (A. DC.) A. Chev., el árbol más importante en la estructura de los bosques estacionalmente secos de Tarapoto. Dos especies estuvieron presentes en todos los sitios de estudio: Coccoloba sp. 1, (Polygonaceae) y Oxandra espintana (Spruce ex Benth.) Baill. (Annonaceae), mientras que 53 especies ocurrieron en un solo sitio. Los bosques estacionalmente secos de Tarapoto presentan una diversidad intermedia comparada con otros bosques secos del Neotrópico y similar diversidad a los bosques secos del Pacífico Peruano. La comunidad de árboles en estos bosques pertenece a especies de amplia distribución comparada con las especies de arbustos que tienen distribución restringida a los hábitats de bosques secos. En términos generales las áreas localizadas cerca de la carretera Tarapoto-Juanjui tienen el grado más alto de amenaza y perturbación debido a la extracción maderera y destrucción de hábitat para la creación de campos de cultivos agrícolas. Los bosques más representativos y mejor conservados de esta región se encuentran al Oeste y Sur de Picota, en el Área de Conservación Municipal El Quinillal, y en la cuenca del Río Bombonajillo y Ponasillo. Estos resultados resaltan la urgencia de conservar estos bosques ante la creciente amenaza de deforestación y pérdida de hábitat prevalente en la región.Between March and April 2006, I studied ten localities with seasonally dry forests located along the Tarapoto- Juanjui road, San Martin. At each site ten 50×2 m transects totalling 1000 m² (0,1 ha) were laid out along a 180 m baseline where all standing trees with diameter at breast height (DBH) greater than 2,5 cm were measured, counted and identified to species. I found a total of 146 species and 2814 individuals with DBH ≥ 2,5 cm. Within the study area, Myrtaceae was the most species rich family with 14 species followed closely by Leguminosae with 12 species. Annonaceae and Myrtaceae had the highest number of individuals (461 and 412, respectively), whereas Sapotaceae, with only 160 stems, had the highest basal area. The latter was mainly due to Manilkara bidentata (A. DC.) A. Chev. (“Quinilla”), the most important tree species in the seasonally dry forests of Tarapoto. Two species were present at all sites: Coccoloba sp. 1 (Polygonaceae) and Oxandra espintana (Spruce ex Benth.) (Annonaceae), whereas 53 species occurred only at one site. The seasonally dry forests of Tarapoto have an intermediate diversity compared to the other dry forests in the Neotropics and similar diversity compared to the Peruvian dry forests of the Pacific coast. Most of the tree community in these forests belong to geographically widespread species compared to shrubs that are mostly restricted to dry forests habitats. The areas located near the Tarapoto-Juanjui road (“carretera marginal”) have the most disturbed forests. The best representations of Tarapoto’s seasonally dry forests are located west and south of the locality of Picota, in the Area de Conservación Municipal “El Quinillal”, and in the Bombonajillo and Ponasillo basins. These results highlight the pressing needs for conservation efforts in the area, before these unique forests are forever lost due to the continuing expansion of agricultural fields and logging activities prevalent in the region

    CLASIFICACIÓN DE BOSQUES SOBRE ARENA BLANCA DE LA ZONA RESERVADA ALLPAHUAYO-MISHANA

    Get PDF
    La Zona Reservada Allpahuayo-Mishana (ZRAM) alberga las áreas más extensas de bosques sobre arena blanca, localmente conocidos como varillales, protegidas actualmente en el Perú. Con el propósito de obtener información que ayude en el manejo y la conservación de este tipo de vegetación, nosotros estudiamos la composición florística, estructura y características ambientales de 44 parcelas, 20 x 20 m, ubicadas en los suelos de arena blanca de la ZRAM, Loreto, Perú (3°53’S, 73°25’O, 110-180 m.s.n.m.). Para la selección de los lugares de muestreo en el área utilizamos una imagen de satélite Landsat TM 5. Seleccionamos los lugares de muestreo, tratando de abarcar la mayor variación posible que podíamos observar en los colores de la imagen de satélite, con el fin de muestrear varillales potencialmente diferentes en el campo. Las parcelas estuvieron ubicadas a lo largo de transectos que atravesaron parches heterogéneos de varillal. En cada parcela registramos, en cinco clases diamétricas, a todos los individuos que tenían al menos un metro de altura e hicimos una estimación de la cobertura herbácea. También medimos la altura del dosel y grosor de la capa orgánica. Realizamos análisis de agrupamiento (cluster analysis), entre las parcelas, usando como variables el número de tallos por parcela, la altura del dosel y la calidad del drenaje expresada por el grosor de la capa orgánica (capa orgánica delgada = buen drenaje, y viceversa). Utilizamos además la abundancia y frecuencia de las especies en los grupos para definir especies indicadoras (indicator species analysis). En el contexto de nuestro estudio, y utilizando la terminología regional para estos bosques, reconocemos la existencia de cinco tipos de varillales en la ZRAM: varillal alto seco, varillal alto húmedo, varillal bajo seco, varillal bajo húmedo y chamizal

    Tipos de forrajeo y gremios alimenticios de aves en bosques sobre arena blanca de la Reserva Nacional Allpahuayo Mishana, Loreto, Perú

    Get PDF
    Desde octubre del 2014 a marzo del 2015 y con el objetivo de conocer los tipos de forrajeo y gremios alimenticios de la avifauna en dos bosques sobre arena blanca de la Reserva Nacional Allpahuayo Mishana (RNAM), se evaluaron dos parcelas de una hectárea (varillal alto húmedo –VAH- y varillal alto seco –VAS-), utilizando el método de Punto de Conteo (PC). Se observó un total de 10 tipos de forrajeo: salir, alcanzar, picar, colgar, cernir, recoger, arrojar, espiar, alcanzar con salto y buscar en rama; en 76 especies de aves encontradas entre los varillales, el más dominante fue salir, seguido de alcanzar y el menos dominante fue espiar. Se registró seis gremios alimenticios: insectívoro, frugívoro, frugívoro/insectívoro, frugívoro/granívoro, nectarívoro y carnívoro, el más dominante fue insectívoro seguido de frugívoro y los menos dominantes fueron nectarívoro y carnívoro

    Reducing adverse impacts of Amazon hydropower expansion

    Get PDF
    Proposed hydropower dams at more than 350 sites throughout the Amazon require strategic evaluation of trade-offs between the numerous ecosystem services provided by Earth\u27s largest and most biodiverse river basin. These services are spatially variable, hence collective impacts of newly built dams depend strongly on their configuration. We use multiobjective optimization to identify portfolios of sites that simultaneously minimize impacts on river flow, river connectivity, sediment transport, fish diversity, and greenhouse gas emissions while achieving energy production goals. We find that uncoordinated, dam-by-dam hydropower expansion has resulted in forgone ecosystem service benefits. Minimizing further damage from hydropower development requires considering diverse environmental impacts across the entire basin, as well as cooperation among Amazonian nations. Our findings offer a transferable model for the evaluation of hydropower expansion in transboundary basins

    Floristic diversity, composition and dominance across Amazonian forest types respond differently to latitude

    Full text link
    Aim: The latitudinal biodiversity gradient is considered a first-order biogeographical pattern for most taxonomic groups. Latitudinal variation in plant diversity is not always consistent, and this could be related to the particular characteristics of different forest types. In this study, we compare latitudinal changes in floristic diversity (alpha diversity), composition (beta diversity) and dominance across different tropical forest types: floodplain, terra firme and submontane forests. Location: Western Amazonia (Ecuador, Peru and Bolivia). Taxon: Woody plants. Methods: We inventoried 1978 species and 31,203 individuals of vascular plants with a diameter at breast height ≥ 2.5 cm in 118 0.1-ha plots over an 1800 km latitudinal gradient in three different forest types. The relationships between alpha diversity, latitude and forest type were analysed using generalised linear mixed models. Semi-parametric permutational multivariate analysis of variance was used to investigate the effects of latitude and forest type on beta diversity. Dominant species abundances were correlated with non-metric multidimensional scaling ordination axes to reflect their contributions in shaping changes in beta diversity. Results: Alpha diversity increased towards equatorial latitudes in terra firme and submontane forests but remained relatively constant in floodplains. Beta diversity of all forest types changed with latitude, although less clearly in floodplains. Also, in floodplain forests, there were fewer dominant species contributing to beta diversity and more species homogeneous along the gradient. Main Conclusions: Latitudinal diversity patterns are manifested in alpha and beta diversity since latitude summarizes climatic and edaphic changes. However, we found different responses of each forest type. In floodplain forests, inundation regime is a stronger predictor than latitude, limiting floristic diversity and composition. Changes in dominant species abundance over gradients explained species composition, but floodplain forests harboured more homogeneous dominant species than well drained forests. It is key to study environmental trends and habitat characteristics of each forest type to understand their species diversity and dominance pattern

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Indaga sobre los patrones geográficos y los correlatos ecológicos en la distribución geográfica de los modos de dispersión arbórea más comunes en la Amazonia (endozoocoria, sinzoocoria, anemoocoria e hidrocoria). Se examina si la abundancia proporcional de estos modos de dispersión podría explicarse por la disponibilidad de agentes dispersores (hipótesis de disponibilidad de dispersores) y/o la disponibilidad de recursos para la poducción de frutos zoocorios (hipótesis de disponibilidad de recursos). Para ello se usaron parcelas de inventario de árboles establecidas entre 1934 y 2019, con un diámetro a la altura del pecho (DAP) ≥ 9,55 cm. Ubicados en las selvas tropicales de tierras bajas de la cuenca del río Amazonas y el Escudo Guayanés. Se asignaron modos de dispersión a un total de 5433 especies y morfoespecies en 1877 parcelas de inventario de árboles en bosques de abeto, inundados estacionalmente y permanentemente inundados. Se investigaron los patrones geográficos en la abundancia proporcional de los modos de dispersión. Se realizó una prueba de distancia media entre pares ponderada por abundancia (MPD) y ajustamos modelos lineales generalizados (GLM) para explicar la distribución geográfica de los modos de dispersión. La anemocoria se asoció significativa y positivamente con la velocidad media anual del viento, y la hidrocoria fue significativamente mayor en los bosques inundados. Los modos de dispersión no mostraron consistentemente asociaciones significativas con la disponibilidad de recursos para la construcción de frutos zoochorous. Una menor disimilitud en los modos de dispersión, resultante de una mayor dominancia de la endozoocoria, se produjo en los bosques de abeto (excluyendo los podzoles) en comparación con los bosques inundados. La hipótesis dispersor-disponibilidad fue bien apoyada para los modos de dispersión abióticos (anemochoria e hidrochoria). La disponibilidad de recursos para la construcción de frutos zoocorios parece una explicación poco probable para la distribución de los modos de dispersión en la Amazonia. La asociación entre los frugívoros y la abundancia proporcional de zoocoría requiere más investigación, ya que el reclutamiento de árboles no sólo depende de los vectores de dispersión, sino también de las condiciones que favorecen o limitan el reclutamiento de plántulas en los distintos tipos de bosque.Revisión por pares

    Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning

    Get PDF
    Hundreds of dams have been proposed throughout the Amazon basin, one of the world’s largest untapped hydropower frontiers. While hydropower is a potentially clean source of renewable energy, some projects produce high greenhouse gas (GHG) emissions per unit electricity generated (carbon intensity). Here we show how carbon intensities of proposed Amazon upland dams (median = 39 kg CO2eq MWh−1, 100-year horizon) are often comparable with solar and wind energy, whereas some lowland dams (median = 133 kg CO2eq MWh−1) may exceed carbon intensities of fossil-fuel power plants. Based on 158 existing and 351 proposed dams, we present a multi-objective optimization framework showing that low-carbon expansion of Amazon hydropower relies on strategic planning, which is generally linked to placing dams in higher elevations and smaller streams. Ultimately, basin-scale dam planning that considers GHG emissions along with social and ecological externalities will be decisive for sustainable energy development where new hydropower is contemplated. © 2019, The Author(s)

    Chapter 19: Drivers and Ecological Impacts of Deforestation and Forest Degradation

    Get PDF
    Deforestation, the complete removal of an area’s forest cover; and forest degradation, the significant loss of forest structure, functions, and processes; are the result of the interaction between various direct drivers, often operating in tandem. By 2018, the Amazon biome had lost approximately 870,000 km2 of its original forest cover, mainly due to agricultural expansion. Other direct drivers of forest loss include the opening of new roads, construction of hydroelectric dams, exploitation of minerals and oil, and urbanization. Impacts of deforestation range from local to global, including local changes in landscape configuration, climate, and biodiversity; regional impacts on hydrological cycles; and global increase of greenhouse gas emissions. Of the remaining Amazonian forests, 17% are degraded, corresponding to approximately 1,036,080 km2. Various anthropogenic drivers, including understory fires, edge effects, selective logging, hunting, and climate change can cause forest degradation. Degraded forests have significantly different structure, microclimate, and biodiversity as compared to undisturbed ones. These forests tend to have higher tree mortality, lower carbon stocks, more canopy gaps, higher temperatures, lower humidity, higher wind exposure, and exhibit compositional and functional shifts in both fauna and flora. Degraded forests can come to resemble their undisturbed counterparts, but this depends on the type, duration, intensity, and frequency of the disturbance event. In some cases, this may prohibit the return to a historic baseline. Avoiding further loss and degradation of Amazonian forests is crucial to ensure they continue to provide valuable and life-supporting ecosystem services

    Understanding different dominance patterns in western Amazonian forests

    Get PDF
    Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.Publisher PDFPeer reviewe
    corecore