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Abstract 

 

I investigated the origin of western Amazonian white-sand vegetation and the 

evolution of plant habitat specialization to different edaphic conditions in 

Neotropical lowland forests. In order to address these goals I used complementary 

ecological as well as molecular phylogenetic approaches. Amazonian white-sand 

forests harbour a flora specialized to nutrient-poor sandy soils, which is distributed as 

habitat-islands across the Amazon and Guiana Shield regions. This flora has been 

suggested to have many local and regional endemics, therefore making an important 

contribution to overall Neotropical plant diversity. The role of habitat specialization 

in the origin of this flora and its relationships with other floras within the Amazon-

Guiana regions is not well understood. To shed light onto these questions, this thesis 

studies the floristic composition of these forests as well as molecular phylogenetic 

patterns of selected plant lineages containing white-sand species. The floristic study 

focused on the white-sand forests of the western Amazon region, which contained 

1180 species of vascular plants whereas the non-white-sand Amazon and Guiana 

Shield dataset consisted of 26,887 vascular plant species. 77% of these species 

occurred outside white-sand habitats, in other habitat types of the Amazon region, 

while 23% were white-sand specialists. This demonstrates lower endemism in 

western Amazonian white-sand forests than previously estimated. 88% of the total 

westen Amazon white-sand specialist occur within the limits of the Guiana Shield 

region with the remaining 12% being endemics to the white-sand forests of the 

western Amazon. Within the Guiana-Shield region, Caquetá Moist Forests (56%), 

Guayanan Highlands (55%), and Negro-Branco Moist Forests (53%) were the 

biogeographic regions with the highest proportions of western Amazonian white-

sand specialists. Cluster analysis of province level floristic checklists across the 

Amazon and Guiana regions showed that western Amazonian white-sand forests are 

nested within floras of the western Guiana-Shield region compared to other floras in 

the Amazon. Molecular phylogenetic analyses were carried out for the widespread 

and species-rich families Sapotaceae and Chrysobalanaceae, which display an 

uneven number of white-sand specialists. Sapotaceae had only three white-sand 

specialists but Chrysobalanaceae had a larger number of white-sand specialists (14 

species). Phylogenetic analysis showed that white-sand specialist species in both 
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studied families were scattered across the phylogenies. Both families show a marked 

absence of edaphic niche conservatism, suggesting that evolutionary switching 

amongst habitat types has been frequent. Ancestral state reconstruction of habitat 

specialization under a maximum likelihood approach suggests that preference for 

poor soils may be ancestral in these clades, especially in Chrysobalanaceae, but that 

the evolution of species entirely restricted to white-sand soils is in general much 

more recent and has multiple origins. For the white-sand flora of the western 

Amazon in particular, there is little evidence that it comprises ancient lineages as 

previously hypothesized. The historical construction of the Amazonian white sand 

flora is more likely to be the result of a gradual accumulation of species with 

different degrees of edaphic specialization, both by on-going speciation driven via 

habitat switching from non-white-sand specialists and via regional dispersal events 

after these habitats became available in regions such as the western Amazon. 

Edaphic transitions between different habitat types were not evolutionary 

constrained, which may have favoured edaphic niche evolution and the accumulation 

of plant species diversity in Neotropical lowland forests. 
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Chapter 1: Introduction 

1.1. Overview 

 

Throughout Amazonia and the Guiana Shield region two major environmental 

gradients related to edaphic conditions define plant species distributions and habitat 

types. One is related to flooding and the other, which is the focus of this thesis, 

concerns the level of nutrients in the soil (Ducke & Black 1953, Gentry 1982, 1988, 

Keel & Prance 1979, Kubitzki 1989, Duivenvoorden & Lips 1995, Terborgh & 

Andresen 1998, ter Steege et al. 2013). There is a wide range of soil nutrient and 

hydromorphic variations in Amazonia, with western Amazonia having in general 

more cation rich soils compared to eastern Amazonia and the Guiana Shield 

(Sombroek 1984, Quesada et al. 2011). Among the soil substrates that form the 

nutrient-poor end of the spectrum of Amazonian soils, white-sand soils combine the 

most extreme edaphic conditions for a plant. This is because besides its nutrient-poor 

status these soils also experience different levels of water-logging and drought 

(Damasco et al. 2013, Proctor 1999). Phosphorous and especially Nitrogen are the 

most limiting nutrients in these habitats compared to soils on non-white-sand terra 

firme forests (Grubb & Coomes 1997, Mardegan et al. 2008).  

 

White-sand soils are classified as Arenosol or Podzol in the soil literature (FAO 

1988, Buol et al. 2011) and in Amazonia and the Guianas support a very distinctive 

forest type, with many endemic plants and animals, variously known as campina, 

campinarana, varillal, chamizal, bana, Amazon caatinga or wallaba forests 

depending on the country where they occur (Lisboa 1975, Ducke & Black 1953, 

Encarnacion 1985, García-Villacorta et al. 2003). These forests are extensive in the 

Guiana Shield, a well-defined biogeographic region in northern South America, and 

are distributed as habitat-islands (Prance 1996) elsewhere in the rest of Amazonia 

(Prance & Schubart 1978, Berry et al. 1995, Arbeláez & Duivenvoorden 2004) 

(Figure 1). 
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Figure 1 Archipelago of white-sand habitats in northern Peruvian Amazon 

along the upper Nanay River as interpreted from a Landsat satellite image. 

Bright green = swamps, dark green = terra firme forest on clayey soils, yellow 

lines = streams, blue and sky blue = rivers, white patches = white-sand 

habitats. 

 

 

 

White-sand forest is characterized by densely packed slender trees, high light 

penetration into the forest floor, sclerophyllous leaves, and low canopy, which varies 

from stunted forests (3-6 m height) to medium-tall forest (10-25 m) (Figure 2b). In 

extreme cases, especially in forests growing on isolated sandstone outcrops near the 

Andean range and the Brazilian and Guiana shield (Chapter 2), the vegetation may 

consist of low xeromorphic scrubs (Prance & Johnson 1992, Estrada & Fuertes 1993, 

Arbeláez & Duivenvoorden 2004, Neill 2008). 

 

About 27% of seed plant species (ca. 115,000 species) exist within the Neotropics, 

almost ten times the estimate for Europe (Govaerts 2001), and within Amazonia 

itself an estimated 16,000 different tree species occur (ter Steege et al. 2013), with 

the majority of them rare (69%, ~11,000 species) and most of the dominant species 
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habitat specialists. In order for these species to occupy and successfully establish 

populations along major soil and water environmental gradients, they have to possess 

or develop several adaptations that allow them to tolerate hydro-edaphic variations in 

the landscape.  

 

Figure 2. White-sand soils covered by non-white-sand soils (clayey soils) at 

the Iquitos-Nauta road, Peruvian Amazon. b) View of the characteristic forest 

structure of a poorly-drained white-sand forest with densely packed, thin 

trees.  

a) 
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b) 

 

 

The evolution of tolerance to white-sand soils in Amazonia and the Guiana Shield 

region could have happened either rarely or frequently. Phylogenetic niche 

conservatism is a model of low evolutionary change; it describes the tendency of 

species and lineages to retain their ancestral predilection (Wiens & Donoghue 2004, 

Donoghue 2008), in this case, to track a particular edaphic preference. An 

alternative, though not mutually exclusive scenario is habitat-switching, is that every 

species specialized to white-sand soils has originated from a species found on other 

soil types. The role of niche conservatism in the evolution of lineages has been 

investigated using a biome-level approach (e.g. Crisp et al. 2009, reviewed in 

Donoghue & Edwards 2014), whereas the role of habitat specialization and edaphic 

niche conservatism has been largely unexplored, especially in the Neotropics. There 

have been few studies that specifically attempted to uncover the origin of Amazonian 

white-sand taxa and their relationship to those of the Guiana Shield using modern 

phylogenetic approaches (Fine et al. 2005, Frasier et al. 2008, Fortunel et al. 2014). 

In this dissertation I investigated these questions by focusing on Amazonian white-
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sand forests and taxa, which represent the most extreme nutrient-poor soil and 

hydromorphic conditions in the Neotropics.  

 

Because tolerance to extreme hydro-edaphic conditions may be expected to exert a 

strong influence on community composition and species evolution, an analysis of 

floristic relationships and the evolution of tolerance to nutrient-poor conditions of its 

constituent taxa may provide us with important insights on the role of habitat 

specialization and edaphic niche evolution in Neotropical forests. Both floristic and 

molecular phylogenetic approaches are used in this thesis, which represents an 

attempt to integrate ecological and historical (phylogenetic) biogeography insights in 

studying the evolution and large scale biogeographic patterns of regions (Ricklefs & 

Schluter 1993, Wiens & Donoghue 2004, Ricklefs 2007). Understanding the 

ecological and evolutionary specialization of species to edaphic variation as well as 

their degree of tolerance is a necessary step to interpret the role of habitat 

specialization in creating and maintaining the high biotic diversity in Amazonia and 

the Neotropics in general. This is important if only because an understanding of the 

ecological and evolutionary processes that gave rise to this outstanding diversity may 

help us to address its conservation in relation to on-going and future changes in 

Neotropical environments. 

 

1.2. Aims and structure of the doctoral thesis 

 

This doctoral thesis aimed to understand the origin of western Amazonian white-sand 

forests and the evolution of habitat specialization to different edaphic conditions 

using a combination of ecological and phylogenetic comparative methods. Below I 

provide a description of the main questions addressed in each chapter and some 

reasons why they are considered important components in this dissertation. 
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Chapter 2: What are the main processes involved in the origin of white-

sand soils across Amazonia and how old are they? 

 

This chapter presents a review of the geological and soil science literature on 

Amazonian white-sand soils. It addresses the main processes involved in the origin 

of these soils in different parts of the basin, why they occur as an archipelago of 

islands in certain regions, and their estimated range of ages across the study region. It 

also presents a discussion of the role of regional tectonic forces involved in creating 

edaphic heterogeneity in Amazonia and the association of white-sand soils with other 

soil types in the study region. It has been largely assumed that white-sand soils in the 

Amazon outside the Guiana Shield region have been an ancestral soil in terms of 

their temporal exposure to the soil surface and their availability for plant taxa. 

However, no previous study has looked at the spatial and temporal origin of these 

soils across Amazonia. The extension, estimated ages, and relationships of white-

sand soils to other soils types in Amazonia is an important background because it 

helps us to put into context the ecological and evolutionary research questions 

addressed in Chapters 3 and 4. 

 

Chapter 3:  What are the phytogeographic relationships of western 

Amazonian white-sand forests and what is the proportion of white-sand 

specialists? 

 

While several studies have suggested phytogeographic affinities between north-

western Amazonian white-sand forests and white-sand forests of the Guiana Shield 

(Prance & Schubart 1978, Cleef & Duivenvoorden 1994, Cortés et al. 1998, Giraldo-

Cañas 2001, Arbeláez & Duivenvoorden 2004), this topic has not yet been 

thoroughly evaluated by including white-sand forests (but see Ferreira 2009) and 

non-white-sand forests outside of the Guiana Shield region (Chapter 3). In order to 

understand the origin and maintenance of a flora an analysis of its floristic 
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composition and similarities with other regions may provide us with important 

insights that can help us to discern and hypothesize biogeographic and evolutionary 

scenarios (Chapter 4, and 5). In order to address these questions I employed two 

related approaches that use the species composition and distribution of habitat 

specialist and generalist species across the study region. This chapter helps us to 

understand better the relationships amongst the white-sand forests of the western 

Amazon region, the Guiana Shield region and the rest of Amazonia. 

 

Chapter 4: What is the role of edaphic niche conservatism in the 

evolution of habitat specialization in the Neotropical lowlands? 

 

Taxonomic and ecological studies in the Neotropical lowlands have highlighted the 

potential role of habitat specialization to different edaphic conditions as an important 

component in the evolution of species diversity. The role of niche conservatism, or 

alternatively niche shift due to habitat differences, has been suggested as important 

components of species diversification that can be expressed in plant phylogenetic 

patterns. However, no previous study has evaluated specifically their relative roles 

using well sampled molecular phylogenies and phylogenetic comparative methods. 

In this chapter I study the evolution of habitat specialization through time by 

analysing the phylogenetic signal for nutrient-poor tolerance across the range of 

hydro-edaphic conditions present in Neotropical forests. To address these questions I 

use two species-rich families—Sapotaceae, and Chrysobalanaceae—which are 

distributed in a variety of habitat types in the Neotropics.  Studying the evolution of 

tolerance to nutrient-poor substrates and habitat specialization in a range of edaphic 

conditions can help to put into context the origin of white-sand specialists across the 

Neotropics and the role of edaphic niche conservatism in facilitating the 

accumulation of diversity of species in this biogeographic region. 
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Chapter 5: General conclusions and future prospects 

 

In this chapter I summarize the main conclusions of this dissertation, and expand on 

several ideas intended as future research questions. An assessment of the 

conservation status of white-sand forests across the study region will only be 

attainable by developing a habitat map that includes the full variation in soil 

conditions on which they occur. I expand on several phylogenetic and 

phylogeographic hypotheses based on an extension of this doctoral research. 

Addressing these questions will give us a better understating of the evolution and 

maintenance of plant species diversity in Amazonia. 
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Chapter 2: Edaphic heterogeneity and the origin of white-sand 

soils in Amazonia 

 

“Overlying the shales there has been a soft white sandstone,  

in thick strata, great part of which has been decomposed and  

carried into the hollows, and even into the plain below, by  

the torrential rains leaving only a few scattered blocks of  

more tenacious material than the rest.” 

—R. Spruce (1908) 

 

2.1 Introduction 

 

With approximately 744 million hectares, the Amazon and Guiana region 

encompasses a diversity of soil types that are just starting to be appreciated 

(Dijkshoorn et al. 2005, Quesada et al. 2010). The range of soil types has a complex 

spatial distribution, but in general the soils are predictable according to their level of 

pedogenic development, from intensely weathered soils mostly located towards central 

and eastern Amazonia, to soils in the western Amazon that tend to be more cation-rich 

and less developed (Sombroek 1966, Irion 1978, Quesada et al. 2010). Soil 

development is a dynamic process driven by a variety of pedogenic processes, starting 

with the rock or parent material from which a particular soil type is derived (Quesada 

et al. 2011). An understanding of the changing geo-morphological settings 

predominant in the past is therefore essential for interpreting current soil differences, 

which in turn may have affected biotic diversity, evolution and biogeography in these 

regions through variations in habitat heterogeneity. Insights into the age differences of 

white-sand patches, their spatial configuration and associations with other less extreme 

nutrient-poor soils, and proximity to putative parent material, may have implications 

for our understanding of the evolution of the Amazonian flora via habitat 

specialization. 
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Given the complex geological and soil formation history of the Amazon landscape 

(Sombroek 1984, Räsänen et al. 1987, 1990, 1992, Hoorn 1993, 1994, Räsänen et al. 

1995, Wesselingh et al. 2002, Hoorn 2006, Roddaz, Viers, et al. 2005, Wesselingh & 

Salo 2006, Hoorn, Wesselingh, et al. 2009), the origin of white-sand soils, and hence 

the white-sand vegetation they support, is still debated. A review of the geology, 

palinostratigraphy, and soil studies of quartz-rich sandy soils in the Amazon and 

Guiana region suggest that they can have at least four origins: (i) the product of deep 

in situ weathering of quartzitic sandstones (Gansser 1974, Kubitzki 1989, Hammond 

2005); (ii) deposition by eolian (wind) transport (Horbe et al. 2004); (iii) as fluvial 

deposits of paleo-channels (Klinge 1965, Hoorn 1994, Räsänen & Linna 1998, 

Roddaz, Baby, et al. 2005, Rossetti et al. 2012); and (iv) the final product of on-going 

Ferralsol/Acrisol to Podzol transformation (Lucas et al. 1984, Dubroeucq & Volkoff 

1998, Lucas et al. 2012, Mendonça et al. 2014).  

 

In this chapter I review the origin and development of white-sand soils in the Amazon 

and Guiana region. I start with a general review of the geological events that provided 

the parent material and sediments over which the Amazon and Guiana biota evolved. 

Second, I give a general background on white-sand soils in relation to current 

classification systems and discuss other relevant aspects of white-sand soil 

associations. I continue with a discussion of the four models of white-sand soil 

formation proposed above, with special emphasis on providing evidence for each of 

them and its applicability across the whole study area in Amazonia.  The spatial 

configuration of white-sand patches in Amazonia and how some of the models may 

account for it is also reviewed. Finally, I discuss examples of white-sand soils that 

have been dated by different field studies in both the Amazon and Guiana Shield 

region.  

 

The aim of this review is to develop a geological and soil framework on which to base 

further biogeographical analysis and interpretation of plant habitat evolution and 

specialization. Understanding which processes are mainly responsible for the 

development of these extremely nutrient-poor soils, and their close association with 
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other soil types, can help us to put into a wider context how they may have influenced 

plant evolution through habitat specialization in this biodiverse region.  

 

2.2. Geological settings 

 

After its split from Africa and North America (ca. 100-90 Mya.), South America was 

essentially an island continent, with two emerging lands, the Brazilian and Guiana 

Shields (also known as the Amazonian craton, Figure 3), inhabited by angiosperm 

families which evolved in West Gondwana (South America plus Africa) about 135 

Mya (Graham 2010). These two regions are mainly built of Precambrian rocks (2.4-

0.57 Byr) which have been eroded for most of their history (Hammond 2005), 

depositing massive amounts of sandy soils in the lowlands north and south, especially 

on the western fringe of lowland Guiana (Kubitzki 1990). Before the rise of the 

Andean chain, during a period of about 85 million years, a proto-Amazon drainage 

system discharged to the Pacific and Caribbean and these quartz-rich cratonic Shields 

were the main source of sediments deposited on the western side of South America 

(Kubitzki 1989, Potter 1997, Wong et al. 2009). 

 

During the rise of the Andes mountains, multiple lines of evidence suggest that the 

western Amazon region was submerged between 18 and 9 Mya (middle Miocene), 

under a huge fluvio-marine wetland system (>1 Million km²) known as the Pebas 

system (Figure 4) (Wesselingh et al. 2002, Wesselingh & Salo 2006). During this 

period, a proto-Amazon continued to drain towards the west, with connections to the 

Pacific and the Caribbean Ocean in a monsoon tropical environment (Wesselingh & 

Salo 2006). At its south-west margin the Pebas system was in contact with developing 

floodplains of Andean rivers (Hermoza et al. 2005), whereas towards the north and 

northeast, it received black water influx and sedimentation from the Guiana Shield 

craton (Hoorn 1994).  
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Figure 3 Amazonian craton (Guiana and Brazilian Shields) and its tectonic 

provinces (after Cordani et al. 2009).  
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Figure 4. Paleo-geographic reconstruction of western Amazonia in the past 34 

million years. A) 34-23 Mya: proto-Amazon ran east to west and drained to the 

Caribbean, B) 23-17 Mya: A fluvial-lacustrine system started to develop in 

western Amazonia (the Pebas system), C) 17-9 Mya: The Pebas system 

dominated the region, marine conditions were also present, D) ca. 8 Mya: the 

modern eastward Amazon system became established (after Wesselingh & 

Salo 2006). 

 

 

 

The demise of the Pebas system, and the origin of the modern Amazon system, was 

influenced by the Andean orogeny (Hoorn 1993) and the westward motion of the 

South American continent (Shephard et al. 2010). The initiation of the Andean 

orogeny gradually closed the proto-western Amazon with its Pacific and Caribbean 
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connections (Wesselingh & Salo 2006). The fluvio-lacustrine period of Pebas ended 

about 6-10 Mya (late Miocene) when the rise of the western Guiana Shield blocked the 

Caribbean connection of the Pebas system (Wesselingh & Salo 2006, Shephard et al. 

2010). It was during this period that newly formed habitats in the western Amazon, 

with varied soils, may have been gradually occupied by plants. 

 

2.3. Amazon and Guiana white-sand soils 

 

White-sand vegetation in the Amazon and Guiana regions occurs on soils classified as 

Podzols (Spodosols in the US Soil Taxonomy) or Arenosols (Psamments and 

Psammaquents in the US Soil Taxonomy) in the WRB classification (World Reference 

Base for Soils Resources) (Driessen et al. 2000, Quesada et al. 2011). Arenosols are 

soils with little or no profile differentiation and cover approximately 10% of the 

world’s land surface, with the largest expanses representing eolian sands found in arid 

and semi-arid regions. In the Neotropics they are found in coastal areas and within the 

Amazon tropical biome, on top of both very old surfaces and more recent landforms 

(IUSS Working Group 2014).  

 

Badly drained white-sands (hydromorphic white-sands) are also known as Ortsteinic 

Podzols in the World Reference Base soil classification (IUSS Working Group WRB, 

2014) due to their capacity to develop a cemented spodic horizon (composed generally 

of iron, aluminum, and organic matter) close to the soil surface, with consequences for 

drainage conditions. This spodic horizon exerts an influence on the vegetation 

structure and composition through hydro-edaphic interactions (Anderson 1981, 

Chauvel et al. 1987, Jirka et al. 2007, Damasco et al. 2013). Podzols are classified as 

Giant Podzols if they have a spodic horizon located > 200 cm or more from the soil 

surface (FAO 1988, IUSS Working Group 2014). If this spodic horizon is located 

<200 cm depth they are classified as Podzols (FAO 1988, Dubroeucq & Volkoff 

1998).  
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Podzols are soils with profile differentiation and usually with a thick (>1m thickness) 

organic horizon (Bh) in the topsoil (Chauvel et al. 1996) which has been recently 

found to store large amounts of carbon (Montes et al. 2011). They are more common 

in boreal and temperate regions, and in Amazonia they occur locally in areas rich in 

siliceous rock sediments (Klinge 1965, do Nascimento et al. 2004, Quesada et al. 

2011, IUSS Working Group 2014), or closely associated with Low Activity Clay soils 

(i.e. low in CEC, Cation Exchange Capacity, due to strong weathering) like Ferralsols 

and Acrisols (do Nascimento et al. 2004, Bardy et al. 2010).  

 

Well drained white-sand soils support generally taller and slightly more diverse 

vegetation than poorly-drained white sands (García-Villacorta et al. 2003, Vicentini 

2004). Both Podzols and Arenosols are especially abundant in the upper Rio Negro, 

Brazil, (Figure 2) with some of them thought to represent the last stage of soil 

evolution in the Amazon, through podzolization of previously clay-rich Ferralsols and 

Acrisols (Dubroeucq & Volkoff 1998, Lucas et al. 2012, do Nascimento et al. 2004). 

 

Ferralsols (Oxisols in the US Soil Taxonomy) are mainly found in central and eastern 

Amazonia, as soil mantle of old geomorphic surfaces and they are less common on the 

younger Andean sediments of the western Amazon (Quesada et al. 2012, 

Duivenvoorden & Lips 1995, Veillon & Soria-Solano 1988). They include most of 

what in the past were called laterites or Latosols (Carneiro-Filho et al. 2002). They 

consist of strongly weathered iron-rich (reddish-yellow coloured) low activity clays 

with an advanced pedogenic development. Compared to Acrisols (below), Ferralsols 

have a ferralic B horizon between 25-200 cm of the soil surface and in the central and 

eastern Amazonia (mostly Brazilian Amazon) they occur in the upper part of the terra 

firme clayey soil mantle (Figure 5).  

 

Acrisols (Ultisols in the US Soil Taxonomy) are also low activity clay soils and the 

second most common soil in Amazonia, after Ferralsols (Quesada et al. 2012). They 

are devoid of a ferralic horizon and are especially prevalent in the Amazon region of 
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Colombia, northern Peru, and western Brazil (Figure 5). Podzols can develop from 

Ferralsols and Acrisols both centripetally (from the lower part of the terrain) and 

centrifugally (from the central part of the terrain) (Montes et al. 2011). In tropical 

waterlogged environments these soils are conductive to podzolization of clay with 

sandy soils as residuals (Lucas et al. 1984, Chauvel et al. 1987, do Nascimento et al. 

2004).  

 

Figure 5. Soil map of the Amazon and Guiana region. Legend ordered by age 

gradient, from younger to older pedogenic development. Note greater 

extension of Arenosol and Podzol in the Guiana Shield in yellow and red.  

Small patches of western Amazon white-sand forests (WA wsf) in dark green. 

Acrisol (Orange) and Ferralsols (bright green) are discussed in the text. White 

areas in the map are non-forested areas. GS limit = Guiana Shield limit 

(adapted from Quesada et al. 2011). 

 

 



CHAPTER 2: Geology and the origin of white-sand soils 

 

17 

 

Quesada et al. (2011) using soil data compiled by the project SOTERLAC for Latin 

America and the Caribbean (Dijkshoorn et al. 2005) along with a vegetation map for 

the the Amazon basin (Saatchi et al. 2008) developed an updated version of soil map 

for the Amazon and Guiana Shield region (Figure 5). Although this map shows soil 

classes as discrete units it is important to emphasize that transitions between soil types 

exist, Ferralsol/Acrisol-Podzol being one of them (see below), that remain still 

unmapped. In the same vein, Podzols and Arenosols have been described as the final 

stage of soil development in the Amazon and Guiana region (Quesada et al. 2010) and 

shortcuts for the formation of these soils can occur depending on their proximity to the 

sandstone/crystalline rock parent material. Likewise, Arenosols and Podzols occur in 

geographic close proximity to Regosols and Leptosols, which are shallow mineral 

soils associated with rocky sandstone areas, in the Andes, Guianan and Brazilian 

Shields (Figure 5).  

 

White-sand vegetation outside the Guiana Shield area is associated with, or occurs in 

relatively close proximity to, rocky sandstone formations, as has been reported in 

several mountainous areas of the Neotropics such as cordillera Cahuapanas (Dietz 

2002, Treidel 2004), Cordillera del Condor (Neill 2008), Serra do Cachimbo (Lleras & 

Kirkbride 1978, Zappi et al. 2011), Serra do Moa, Serra do Divisor (Whitney et al. 

2004), Cordillera Azul, Sierra Divisor, and Cerro Escalera (Neill et al. 2014). It is thus 

plausible that areas with Leptosols and Regosols, as currently classified (Figure 5), 

contain not yet mapped Arenosols and Podzols. Alternatively, Regosols and Leptosol 

may have hydro-edaphic characteristics similar to the Podzols and Arenosols of the 

lowlands, which makes them suitable for the establishment and nutrient-poor edaphic 

specialist plant species. 

 

Another caveat to consider is the level of uncertainty in areas not well studied or not 

yet incorporated into maps. For instance, Veillon & Soriano (1988) described white-

sand soils in Jenaro-Herrera, northern Peruvian Amazon, that they suggest were the 

product of podzolisation, in which Ferralsol/Acrisol soils were transformed into 

Podzols. In a second example from the western Amazon, Lips & Duivenvoorden 
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(1996) reported the presence of sandy-clay Ferralsols, with incipient podzolisation in 

the Caquetá region of Colombia. Both studies are not represented in the current soil 

map of the Amazon and Guiana regions (Figure 5). It is possible that the small size of 

areas of white-sand soils outside the Guiana Shield region makes it difficult to 

represent them at continental scale, thus masking the edaphic heterogeneity at the local 

scale.  

 

The question is whether edaphic variation important to study the ecology, evolution 

and biogeography of plants and other organisms is represented in enough detail to 

answer relevant questions in each of these fields. In addition, soil mapping techniques 

and classification systems do not necessarily translate into data that is useful to study 

plant species distribution and functional properties, especially for patchy soil 

distributions (Sollins 1998). Along these lines, a quick glimpse of the recent soil map 

for Amazonia (Figure 5) might suggest that edaphic heterogeneity is high outside 

western Amazonia. However, relatively high levels of habitat heterogeneity has been 

documented for north-western Amazonia (Tuomisto et al. 1995, Duivenvoorden 1995, 

Pitman et al. 2008) which may be associated with its overall species diversity (Steege 

et al. 2003, Bjorholm et al. 2005, Barthlott et al. 2007, Kreft & Jetz 2007).  

 

The exact extension of tropical Podzols and Arenosols in the Amazon and Guiana 

region is still unknown, but a recent estimation suggests that Arenosols and Podzols 

may account for 20 (2.7%) and 14.1 (1.9%) million hectares respectively (Table 1). 

This means that white-sand soils in Amazonia may have roughly an extension of 34.1 

million hectares (4.6% of the soil surface in the whole region). This is in a sense an 

underestimate since some white-sand taxa may occur on Regosols and Leptosols as 

discussed above. At a regional level, Arenosols account for 17% of the Zanderij 

Formation in Surinam and approximately 26% of Guyana’s Berbice Formation (FAO 

1988, Hammond 2005). It has been estimated that white-sand Arenosols and Podzols 

occupy 17% and 26% of the current sedimentary plains of Suriname, and Guyana 

respectively (Schulz et al. 1960, FAO 1965). 
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In the Amazon and Guiana regions, estimates suggest that Ferralsols and Acrisols (and 

to a lesser extent, Cambisols) represent the largest soil mantle in the species-rich terra 

firme forests (Figure 5), with 235 (32%) and 215 (29%) million hectares of soil cover 

respectively (Table 1). It has been estimated that Ferralsol-Podzol associations cover 

approximately 18% of the Brazilian Amazon (Radambrasil 1978), and can occur 

within the same spatial unit and geological formation from Precambrian, Tertiary to 

Quaternary (de Almeida et al. 1976, Chauvel et al. 1987, Veillon 1990, Hammond 

2005).  

 

Table 1. Soil extension of the white-sand soils (Arenosols and Podzols), 

Ferralsols, and Acrisols in the Amazon and Guiana regions (modified from 

Quesada et al. 2011). 

 

Soil type Area (mill. 
has) 

% 

Ferralsols 235.0 32 

Acrisol 215.4 29 

Arenosol 20.0 2.7 

Podzol 14.1 1.9 

Others (n=10) 259.7 34.4 

Total 744.2 100 
 

 

 

 

 

 

 

 

2.4. Processes involved in the origin of Amazonian white-sand 

soils 

(i) Deep in situ weathering of quartzitic sandstones 

 

Of the original ca. one million km2 of estimated Roraima sandstone extension in the 

Pre-Cambrian, three quarters have been eroded (Gansser 1974). Given the importance 

of the Guiana and Brazilian shield as the source of sand material in South America it 
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was thus believed that most of the white-sand soils in the western Amazon were 

derived from erosion from these Pre-Cambrian sandstone formations and subsequent 

deposition in this region by fluvial transportation when the proto-Amazon region was 

drained in an east-west direction before the rising of the Andes in the Miocene 

(Kubitzki 1989, Räsänen et al. 1993, Hoorn 1994, Potter 1997, Frasier et al. 2008). 

Potter (1994) estimated that 62% of all quartzitic sands in South America, including 

coastal and inland, have a cratonic provenance (i.e. originated in the Guiana and 

Brazilian Shield regions). Most of the eroded sands were deposited north or south of 

the Guiana Shield area, within the now coastal savannas of Guyana, French Guiana, 

and Surinam; and between the Upper Orinoco and Rio Negro in the Amazon (Kubitzki 

1989, Potter 1997).  

 

Because of the abundance of white-sand soils in the Guiana Shield region as a whole 

(Klinge 1965, Hammond 2005, Quesada et al. 2012), early interpretations attributed 

this region as the main source of white-sand soils in the Amazon. A distinction was 

made, however, when discussing the potential origin of white-sand soils depending on 

the presence of sandstone parent materials nearby white-sands. Thus, white-sand 

forests of the upper and lower Rio Negro, specifically the ones located between the 

upper Rio Negro and Rio Branco, were postulated to have their origin on sands eroded 

from sandstone outcrops of the Guiana Shield region. The existence of white-sands 

occurring in other areas of Amazonia was attributed to be the result of ancient fluvial 

depositions on abandoned river beaches (Prance 1996).  

 

Given that white-sands in the upper and lower Rio Negro are located in geographical 

proximity to quartz-rich rocky outcrops of the Guiana Shield; it is plausible that 

eroded sediments were transported by paleo-rivers to this area (Prance & Schubart 

1978). A good example of in-situ white-sand soil developed by deep weathering and 

erosion of quartzitic sandstones is the white-sand soils of Serra do Aracá, which is the 

southernmost extension of the Roraima Formation in the Upper Rio Negro, Brazilian 

Amazon (Prance & Johnson 1992). However, not all white-sand soils in the Guiana 

Shield lowlands may have their origin from in-situ erosion of sandstone outcrops. 
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Lucas et al. (1984) studied a representative toposequence in the Manaus region and 

found that Podzols developed by weathering of clayey Ferralsols/Oxisols, a finding 

later corroborated by other studies (do Nascimento et al. 2004 and references therein).  

 

In the western Amazon lowlands, white-sand soils generally occur isolated from any 

sandstone formations. However, there exist some areas that may have provided the 

parent material for their origin and these include Palaeozoic sandstone table-mountains 

in Colombia, which are geologically related to the Guiana Shield (Teixeira et al. 1989, 

Tassinari & Macambira 1999, Cordani et al. 2009, Hammond 2005), and Cretaceous 

sandstone rocks in the northwest of the Peruvian Amazon (Stallard & Lindell 2014). It 

is possible that at least some of the white-sand soils found in the northwest of the 

Peruvian Amazon may have their origin from similar quartzitic sandstone transported 

down the lower watershead areas by now extinct paleo-rivers. 

 

(ii) White-sands deposited by eolian transport 

 

The formation of sand dunes in any geographic region requires certain wind conditions 

(speed and direction; see above) and open areas, like the ones present in deserts, or 

coastal areas such as the restinga forests found from northeastern to southeastern 

Brazil (Bigarella et al. 1969, Clapperton 1993). Some authors have presented relict 

sand formations (paleo-dunes) now covered by savanna vegetation in northeast South 

America as evidence for drier climates in the past (Ab’Saber 1977, Clapperton 1993, 

Latrubesse & Nelson 2001).  

 

Clapperton (1993), in particular, hypothesized that white-sands in the Amazon may 

have an eolian origin based on interpretation of Ab’Saber’s soil studies in the region of 

Amapa, northeast Brazil (Ab’Saber 1982). He suggested that white-sand soils may 

have been transported first across the Amazon by wind, during dry periods, after 

having been eroded from sandstone outcrops in the Guiana-Shield region.  
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The orientation of putative paleo-dune ridges covered with campina and campinarana 

vegetation south of Serra de Aracá (Borges et al. 2014) coincides with modern 

dominant wind direction (Teeuw & Rhodes 2004). These white-sand soils may have 

been deposited during a dry phase preceding the Last Glacial Maximum (LGM), 

during the late Pleistocene and early Holocene, 32,000-8,000 yrs B.P. (Carneiro-Filho 

et al. 2002). In the Upper Rio Negro in Brazil, thermoluminescence dating of white-

sand soils has suggested eolian activity during dry periods before the LGM, with sand 

deposition until at least 7800 yr BP when a more humid climate fixed the soil with 

vegetation cover (Carneiro-Filho et al. 2002). 

 

Dune formations present a particular manner of sand grain deposition known as cross-

bedding, in which sand grains blown by wind from one direction are deposited at the 

top of the dunes and then eventually fall towards the lee part of the dune (“avalanche 

phase”, Figure 6). Likewise, grain bedding of sand deposited in eolian conditions 

exhibit inverse grading, a systematic change in grain size with coarser sand grains at 

the top and fine grains at the bottom of the sediment layer.  
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Figure 6. Sand dune formation by eolian action. In contrast to fluvial dunes, 

eolian dunes deposit fine sand grains at the bottom and coarse grains at the 

top (after Sloss et al. 2012). 

 

 

 

Although there has been a suggestion that white-sand soils in the upper Rio Negro, 

Brazil have been transported by wind (Santos 1993 cited in Latrubesse & Nelson 

2001) this process may not be as important as previously thought for the deposition of 

sandy soils in other regions of the Amazon. Current sedimentary records, as well as 

ocean and climatic models, suggest that most of tropical South America and the 

Amazon landscape did not develop an arid environment during the LGM (Last Glacial 

Maximum) (Baker et al. 2001, Mayle et al. 2004, Bush et al. 2007, Clark et al. 2012, 

Maslin et al. 2012). Most of Amazonia may have remained covered by tropical 

rainforests during this period and only at its margins may have transitioned to 

savannas or seasonal dry forests (Beerling & Mayle 2006, Cruz et al. 2009, Cheng et 

al. 2013).  

 

In the Guyana-Brazil border, in the Rio Branco-Rupununi savannas, optical dating of 

the onset of eolian activity was estimated in the range of 15,000-17,000 yrs ago (late 
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Pleistocene), suggesting that eolian deposition has been relatively stable since soon 

after the LGM, with a constant deposition rate of 13 cm per 1,000 years, and is now 

fixed by savanna vegetation (Teeuw & Rhodes 2004). Finally, it is not clear what has 

been the relative importance of wind in the origin of white-sand soils in north-eastern 

Amazonia, south of Serra de Aracá (Figure 1 in Borges et al. 2014), given that they 

occur in close proximity to areas recently hypothesized of being the result of 

sedimentation processes due to paleo-channel abandonment by fault reactivation 

(Rossetti et al. 2012). 

 

 (iii) Fluvial deposit of paleo-channels 

 

Abandonment of fluvial channels since the late Miocene-Pliocene (6-5 Ma), and 

especially during the Pleistocene-Holocene, due to tectonic events (fault reactivation), 

may have created depositional systems over which sediments of different types, 

including sandy soils, were deposited in massive quantities (Rosetti et al. 2012). In the 

region of Iquitos, white-sand soils occur parallel to a former cratonic river, a proto-

Nanay River, which, along with the horizontal zonation of sand grains was used as 

evidence to infer that they were deposited as sand by a now extinct paleo-river which 

left its sandy sediments in the uplands between 8-1 Ma (Räsänen & Linna 1998).  

 

A further comparison of the white-sands of Iquitos with sediments from Andean 

sources pointed to a cratonic origin (Hoorn, Wesselingh, et al. 2009) and an estimated 

range age of one outcrop, via cosmogenic dating, in the range of 600,000-800,000 

years old (M. Roddaz, pers. com.). White-sand outcrops are common around the 

Iquitos region and we cannot be sure that this age is representative for other areas until 

more studies are carried out. If further studies confirm that this age is representative of 

white-sand soils in this area, it will provide support for the idea that its flora was 

building up relatively recently, in the middle Pleistocene, by the arrival of white-sand 

specialists from other areas or by adaptation of non-white-sand specialists from less 

oligotrophic soils nearby. 
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Fluvial perturbation of the Amazon landscape may have been a recurrent pattern in 

recent geological time in eastern Amazonia, in areas influenced by sandy sediments 

from pre-Cambrian rocks. Latrubesse & Franzinelli (2005) established that the Rio 

Negro fluvial system, Brazil, has left Late Pleistocene floodplain terraces composed of 

abundant quartz sand deposited by the river during its aggradational phase  (ca. 65 kyr 

to 25 kyr ago B.P.).  

 

Sedimentary evolution due to fault reactivation that affected fluvial systems shows 

that sedimentary dynamism in the Rio Branco area (Amazonian Brazil) was high, with 

constant rearrangement of fluvial tributaries in the landscape (Rossetti et al. 2012). 

These events may have been especially pronounced during the Pleistocene-Holocene, 

with fluvial rearrangements due to local tectonics. The result may have been the 

abandonment of paleo-channels carrying sandy sediments, providing the conditions 

necessary for the development of white-sand vegetation of various types surrounded 

by the typical Amazon rainforest (Rossetti et al. 2012).  

 

In the Viruá National Park of Roraima and the Demini region, north east Brazil, 

multiple paleo-channels exist within subsiding areas which were filled up with sandy 

sediments from pre-Cambrian rocks present in the area. The age of these sandy 

sediments have been C14 dated up to 38,161 yrs BP, and they have a grain size from 

coarse to fine, with finer grains deposited at the bottom of the paleo-channels. 

Interestingly, as with the Iquitos white-sand areas of the western Amazon, some parts 

of the forests on white-sand soils in Viruá occur on sandy hills, several meters above 

the landscape, which might represent exposed fluvial bars (Rossetti et al. 2012).  

 

Palynological and sedimentological studies in the Amazon region of Colombia suggest 

that the Mariñame and Apaporis sand units have been deposited from the Guiana 

Shield by a former river that ran from east to west during the Miocene, 23-5 Ma 

(Hoorn 1993, 1994). In the northern Peruvian Amazon, the depositional phase of a 
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marine mega-lake deposited cation-rich sediments known today as the Pebas 

Formation during the Middle Miocene to Upper Miocene (17 Ma to 11 Ma) (Hoorn 

1994). River dynamics of incision and denudation have exposed the buried cation-rich 

Pebas formation in many areas of western and central Amazonia (from ca. 5 Ma to 

present) (Räsänen et al. 1990, Roddaz, Baby, et al. 2005, Roddaz, Viers, et al. 2005). 

 

Sandy-clay soils in the Peruvian Amazon were deposited between 10-5 Ma (late 

Miocene), as part of the Nauta formation, above the clay-rich Pebas formation 

(equivalent to the Solimões formation in Brazil) during a period that coincided with 

the closing of a mega-lake that occupied much of the Amazon basin (the Pebas 

system) (Wesselingh & Salo 2006). Likewise, the white-sand unit of the Iquitos area 

has been interpreted as fluvial in origin and dated between 8-1 Ma (Räsänen et al. 

1998). The composition of Iquitos white-sand indicates that the most probable source 

for these soils was metamorphic basement (not Andean sediment) and located 

probably not far away from the Iquitos area (Roddaz, Viers, et al. 2005). Accordingly, 

western Amazon white-sand floras and mega-diverse upland forests on clay may have 

assembled only after the Pebas mega-lake dried up in the late Miocene (ca. 11-9 Ma 

BP). There is sedimentological, and palinostratigraphic evidence that a river 

originating in the Guiana Shield discharged its sediments in the Caquetá region, 

Colombian Amazon (Hoorn 1994) whereas the Vaupés formation, that extends 

between the Vaupés and Caquetá Rivers developed within an epicontinental 

environment (Priem et al. 1982). 

 

Given that the Nauta sandy-clay Formation, and the Iquitos white-sand Formation 

were exposed to the same weathering conditions and considering that the Nauta 

formation does not show signs of quartz enrichment (podzolisation), Roddaz et al. 

(2005) inferred that Iquitos white-sands might have been deposited as such by an 

extinct cratonic river, not by Andean rivers. Because of its location only on the eastern 

part of the Iquitos arch, they also suggested that the Iquitos white-sand formation may 
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have been deposited by an eastern fluvial system draining the Amazonian craton 

(Roddaz, Baby, et al. 2005).  

 

A review of absolute dating by stratigraphy puts the white-sand formations in the 

Caquetá region between 23-5 Ma B.P. (Hoorn 1993, Hoorn, Wesselingh, et al. 2009). 

Considering that the western lowlands of the Guiana Shield may have had, up to this 

time, a flora pre-adapted to sandy nutrient-poor soils, their constituent taxa were the 

natural candidates for occupying these newly created habitats in northern Amazonia 

(Kubitzki 1989).  

 

Fluvial paleo-dunes 

 

Sand dunes resulting from fluvial deposits can be characterized as such by 

depositional patterns, grain size distribution, and stratification types (Visher 1969, 

Hunter 1977, Kocurek & Dott Jr 1981, Kocurek 1991). Dunes formed by fluvial (or 

eolian) activity exhibit a cross-bedding deposit (i.e. inclined layer deposition), which 

results from the “avalanche phase” during dune propagation (Figure 7). In contrast to 

eolian dunes, dunes formed by fluvial dynamics generally deposit coarser grains (or 

gravel) at the lower part of the dune and finer grains occupy the upper half (Figure 7).  
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Figure 7. Fluvial dune formation process in which larger sand grains (or 

gravels) are deposited at the bottom and finer grains at the top (after 

Kleinhans 2001). 

 

 

 

This sedimentation pattern of fluvial dunes is due to a combination of an intrinsic 

physical process of fluvial transport (coarser grains or gravels are deposited in the 

dunes during river discharge while finer grains remain in transport longer) helped by 

the “avalanche phase” (Kleinhans 2001, 2004). These two processes of dune formation 

by eolian and fluvial systems are, however, not mutually exclusive and they can 

interact to shape the geomorphology of landscapes (Bullard & Livingstone 2002, Field 

et al. 2009).  

 

Fluvial deposition on the Iquitos paleoarch 

 

The vast extension of the Amazon basin can be sub-divided into smaller sub-basins by 

structural highs in the terrain called forebulge arches (Figure 8). In a geo-

morphological context, the rising of a massive geological fault system in the northern 
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Peruvian Amazon—the Iquitos Arch—has been associated with deposition of fluvial 

white-sand soils as well as their prevalent location on hilltops along this Arch 

(Roddaz, Baby, et al. 2005, Roddaz, Viers, et al. 2005, Stallard 2006). Roddaz, Baby, 

et al. (2005) proposed that the forebulge depozone induced the retreat of the Pebas 

system and accumulated Andean fluvial sediments of the Nauta formation (late 

Miocene), whereas the backbulge depozone of the arch received white-sand sediments 

(Figure 8).  

 

Since the modern Amazon drainage system have been active since 6-8 Ma (Roddaz, 

Viers, et al. 2005), and considering that white sand deposits around Iquitos occur at 

some localities covered by the Pebas Formation that are dated from the Middle 

Miocene (16.3-10.4 Ma) (Kauffman et al. 1998), Roddaz, Baby, et al. (2005) 

estimated the age of the Iquitos white-sand soils at 6-8 Ma (late Miocene). In the same 

geological context of the Iquitos Arch, southwest of the Iquitos white-sands, an 

extensive area of white-sand forests has been reported (Vriesendorp et al. 2006). Soils 

in this area occupy mostly flat hilltops and were interpreted as belonging to remnants 

of a former fluvial landscape (Pliocene, 5-3 Ma) that may have been alluvial in origin 

or derived from more complex sediments via strong weathering of sandy-clay soils 

(Stallard 2006).  

 

 

 

 

 

 

 

 

 

 



CHAPTER 2: Geology and the origin of white-sand soils 

 

30 

 

Figure 8. Schematic representation of the Iquitos forebulge arch evolution (a, 

b, and c) and the deposition of white-sand soils on the backbuge depozone of 

the arch since the middle Miocene to present (after Roddaz, Baby, et al. 

2005). 

 

 

 

So far, there has not been another claim for the role of arches as white-sand sediment 

beds in other parts of Amazonia and the Iquitos arch’s circumstantial function for 

trapping white-sand sediments in the western Amazon seems unique. In addition to 

receiving cratonic sediments from the east of Amazonia, the accumulation of new 
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sediments in its forebulge depozone (Roddaz, Viers, et al. 2005) and subsequent and 

continuous uplifting may have increased the erosion rates, exposing diachronically 

deposited sediments. The upper hills on tropical conditions may have favoured 

leaching of soil nutrients at the top which may be reflected in the presence of nutrient-

poor associated plant species (García-Villacorta et al. 2010, 2011). The accumulation 

of sediments from different ages and origin with subsequent erosion may have had a 

profound effect on creating the edaphic heterogeneity in the terra firme forests of the 

western Amazon.  

 

Räsänen & Linna (1998) worked in the same Iquitos area as Roddaz, Baby, et al. 

(2005) and classified the sediments that outcrop in the Iquitos arch into five groups: 

the Pebas unit, Nauta C, Nauta B, White-sand unit, and fluvial terraces. The Pebas unit 

is interpreted as the legacy of the early-middle Miocene (17-11 Mya) mega-lake 

system with the same name. It is rich in cations due to the presence of marine deposits 

and it outcrops intermittently in the terra firme (e.g. salt-lick areas) and more 

commonly exposed along some river banks. The two Nauta units (C, and B) are 

interpreted as Andean fluvial deposits (12-8 Mya) (Räsänen & Linna 1998) and 

overlay the Pebas unit for the most part. The white-sand unit was interpreted as a 

fluvial deposit from the late Miocene (8-1 Mya) by an extinct cratonic river. Fluvial 

terraces ages are assigned to middle to late Quaternary age (ca. 1 Mya) (Räsänen & 

Linna 1998). 

 

The use of paleo-arches to interpret biogeographic patterns in the Amazon (Da Silva & 

Patton 1998, Patton et al. 2000) has been criticized by Rossetti et al. (2005) on the 

grounds that they no longer represent physical barriers that isolate populations (see 

also Wesselingh & Salo 2006). For example, the Purus arch, west of Manaus, has been 

buried >1000 m under Cretaceous rock of the Alter do Chão Formation (Rossetti et al. 

2005). Considering that other arches, like the Iquitos arch, are still growing and active 

today (Roddaz, Baby, et al. 2005), this observation does not preclude the effect paleo-

arches may exert on topographic variation, their effect on erosion rates (Stallard 1988), 

and exposure of different sediments, including white-sands, which may affect the level 
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of edaphic heterogeneity of entire watersheds at local and regional scales (Roddaz, 

Baby, et al. 2005, Stallard 2006, 2011). The few phylogeographic studies on plants 

and animals along areas influenced by paleo-arches suggest that these terrain 

structures may have an important effect on creating strong edaphic variations that may 

separate species distributions (e.g. Da Silva & Patton 1998, Lougheed et al. 1999, 

Dexter et al. 2012) or create abrupt changes over entire plant communities (Pitman et 

al. 2008, Higgins et al. 2011). 

 

(i) Ferralsol/Acrisol-Podzol transformation 

 

Deposition of sand by cratonic (non-Andean) paleo-rivers or lakes competes with the 

possibility that white-sand soils may develop in situ by the transformation of low 

activity clay soils like Ferralsols (Oxisols) and Acrisols (Ultisols) into white-sand 

soils, over thousands to millions of years of strong weathering (Dubroeucq & Volkoff 

1998, Lucas et al. 1996, Horbe et al. 2004, Hoorn, Wesselingh, et al. 2009). These two 

types of soil are widely distributed in the terra firme forests of the Amazon basin 

representing in total 61% of the soil mantle in the Amazon and Guiana Shield regions 

(Quesada et al. 2012) and more than 65% in the Guiana Shield alone (Hammond 

2005) (Figure 5, Table 1). Ferralsols are more strongly weathered than Acrisols and 

together they occupy different extensions and distributions, with Acrisols more 

extended in the western Amazon, while Ferralsols are more widespread in the 

Brazilian Amazon (Figure 5).  

 

White-sand soils in the Guiana Shield area exist alongside Ferralsols and Acrisols and 

occupy the same geo-morphological units, this being Tertiary sediments (66-2.6 Ma) 

in the central Amazon (Lucas et al. 1989) and Quaternary sediments in coastal Guyana 

(Bleackley & Khan 1963, Hammond 2005) and Precambrian Guiana Shield areas (de 

Almeida et al. 1976, Veillon 1990, Hammond 2005). White-sand soils therefore would 

be the final product of tropical weathering in the pedogenic process of soil 

development in the Amazon and Guiana regions (Quesada et al. 2012). The enormous 
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extensions of white-sand soils (Arenosols and Podzols) in the Guiana Shield region, 

including the Upper Rio Negro, might testify to the longer period of weathering the 

soil mantle in this area has passed through compared to the scattered nature of white-

sands in the western Amazon region. 

 

Pedogenic evidence from the eastern and western Amazon suggests that white-sand 

soils and low activity clay soils (Ferralsol/Acrisol) can co-exist in the same spatial 

matrix. In the Manaus and Rio Negro region, white-sand soils develop as the final 

product of podzolization in which sandy-enriched sediments like Ferralsols/Acrisols 

develop into podzols over thousands or millions of years of strong weathering (Lucas 

et al. 1984, p.84, Chauvel et al. 1987, Bravard & Righi 1988, Kubitzki 1989, Lucas et 

al. 1996, Cornu et al. 1998, Dubroeucq & Volkoff 1998, Lucas 2001, Horbe et al. 

2004).  

 

For example, the geological unit upon which white-sand soils occur in Manaus is 

known as the Alter do Chão Formation, which has been dated to the Cretaceous (100 

Ma) through palynological and stratigraphical studies (Putzer 1984). 14C dating of 

Podzols 30 km north of Manaus shows that they have developed from sandy to sandy-

clayey horiozons in less than 3,000 years under current forest and climatic conditions 

(Horbe et al. 2004).  

 

Supporting the view of an in-situ origin of white-sand soils is the work of Veillon & 

Soria-Solano (Veillon & Soria-Solano 1988) who studied white-sand soils on the 

tropical uplands of French Guiana and found a dynamic Ferralsol to Podzol formation 

of white-sands. Figure 9 presents a simplified representation of how this process 

works and the associated white-sand vegetation. 
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Figure 9. Podzol development from Ferralsols with associated vegetation 

types in a soil catena of the eastern Amazon, Brazil. Inset map shows 

approximate distribution of Giant Podzols along with Podzol-Ferralsol 

associations (after Bardy et al. 2010). 

 

 

 

2.5. Models for the spatial arrangement of white-sand soils as 

island-habitats 

 

Of the four proposed models for the origin of white-sand soils presented above, only 

two of them have been interpreted in the light of their peculiar spatial distribution, as 

habitat-islands in a sea of rain forests (Figure 1, Prance 1996). The first one is related 

to the origin of white-sand soils via Ferralsol/Acrisol-Podzol transformation. 

According to Legros (2012), based on the work of Veillon & Soria-Solano (1988), 

three different spatial patterns may occur through the podzolization process: a) white-

sand podzols that occur only in the centre of a plateau, b) white-sands occur in the 
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centre as well as on the edges of the plateau, and c) a mature stage where patches of 

white-sands at the slope and plateau combine to form an archipelago of patches 

affecting an entire landscape (cf. do Nascimento et al. 2004). 

 

A second model for patchy distribution of white-sand soils (and vegetation) in the 

Amazon has been recently proposed by Rossetti et al. (2012). In their tectonic model, 

a paleo-channel carrying sandy sediments and surrounded by rain forests is forced to 

abandonment by fault reactivation. This newly created depression in the terrain forms 

a wetland that is filled by sandy-clay or almost pure quartz sand sediments depending 

on the existence of rocky parent material in the area. Using a combination of satellite 

imagery, digital elevation maps, and field verification they identified several of these 

paleo-channels in the Viruá and Demini areas, Roraima, Brazil, which has 

characteristically fan-shape sedimentation. Over time, this area becomes suitable for 

the development of open and semi-open white-sand forests, distributed like islands, 

surrounded by the typical rain forest (Figure 10). 

 

The on-going podzolization both in western Amazonia (Veillon & Soria-Solano 1988, 

Lips & Duivenvoorden 1996) and eastern Brazilian Amazonia (e.g. Lucas et al. 1984) 

provides some support for this model. If so, the fact that white-sand soils in the eastern 

Amazon are more extensive may only reflect the age of the weathering process 

compared to the western Amazon. However, given that podzolisation has been 

demonstrated to occur gradually according to soil age, this model might be more 

important in the Guiana Shield area  where Ferralsols are more widely distributed than 

in the rest of the region (Quesada et al. 2011).  

 

It will be expected that the tectonic model will be more predominant in the Guiana and 

Brazilian Shield regions where sandy sources are extensive. With this caveat in mind 

both models can work in complemen to create the peculiar archipelago-like 

distribution of white-sand habitats. Only more soil studies in different areas where 
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white-sand habitats occur will tell us which model explains better their spatial 

distribution. 

 

Figure 10. Tectonic model for the origin and spatial configuration of 

Amazonian white-sand vegetation and soils (Rossetti et al. 2012). 
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2.6. White-sand soil ages 

 

As with many other soil types in the Amazon, the determination of white-sand soil 

ages is still for the most part a work in progress. There have been advancements from 

different fields, especially geology, using relative age dating, in which the relative 

order of soil layers are interpreted as younger (usually on top) or older (usually below) 

according to their position in the stratigraphic column. Absolute dating has been also 

playing a role more recently to estimate the ages of younger sediments. A review of 

ages of some white-sand soil formations in the Amazon shows that they can range 

from 3,000 yrs to 23 Ma old, with several eastern Amazonian white-sands dated 

relatively recently, <60 yrs B.P (Table 2).  

 

White-sand formations from the Mariñame Sand Units, in the Colombian Amazon, are 

estimated to be 23-12 Ma old (Hoorn 1993). Within the same region, the Apaporis 

Sand Unit has been dated to belong to the middle Miocene-early Pliocene (12-5 Ma) in 

age. Both sand formations are rich in quartz and were deposited by a now extinct river. 

This river drained a pre-Cambrian basement, which outcrops in some parts of the 

landscape, and are part of the south-west margin of the Guiana Shield (Hoorn 1994).  

 

The Rio Tapiche basin has recently been found to concentrate the largest extension of 

white-sand archipelagos in the Peruvian Amazon (Stallard 2006). They are mostly 

poorly drained white-sand forests (hydromorphic soils) and extends towards the south 

to include edaphic savanna-like formations and extensive black water forests (igapo 

forests). Using relative dating from geological formations and sediments in an area 

northeast of Tapiche, Stallard (2006) has suggested that white-sand soils in this area 

date from the Pliocene (5-3 Ma) and are probably the product of fluvial deposition 

followed by weathering.  
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The region of Iquitos contains another collection of white-sand formations, with 

Arenosols situated on the hills and Podzols situated on the lower part of the terrain, ca. 

140 m a.s.l. (Räsänen & Linna 1998). These sands were interpreted to have been 

deposited in a fluvial system by a paleo-river with a wide floodplain area. 

Alternatively they may have developed by strong podzolisation after deposition of 

quartz-rich fluvial sediments (Räsänen & Linna 1998). Supporting a fluvial deposition 

origin of these white-sands is the decreasing sand grain on the deposits, which 

resemble similar deposition of extant rivers in the area.  

 

Geological and geomorphological studies in this area have established that the Iquitos 

white-sand formation was deposited on top of the Pebas Formation, which is dated 

from 18-10 Ma, suggesting that these sands cannot be older than 18 Ma. Roddaz, 

Baby, et al. (2005) further studied the same white-sand outcrops of the Iquitos area 

and concluded that they were deposited by a now extinct cratonic river after the 

Amazon system was created as such, and constrained its age to be 8-1 Ma. Preliminary 

cosmogenic dating results of a white-sand outcrop of this area suggest that some can 

be even younger, from the late Pleistocene (600-800 kyr) (M. Roddaz, pers. comm.).  

 

In the Brazilian Amazon, north of Manaus, Horbe et al. (2004) studied a Ferralsol-

Podzol system and using C14 radiocarbon dating estimated the age of the Podzol as 

3,000 yrs. As a point of reference, in temperate regions, time of Podzol formation 

varies, with incipient podzolisation visible between 100 and 500 years, whereas 

mature Podzols develop between 1,000 – 6,000 years (Sauer et al. 2007).  

 

On the other hand, white-sand fluvial terraces from the upper Rio Negro—which 

outcrops along the along the Vaupés, Tiquié, and Curicuriarí rivers—were found to be 

from the late Pleistocene (60-28 kys ) (Latrubesse 2000). In the same area, Carneiro-

Filho et al. (2002) interpreted some dunes as eolian in origin, a bit younger than the 

fluvial deposits, at 32,000-8,000 yrs. White-sands interpreted as eolian in origin were 
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also reported by Teew & Rhodes (2004) for the Rio Branco-Rupununi savanna, with 

an estimated age of 7,000-5,000 yrs (Holocene). 

 

Using a combination of satellite imagery, digital elevation models and field work, 

Rossetti et al. (2012) studied several paleo-channels in a vast area of the Brazilian 

Amazon, including one that may have been the origin of some white-sand soils in the 

Roraima region, northeast of Brazil. They determined that the campinas and open 

savannas in this area grow over an abandoned paleo-channel. This paleo-channel was 

left behind by fault activation in the area with subsequent filling by sandy sediments 

from surrounding Pre-Cambrian quartz-rich sandstones. The sandy soil-cover from 

this area is recent in age, c. 37-38 kys BP. 

 

Finally, the coastal Guiana white-sand areas of the Berbice Formation were studied by 

Bleackley & Khan (1963). They interpreted that these sands were not deposited as 

such in these areas but instead developed by podzolisation of sandy-clay soils. The 

presences of transitional areas in which loss of iron and clay occur support their 

findings. It is assigned a Pleistocene age (c. 2 Mya) (Hammond 2005). Table 2 

summarizes some examples of white-sand soils in the Amazon and Guiana region 

along with estimated ages, dating method used, and suggested white-sand formation 

process. 
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Table 2. Estimated ages of some Amazonian white-sand soils, ordered by 

decreasing age, and models of soil origin. Models: (i) product of deeply in situ 

weathering of quartzitic sandstones; (ii) fluvial deposits after paleo-channel 

abandonment, (iii) final product of on-going Ferralsol/Acrisol to Podzol 

transformation, (iv) deposited by eolian transport, and (v) outcrop exposure by 

regional tectonics (paleo-arches) 

 

Site Age 
Dating 

method 

Soil 

process 

formation 

(model) 

Locality 

(country) 
Source 

Mariñame 

Sand Unit 

23-12 Ma 

Relative 

dating by 

stratigraph

y 

Fluvial 

deposits 

(ii) 

Western 

Amazon 

(Colombia

) 

Hoorn et al. 

(1993); 

(early 

Miocene-

middle 

Miocene) 

Hoorn et al. 

(2009) 

Apaporis 

Sand Unit 

12-5 Ma 

Relative 

dating by 

stratigraph

y 

Fluvial 

deposits (ii) 

Western 

Amazon 

(Colombia

) 

Hoorn et al. 

(1993); Hoorn 

et al. (2009) 

(middle 

Miocene-

early 

Pliocene) 

Iquitos 

white-sands 
8-1 Ma 

Relative 

dating by 

stratigraph

y 

Fluvial 

deposits (ii) 

Iquitos 

(Peru) 

Räsänen et al. 

1998 
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Iquitos 

white-sands 

8-6 Ma 
Relative 

dating by 

stratigraph

y 

Fluvial 

deposits (ii) 

Iquitos 

(Peru) 

Roddaz et al. 

2005 
(late 

Miocene-

Pliocene) 

Tapiche 

white-sands 

5-3 Ma 

(Pliocene) 

Relative 

dating by 

stratigraph

y 

Fluvial 

deposits or Rio 

Tapiche 

(Peru) 

Stallard (2006) 

Podzolisatio

n (ii, iii) 

Berbice 

Formation  

(Coastal 

Guyana) 

c. 2.5 Ma 

 na 

Ferralsol-

Podzol 

transformati

on 

(podzolisati

on) (iii) 

Guiana-

Shield 

coastal 

Bleackley & 

Khan (1963) 
(Pleistoce

ne) 

Iquitos 

white-sands 

600 kyr-

800 kry 

B.P. (mid-

Pleistocen

e) 

Cosmogen

ic dating 

Fluvial 

deposits (ii) 

Iquitos 

(Peru) 

Roddaz & 

Regard (per. 

com.) 

Tiquié 

Formation, 

60 to 28 

kyr B.P. 

C14 

Radiocarb

on dating 

Fluvial 

deposits (ii) 

Brazilian 

Amazon 

(Upper 

Rio 

Negro) 

Latrubesse & 

Franzinelli 

(2005) 
 

(late 

Pleistocen

e) 
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Upper Rio 

Negro 

paleo-dunes 

32,000-

8,000 yr 

B.P. 
Thermolu

miniscenc

e dating 

Eolian 

deposits (iv) 

Brazilian 

Amazon 

Carneiro-Filho 

et al. (2002) 

(00 35 N, 

63 14 W) 

(late 

Pleistocen

e-early 

Holocene) 

Viruá 

(Roraima) 

36,607-

38,161 yr 

B.P. 

C14 

Radiocarb

on dating 

Fluvial 

deposits 

Brazilian 

Amazon 

Rossetti et al. 

(2012) 

Rio Branco-

Rupununi 

Savanna 

7,000-

5,000 yr 

B.P. 

(middle 

Holocene) 

Optically 

Stimulated 

Luminesce

nce dating 

Eolian 

deposits (iv) 

Brazilian 

Amazon 

Teeuw & 

Rhodes (2004) 

Manaus 

white-

sands/Brazil 

3,000 yr 

B.P. 

C14 

Radiocarb

on dating 

Ferralsol-

Podzol 

transformati

on 

(podzolisati

on) (iii) 

Manaus 

(Brazil) 

Horbe et al. 

(2004) 

Jenaro-

Herrera 

white-sands 

NA NA 

Ferralsol-

Podzol 

transformati

on 

(podzolisati

on) (iii) 

Jenaro 

Herrera 

(Peru) 

Veillon & 

Soria-Solano 

(1988) 
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In general, the Guiana Shield region contains both the oldest and the youngest white-

sand soils (3,000 yrs to 23 Mya), whereas in the rest of Amazonia the age of these 

soils age ranged from 600,000 to 5 Mys. These age ranges have to be taken with 

caution since few absolute dates have been carried out in western Amazonian white-

sands soil. Nevertheless, the current evidence indicates that these habitats ages is very 

heterogeneous perhaps reflecting their complex evolution and origins. 

 

2.7. Conclusions 

 

The Amazon basin has passed through different phases of development during which 

sedimentation, erosion and climatic processes have created the soil mantle over which 

evolutionary and ecological processes gave origin to its outstanding present day 

diversity. Within the basin, white-sand soils are more likely to be the result of multiple 

origins, depending on their peculiar geology, pedogenic development, and hydro-

tectonic dynamism of the area in which they occur. This multiple origin of Amazonian 

white-sand soils is further inferred by their occurrence over a wide range of geo-

morphological situations: as cover sands on interfluves, as terraces in uplands, and as 

former river beds or paleo-channels (Sombroek 1966, Ab’Saber 1982, Clapperton 

1993, Horbe et al. 2004). Based on the reviewed geological and soil research studies 

in the Amazon and Guiana regions, white-sand soils in this region may have originated 

by least four processes: (i) the product of deep in situ weathering of quartzitic 

sandstones (Kubitzki 1989, Hammond 2005); (ii) deposition by eolian (wind) transport 

(Horbe et al. 2004); (iii) as fluvial deposits of paleo-channels (Klinge 1965, Hoorn 

1994, Räsänen & Linna 1998, Roddaz, Baby, et al. 2005, Rossetti et al. 2012); and 

(iv) the final product of on-going Ferralsol/Acrisol to Podzol transformation (Lucas et 

al. 1984, Dubroeucq & Volkoff 1998, Lucas et al. 2012, Mendonça et al. 2014). 

 

Current geological and soil studies in the western Amazon (Loreto, Peru) date white-

sand soils from the early Pliocene to the late Quaternary (from 5 Ma to 600,000) 

which is well after the Pebas system disappeared (Wesselingh & Salo 2006). This 
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strongly implies that the flora of these habitats, at least in the western Amazon south 

of Colombia, is of recent origin, receiving immigrants from pre-adapted lineages 

capable of coping with challenges of plant life on these extreme substrates. There are, 

however, at least 39 endemic species just on the white-sand of northern Peruvian 

Amazon (Pitman et al. 2013) which represent 24% of the total endemics for this 

region. If these habitats are of recent origin, white-sand endemics from the Amazon 

lowlands may have evolved relatively recently and may represent neo-endemics. On 

the other hand, the upper age limit in both estimated ages is based on the relative 

position of other sediment layers (relative dating by stratigraphy) and hence it is 

possible that these upper limits are overestimated. For example, cosmogenic dating of 

a white-sand outcrop from the Peruvian Amazon assigns it an age within 600,000-

800,000 yrs (M. Roddaz, pers. comm.), which corresponds to the mid-Pleistocene. 

 

Of the four processes suggested for the existence of these extremely poor-soils in the 

Amazon and Guiana regions, fluvial deposition by paleo-channels along structural 

highs on the terrain (i.e. the Iquitos Arch) may be the most likely source of some 

white-sand soils in the western Amazon, especially the ones occurring within the area 

of the Iquitos Arch influence. Erosion of in situ Palaeozoic or pre-Cambrian cratonic 

outcrops (e.g. tepuis, serranias) might be more prevalent in the areas where they are 

more common, the Guiana and Brazilian Shield region (e.g. Serra do Cachimbo) and 

some outliers at the margins of the Amazon like Serra do Moa, Sierra del Divisor, 

Cerro de Contamana, Cordillera del Condor. They might also have sourced extinct 

paleo-rivers which deposited their sandy sediments later covered by the younger 

Andean soils. Transformation of Ferralsol/Acrisol soils to Podzols may also be an 

important process for the origin of white sands, especially in the eastern Amazon and 

the Guiana Shield which contains relatively older clay soils compared to western 

Amazonia. In general, eolian activity may have been of minor importance for white-

sand soil formation in the Amazon but with some importance in coastal areas of the 

Guiana and Brazilian Shields, nearby sandstone tepuis, and at the margin of northeast 

Amazonia. In these marginal regions, seasonal climatic conditions and millennial 

stable paleo-winds may have provided optimal conditions for the formation of paleo-

dunes now fixed by savanna vegetation (Teeuw & Rhodes 2004).   
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Deposition of sandy soils on ancient paleo-channels, and progressive transformation 

from Ferralsol/Acrisol to Podzol do not have to be mutually exclusive to account for 

the origin of white sands in the lowlands of Amazonia. Fluvial deposition can occur 

first, depositing a mixture of sediments on a given terrain that further weathering can 

transform to Podzol by leaching of clay and other minerals. In cases where these 

terrain depressions and channel abandonments occur in relatively close proximity to 

sandy sources, like sandstones or tepui-like formations, these areas are readily filled 

up with white-sand soils (and do not need to pass through any transformation) as may 

have occurred during the Pleistocene/Holocene in the Viruá and Demini areas of 

northern Brazilian Amazon (Rossetti et al. 2012). 

 

The presence of paleo-arches in general might have be important in creating edaphic 

heterogeneity by differential erosion rates on hilly areas and exposure of buried 

sediments. Regional tectonics through the effect of the Iquitos paleo-arch exerts an 

important effect on the exposure of sediments in a vast trench of the western Amazon 

(from the south of the Colombian Amazon to the northern Peruvian Amazon) (Hoorn 

1994, Räsänen & Linna 1998, Roddaz, Baby, et al. 2005). The frequency and intensity 

of paleo-channel abandonment and sedimentation by local and regional tectonics 

during recent times, along with on-going podzolisation processes of sandy-clay soils 

may have increased the range of soil and habitat types in the Amazon basin on which 

plant lineages evolved. Taken together, these processes have been largely 

underappreciated thus far by the students of evolution, ecology and biogeography of 

the Amazon biota in relation to their importance for creating the variations in edaphic 

heterogeneity in these regions. All these factors, acting together in space and time, 

may have been an important force to create the current variation in soil and habitat 

heterogeneity currently observed in the Amazon and Guiana regions.  
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Chapter 3: Phytogeographic patterns and habitat 

specialization in western Amazonian white-sand forests 

 

“… it is scarcely necessary to add that many species of  

plants which grow down to the very coast in Guayana  

exist also in the Peruvian province of Maynas that is,  

at the eastern foot of the Andes” 

—R. Spruce (1908) 

 

3.1. Introduction 

 

Quartz-rich sandy soils are patchily distributed in the Amazon basin, embedded 

within the more widely distributed clayey red soils that house the archetypical 

species-rich terra firme forests (see chapter 2). These soils support a specialized 

vegetation type known as Amazonian white-sand forests in the botanical literature 

that occupy relatively large extensions in the Guiana Shield region, one of the oldest 

geological regions in northern South America (Hammond 2005). In Amazonia, 

however, they occur scattered patchily, like island-habitats within a matrix of upland 

rainforests, varying in size from a few to hundreds of hectares (Prance & Schubart 

1978, Anderson 1981, Prance 1996).  

 

There is a sharp physiognomic contrast when one crosses from a multi-layered 

cathedral-like terra firme forest to white-sand forests; a decline in forest stature, a 

burst in pole-like high stem density, and a relatively open canopy, with large amount 

of sunlight reaching into the understory (Coomes & Grubb 1996, García-Villacorta et 

al. 2003). Likewise, white-sand forests are substantially distinct floristically from the 

typical terra firme forest, with many local and regional habitat specialists and even 

endemic species (Anderson 1981, Prance 1996, Gentry 1986, Fine et al. 2010). 
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Given their distinctive structure and floristic composition, is not surprising that 

white-sand forests across the Amazon have received distinct local designations such 

as: varillal, chamizal (Peru, Colombia), Amazon caatinga, campina, campinarana 

(Brazil), caatinga, bana (Venezuela), wallaba forest, muri bush (Guyana, French 

Guiana, Surinam) (Richards 1941, Revilla 1974, Klinge et al. 1977, Cooper 1979, 

Anderson 1981). 

 

Fundamental to the existence of these forests is the presence of sandy soils in a given 

region of the Amazon. A review of the pedological and geological evidence on the 

origin of these soils in this region has found that they may have at least four different 

origins: (i) the product of deep in situ weathering of quartzitic sandstones (Kubitzki 

1989, Potter 1994, Hammond 2005); (ii) deposition by eolian transport (Ab’Saber 

1982, Clapperton 1993, Horbe et al. 2004); (iii) as fluvial deposits of paleo-channels 

(Klinge 1965, Anderson 1981, Ab’Saber 1982, Hoorn 1994, Räsänen & Linna 1998, 

Roddaz, Viers, et al. 2005, Rossetti et al. 2012), (iv) the final product of on-going 

Ferralsol/Acrisol to Podzol transformation (Lucas et al. 1984, Dubroeucq & Volkoff 

1998, Lucas et al. 2012, Mendonça et al. 2014) (see Chapter 2).  

 

Briefly, the Precambrian Roraima Formation (ca. 1,600 Mys old) is a massive 

sandstone mountain deposited in a shallow marine, fluvial, deltaic, lacustrine, or 

epicontinental (areas of ocean overlying the continental shelf) environment (Sidder et 

al. 1995) which overlies the western part of the Guiana Shield region (Priem et al. 

1973). These mountains were uplifted after the separation of South America from 

Africa was completed (ca. 100 Mya) followed by erosion and fragmentation that 

ended 90-70 Mya with the creation of table-like mountains (500-3,000 m height) 

known as “tepuis” (Briceño et al. 1990). For 85 million years, the interval after the 

breakup from Africa until the formation of the Andean mountains in the mid-

Miocene, the drainage systems in South America were dominated by Guiana Shield 

sediments (Potter 1997). Enormous amounts of quartz-rich sandy sediments were 

deposited in what is the current coast of the Guiana Shield (Guyana, French Guiana, 

Surinam, Northern coastal Brazil) as well as its western fringe: the adjacent lowlands 
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of the Solimões, Rio Negro, Japurá/Caquetá and Orinoco basins (Amazon regions of 

Brazil, Venezuela, and Colombia) (Kubitzki 1989, 1990). 

 

A good starting point for beginning to understand the origin of a flora is by assessing 

how much of its current floristic composition is shared with other regions, including 

assessment of distributional patterns of individual species. Taxonomic revisions and 

local floristic studies in Amazonian white-sand forests have stressed the existence of 

plant species and genera disjunctly distributed between the Guiana Shield region and 

western Amazonian white-sand forests (e.g. Spruce 1908, Gentry & Ortiz 1993, 

Berry et al. 1995, Cortés & Franco 1997, Silveira 2003, Arbeláez & Duivenvoorden 

2004, García-Villacorta & Hammel 2004, Struwe & Albert 2004, Fine et al. 2010). 

However, there has been no attempt so far to study species distribution and 

compositional patterns of these floras at the entire Amazon-Guiana scale. To shed 

light into the phytogeographic connections of western Amazon white-sand forests, I 

asked three main questions: 1) What are the distributional patterns of western 

Amazon white-sand species?; 2) Are white-sand forests of the western Amazon 

floristically more similar to nearby floras than to floras of the Guiana Shield region?; 

and 3) Are white-sand forests clearly-defined floristic units compared to other floras 

in the Amazon and Guiana Shield region? 

 

Because forests on white-sand soils are extensive in the Guiana Shield region I 

hypothesized that a high proportion of western Amazon white-sand species will 

occur within this region. Similarly, I predicted that floras from the western Amazon 

white-sand forests will be floristically closer to Guiana Shield floras compared to 

other floras in the Amazon. Given the position of white sand forests at one extreme 

of the soil gradient continuum I expected to find some floristic distinctiveness in 

them. Finally, given their patchy spatial distribution, I predicted that geographic 

distance between the studied white-sand forests will exert a significant influence on 

floristic similarity patterns among both non-white-sand forests and white-sand 

forests. 
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3.2. Methods 

3.2.1. Study area 

 

The study area encompasses the Amazon and Guiana Shield region (Figure 11). The 

border of the Amazon and Guiana regions was extracted from the Olson et al. (2002) 

ecoregions of the world, following closely Hammond (2005) and HYBAM’s 

Amazon basin watershed limits (Seyler et al. 2009) respectively.  

 

Figure 11. Map of Amazon-Guiana region with political division acronyms 

used in the floristic analysis. Numbers 1 to 4 indicate approximate locations 

of studied white-sand forests: 1 = acre.wsf.BR, 2 = lore.wsf.PE, 3 = 

caqu.wsf.CO, 4 = guai.wsf.CO. Acronyms in Table 7.  
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3.2.2. Data analysis 

 

The study of phytogeographic patterns was carried out using two approaches. First, I 

conducted a “geographical affinity analysis” of western Amazonian white-sand 

species and calculated how much of the western Amazonian white-sand flora is 

shared with other regions at two geographical levels: biomes, and ecoregions. A 

second approach consisted of developing presence-absence floristic checklists for 

each political province in the Amazon-Guiana regions (27 provinces) to perform a 

“floristic similarity analysis” of species composition using hierarchical clustering and 

NMDS ordination (Non-Metric Multidimensional Scaling).  

 

Both analytical approaches allow us to extract or visualize, albeit with different 

assumptions and methods, any floristic pattern inherent in a matrix of species versus 

sites (Keough & Quinn 2002, Legendre & Legendre 2012). Recovering similar 

floristic patterns by these different methods would reassure us that these patterns 

may reflect a real ecological phenomenon that exists in nature. 

 

3.2.3. Dataset compilation 

 

I compiled 27 province-level floristic lists from the botanical literature (Appendix I: 

Table AI 1: 1) for the entire Amazon and Guiana Shield region as well as four 

vascular plant checklists from the white-sand forests of Peru (Loreto), south-western 

Brazil (Acre), and Colombia (Caquetá, and Guainía) (Cortés et al. 1998, Arbeláez 

2003, García-Villacorta et al. 2003, Silveira 2003, Cárdenas-Lopez 2007, Ferreira 

2009, Fine et al. 2010). Although political unit definitions vary depending on the 

country (e.g. state in Brazil, department in Peru and Colombia) I use the name 

“provinces” throughout the chapter.  
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White-sand forests from Colombia (guai.wsf.CO, and caqu.wsf.CO), occur at the 

margin of the western Guiana Shield (Chapter 2) and previous studies have shown 

they have phytogeographic connections with this region (Cortés & Franco 1997, 

Cortés et al. 1998, Arbeláez 2003). In order to properly evaluate the phytogeographic 

relationship of western Amazon white-sand forests outside of the Guiana Shield 

region these Colombian white-sand datasets were not considered when performing 

the distributional analysis to avoid biasing the results in favour of a Guiana Shield 

connection. For similar reasons, species from all four white-sand forests were 

excluded from their respective provinces before performing the floristic analysis (i.e. 

white-sand areas are embedded geographically within provinces). In addition to a 

systematic method of taxonomic standardization of checklists (see below), voucher 

specimens of most of the species in the white-sand dataset were checked at the 

Missouri Botanical Garden herbarium (MO) to confirm identifications.  

 

3.2.4. Biome and ecoregion affinities in western Amazon white-sand 

forests 

 

To study the distributional patterns of white-sand taxa, I searched for specimens of 

each taxon with geographical coordinates from the Missouri Botanical Garden 

herbarium online database Tropicos. To investigate which proportion of this white 

sand flora was shared because of species habitat preferences, I classified each species 

in the white-sand dataset into one of three categories: white-sand specialist, poor-soil 

specialist, or habitat generalist. The assignment of species to each category was 

based on field knowledge of species habitat preferences supplemented by review of 

herbarium label descriptions citing the habitat where specimens were collected (e.g. 

white-sand forest, “varillal”, “campina forest”, “campinarana”, “suelo arenoso”, 

“Amazon caatinga”, “suelo de arenisca”). For this study, white-sand specialists are 

defined as species occurring exclusively on white-sand soils, poor-soil specialists are 

species that can be found in both white-sand soils as well as other similar nutrient-

poor soils, and generalist species refer to those occurring on white-sand soils, other 

nutrient-poor soils and any other habitats of the Neotropical region (e.g. clay-rich 
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upland forests, flooded forests, swamp forests, montane forests, savanna, dry 

forests). The distributional analysis was done for the three groups separately (white-

sand specialist, poor-soil specialist, and habitat generalist) as well as together (full 

dataset) at the level of species, exploring taxa shared at two biogeographical levels: 

biomes, and ecoregions. Delimitation of biomes and ecoregions in the analysis 

follows Olson et al. (2001). 

 

3.2.5. Floristic relationships of western Amazon white-sand forests 

 

Until very recently, plant taxonomic treatments for each country in the Amazon and 

the Guiana Shield region were not available. The recent publication of major 

taxonomic treatments has started to fill this gap. Despite differences in completeness, 

up-to-date plant checklists in each of these countries represent the best of our present 

botanical knowledge that can start to provide important contributions to our 

understanding of Neotropical plant diversity and biogeography.  

 

To carry out the floristic relationship analysis, province-level plant checklists were 

compiled for each of the countries with territories in the Amazon and Guiana Shield 

region which include: Bolivia, Brazil, Colombia, Ecuador, Peru, Venezuela, Guyana, 

French Guiana, and Surinam (Figure 1). For developing this database the following 

taxonomic treatments were used: checklist of Peru (Brako & Zarucchi 1993, 

Tropicos-Peru 2013), checklist of Ecuador (Jorgensen & León-Yánez 1999, 

Tropicos-Ecuador 2013), checklist of Bolivia (Tropicos-Bolivia 2013), checklist of 

Brazil (Forzza et al. 2010a, b), checklist of the Colombian Amazon (SINCHI 2013), 

and checklist of the Guiana Shield region (Funk et al. 2007) (Appendix I: Table 11). 

These compiled checklists and floras were used to create a presence-absence matrix 

on which I conducted the study of floristic patterns. To restrict the analysis to 

lowland floras in the Amazon and Guiana region, some political provinces which are 

part of the Amazon based on a hydrographic criterion were left out of the analysis 
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because they mainly include Andean regions that in a preliminary analysis clustered 

together and obscured patterns of lowland Amazon and Guiana floras.  

 

3.2.6. Taxonomic standardization 

 

To have a standardized database, all checklists and flora treatments were checked for 

synonyms and illegitimate names using the Taxonomic Name Resolution Service 

v3.0 (Boyle et al. 2013, TNRS 2013), which is an online tool that matches a plant 

checklist against agreed plant taxonomies. Only native vascular plants 

(gymnosperms, angiosperms, and ferns) were included in the database, and all 

cultivated, naturalized and hybrid species were excluded. The Missouri Botanical 

Garden Tropicos database was the chosen source for taxonomic matching. 

Intraspecific names (sub-species, varieties, forms) were maintained as much as 

possible in the database because they may represent taxonomic variation confined to 

white-sand habitats (e.g. white-sand specialists, cryptic undescribed species), and 

also because taxonomic revisions tend to find new species when revising taxa 

occurring in these habitats (e.g. Cuatrecasas 1961, Struwe & Albert 2004, Daly & 

Fine 2011). Therefore, including subspecific taxa may be useful for a better 

understanding of floristic patterns in relation to white-sand forests. 

 

In very few cases, especially for recently described species that are still in the 

process of inclusion in taxonomic databases, resolving species names was done 

manually by consulting The Plant List website (The Plant List 2013). Prior to the 

analysis, plant families or genera with strictly aquatic habit, or not well represented 

in forested habitats, were excluded from the database, including: Elatinaceae, 

Nymphaeaceae, Pontederiaceae, Alismataceae, Salviniaceae, Onagraceae, Poaceae, 

Ceratophyllaceae, Cyperaceae, Hydrocharitaceae, Hydroleaceae, Mayacaceae, 

Potamogetonaceae, Typhaceae, Lentibularaceae, Cabombaceae, Pista, 

Montrichardia, and Lemna (Araceae). The taxonomy at the family level follows the 

Angiosperm Phylogeny Group III system (The Angiosperm Phylogeny Group 2009). 



CHAPTER 3: Phytogeography and floristic patterns 

 

54 

 

 

3.2.7. Dissimilarity index 

 

A critical aspect in uncovering biogeographic patterns via cluster and ordination 

analysis is the choice of an appropriate dissimilarity index to construct the pairwise 

dissimilarity matrix of species composition between sites. Some indices are more 

appropriate for presence/absence data whereas others are affected by differences in 

species richness of the compared sites and hence do not represent true differences in 

species composition. Differences in species composition can be generated by two 

phenomena: one is the replacement of some species by others from site to site 

(spatial turnover), and the other occurs when the poorest site is a strict subset of the 

richest site (i.e. nestedness in Baselga 2012). The latter case is problematic because it 

means that even in the absence of species replacement differences in species richness 

can affect dissimilarity values between sites (Baselga 2012) and distort the resulting 

floristic pattern. Given the extreme difference in species richness between the 

floristic lists in the present dataset (Table 7), an approach was needed to account for 

these differences.  

 

Lennon et al. (2001) recovered an original observation by Simpson (1943), who 

highlighted the need to account for the effect of species richness differences on 

dissimilarity values calculated when using the Sørensen dissimilarity index. To avoid 

this problem, and to focus the comparison in the species composition between sites 

instead of richness, I used here an adjusted-Sørensen dissimilarity index which uses 

the smallest diversity value of any two compared pair of sites in the denominator to 

decrease the influence that differences in local species richness may have on floristic 

similarity analyses (Lennon et al. 2001, Koleff & Gaston 2002, Koleff et al. 2003): 

 

���� = 1 −	
	

min
�, �� + 	
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Where a is the total number of species present in both sites; b is the number of 

species present in one site but not in the focal site; and c is the number of species that 

occur in the focal site but not in the other compared site (Koleff et al. 2003). The site 

with the lowest number of species (b or c) is used when making the calculations and 

represented by the term min in the formula. Although still not commonly applied in 

standard ecological analysis, the effect of species richness on the calculation of 

dissimilarity index between sites has been increasingly recognized as important in 

floristic and biogeographic analysis (Lennon et al. 2001, Pitman et al. 2005, Fine et 

al. 2010, Kreft & Jetz 2010).  

 

3.2.8. Cluster analysis 

 

Classical cluster analysis looks for discontinuities in a dataset, in this case floristic 

discontinuities expressed by species composition between sites. After constructing a 

dissimilarity matrix with the Sørensen-adjusted index, each site in the dataset was 

clustered hierarchically using five clustering algorithms: Ward, Average linkage 

(UPGMA), Single linkage, Complete linkage, and Neighbour joining algorithms. 

Each algorithm was then evaluated in their performance of representing the original 

dissimilarity matrix by calculating a cophenetic correlation index. Finally, I assessed 

cluster validity via multi-scale bootstrap resampling procedures, calculated the 

optimum number of clusters, and evaluated how well each site was classified in their 

respective cluster using the Silhouette plot method. All these methods are described 

in detail below. 

 

3.2.8.1. Cluster algorithms 

 

There are multitudes of cluster algorithms for different kinds of datasets and 

applications. Yet, evaluations to support favouring one algorithm over another are 

seldom carried out in ecological or biogeographical applications. A comparative 

analysis of three hierarchical agglomerative clustering algorithms, for instance, found 
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Ward’s algorithm to be the most robust compared to average linkage (UPGMA) and 

complete linkage algorithms (Singh 2008). Other studies working with different 

datasets reached similar conclusions (Blashfield 1976, Hands & Everitt 1987, Kuiper 

& Fisher 1975, Ferreira & Hitchcock 2009). More recently, Kreft & Jetz (2010) 

evaluated the performance of nine clustering algorithms on different groups of 

organisms and taxonomic levels by correlating the distances on the resulting 

dendrograms with their original distance matrices. Contrary to the above studies they 

found that Average linkage (UPGMA) was the best performing cluster algorithm 

(Kreft & Jetz 2010). Rather than being prescriptive, they suggested that the 

appropriate clustering algorithm may differ from dataset to dataset, with 

geographical extent, and with the scale of the study.  

 

Assessment of dendrograms is possible by correlating the original dissimilarity 

matrix with a cophenetic matrix obtained from a dendrogram (Sokal & Rohlf 1962). 

The algorithm with the highest Pearson cophenetic correlation value will be the one 

that best represents the original dissimilarity matrix in the topology of the resulting 

dendrogram (Sokal & Sneath 1963). I evaluated the performance of five clustering 

algorithms (Ward, Average linkage (UPGMA), Single linkage, Complete linkage, 

and Neighbour joining’s algorithms) with the present dataset by first building a 

cophenetic matrix from each resulting cluster dendrogram and calculating their 

correlation with the original dissimilarity matrix obtained with the adjusted-Sørensen 

index.  

 

Briefly, Single linkage clustering requires that at least one object in two different 

clusters have the shortest distance in order to be combined. In Complete linkage 

clustering one object joins a cluster only when it is linked to all the objects already 

member of that cluster. The goal of Average linkage clustering is to join objects 

based on the average dissimilarity of each cluster’s member. The Ward’s clustering 

algorithm tries to minimize at each agglomeration step the sum of the squared 

distance between objects and cluster centroids (Legendre & Legendre 2012). Unlike 

the above methods, which are agglomerative, the Neighbour joining algorithm starts 
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with a dendrogram in which one node connects two objects that have the smallest 

branch lengths, and the other node is linked to all remaining objects. This process is 

repeated until the tree is completely dichotomous (Paradis et al. 2004).  

 

To observe the main trends in the cophenetic correlations I performed a LOWESS 

non-parametric regression (Borcard et al. 2011), which uses a smoother parameter to 

fit a model to localized subsets of the dataset point by point.  

 

3.2.10. Assessment of cluster stability 

 

Several methods have been developed recently that allow a statistical assessment of 

cluster analysis which relies on permutation procedures. One of these calculates p-

values via multiscale bootstrap resampling for each group and is implemented in the 

R statistical package pvclust (Suzuki & Shimodaira 2006, 2014). In this method, the 

number of species in each site is altered at each resampling scale and by doing this, 

changes the probability of each species being included in the permuted matrix 

(Suzuki & Shimodaira 2014). The resampling is done with replacement and the 

position of the sites is maintained as constant in the whole permutation procedure. 

The frequency of sites that matches the original cluster is counted and classical 

bootstrap permutation (BP), and approximately unbiased bootstrap p-values (AU) are 

scored at each node for each cluster of sites. A part of this method has been criticized 

by Dapporto et al. (2013) who demonstrated that when a high frequency of ties and 

zero-values is present in dissimilarity matrices, and the site order is kept unchanged, 

it yields strong support for clusters that are affected by the order of the sites in the 

original matrix. They implemented their solution in another R statistical package 

called recluster, which re-samples both species and sites to obtain a consensus tree 

and a value of the frequency of times a node is replicated after shuffling the 

dissimilarity matrix (Dapporto et al. 2013).  
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Given that I did not know beforehand the effect that row-order of sites may influence 

dendrogram topology due to the proportion of ties and zero-values generated by the 

dissimilarity matrices, I assessed cluster stability by using both pvclust and recluster 

methods. Both methods evaluate the consistency of recovering similar floristic 

patterns via resampling and randomization of the dataset and assign relative support 

value to clusters. The main value of both approaches is that instead of relying on a 

single cluster dendrogram for inferring biogeographic relationships (as typically done 

in biogeographic studies), support values obtained by sub-sampling the original 

dataset create alternative dendrograms which are used to calculate the level of 

concordance with the original dendrogram.  

 

A consensus tree based on 100 trees that sampled the dissimilarity matrix with the 

sites in different order was obtained with the recluster function ‘recluster.cons’. The 

frequency of times a node is replicated out of five bootstrap levels (levels = 5), 

obtained separately from 100 trees (t = 100), was calculated with the function 

‘recluster.boot’. One thousand trees (boot = 100) were sub-sampled at each level and 

only nodes that re-occurred in all 100 trees (p = 1) were accepted in the consensus 

tree.  

 

The number of bootstrap replications in pvclust analysis was set to 100 at 10 

different re-sampling levels. The AU p-values obtained by multi-scale bootstrap 

resampling is superior to the classical BP bootstrap values because it is a better 

approximation to unbiased p-values (Suzuki & Shimodaira 2006). The former is used 

here in the interpretation of pvclust results. For interpreting recluster I used the 

frequency of times a node is replicated after permuting the original matrix. Both 

analyses in recluster and pvclust were performed using the Average linkage 

clustering algorithm. 

 

3.2.11. Assessment of the optimal number of clusters 
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After obtaining clusters of sites with different levels of floristic similarities it 

becomes necessary to decide how many clusters best represent the floristic patterns. I 

used a correlational matrix approach that correlates the original distance matrix and 

several binary dissimilarity matrices calculated from the original matrix at different 

cut levels (Borcard et al. 2011). The optimal number of clusters is the one where the 

Mantel correlation between the two matrices is the highest. In this analysis the 

Mantel correlation is in its simplest form and equivalent to the Pearson r correlation 

and was calculated as such. 

 

3.2.12. Cluster membership evaluation 

 

Once the optimal number of clusters has been determined I examined if the group 

membership of each site was appropriately assigned by using the Silhouette plot 

method (Rousseeuw 1987). This is especially useful to interpret some clusters with 

poor bootstrap support values obtained with the previous analyses. The Silhouette 

plot method uses a dissimilarity matrix and a specified number of k clusters to put 

each site into each group according to its average dissimilarity in relation to all other 

sites of the cluster to which it belongs. It computes a Silhouette width score (s) for 

each site or object.  

 

Sites with large Silhouette width values (towards 1) are well clustered, sites with 

small values (around zero) means that the site lies between two groups, and sites with 

negative values are probably in the wrong cluster and would be better assigned to a 

neighbouring cluster. Silhouette plots only depend on the cluster partition of the 

objects and are independent of the clustering algorithm used to construct it 

(Rousseeuw 1987). Comparing the individual and average Silhouette score widths 

can help in the interpretation and validation of the clustering result. As determined in 

the previous analysis I used five clusters as the optimum number of groups on which 

I ran the membership evaluation. The s score for each cluster element i is calculated 

with the formula: 
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Where a(i) is the average dissimilarity of an element i with all other data in the same 

cluster, and b(i) is the lowest average dissimilarity of element i to any other cluster in 

which i is not a member. A lower a(i) value indicates a good assignment of the object 

to the cluster. The average s(i) over the entire dataset is a measure of how well the 

data have been clustered. 

 

3.2.13. Ordination 

 

As a complement to the floristic patterns studied by the clustering analysis I 

performed Non-metric Multidimensional Scaling (NMDS) which extracts the main 

trends of the floristic composition among sites by summarizing it in a few orthogonal 

(independent) axes (Minchin 1987, Borcard et al. 2011). The goal of the iteration 

procedure in the NMDS ordination analysis is to find the lowest possible stress 

between the original distances and the distances in the ordination space. This means 

that if a given pair of sites has a lower similarity value than some other pair, then the 

first pair of sites will be closer than the other pair of sites in the NMDS ordination 

space.  

 

NMDS analysis is done by first specifying the number of axes (dimensions) to be 

sought and constructing an initial configuration of the objects (sites) in these 

dimensions. The initial configuration of the sites starts usually at random and from 

then an iterative process tries to position the sites in the number of specified 

dimensions in a way that the original distances between sites in the dissimilarity 

matrix are monotonic to the distances in the reduced ordination space (Borcard et al. 

2011). Fitting a monotonic regression step line on a scatterplot of the resultant 
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ordination distances versus the original dissimilarity distances is known as a 

Sheppard diagram and provides a measurement of the goodness of fit of this 

iteration. The fitting procedure measure a stress function (“badness of fit”) that goes 

from 0 to 1 (a stress value ≥0.20 indicates a poor NMDS analysis (Kruskal 1964)).  

 

I used the R package vegan (Oksanen et al. 2015) which implements NMDS as 

recommended by Minchin (1987) using the function metaMDS with different random 

start configurations and a final scaling of the results, with the function postMDS, 

along the first dimension for a better interpretation. To avoid reaching an unstable 

solution where a local optimum of stress is found even though there is still a lower 

stress (global optimum) I ran the analysis from different random spatial 

configurations up to 500 times. Convergence to the same stress value from these 

random spatial configurations can give a hint that it reached a global optimum. The 

dissimilarity matrix for the NMDS analysis was constructed using the adjusted-

Sørensen dissimilarity index. 

 

3.2.14. Effect of distance on white-sand floristic patterns 

 

To test whether geographical distance between the studied floras had an influence on 

the floristic patterns recovered by the ordination and cluster analysis, I performed a 

Mantel test (Mantel 1967, Rossi 1996, Dutilleul et al. 2000, Legendre & Legendre 

2012). A Mantel test calculates the correlation between two distance matrices to test 

the null hypothesis that the geographic and floristic distances between pair of sites 

are not correlated (i.e. are sites closer to each other also floristically closer and vice 

versa?). The correlation value ranges from -1 (negative correlation) to 1 (positive 

correlation). Because the elements from each matrix are not independent of each 

other, the significance of the correlation is estimated by permuting the floristic 

matrix a large number of times to calculate new correlation values creating as a result 

a statistical distribution against which the original r correlation is compared (Mantel 

1967, Legendre & Legendre 2012). To create the distance matrix I extracted the 
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geographical coordinates of each province by using its polygon centroid in a GIS that 

were then used to calculate geographical (Euclidean) distances between floras.  I ran 

999 permutations on the floristic dissimilarity matrix at a significance p-value of 

0.05. 

 

All the analyses described above were done in the statistical program R (R Core 

Team 2015) using the packages vegan (Oksanen et al. 2015), cluster (Maechler et al. 

2015), recluster (Dapporto et al. 2013), ape (Paradis et al. 2014), and pvclust 

(Suzuki & Shimodaira 2006). 

 

3.3. Results 

 

3.3.1. Patterns in habitat specialization 

 

Overall, a total of 1,180 vascular plant species comprising 133 families, and 491 

genera were compiled from four western Amazon white-sand forest sites: Colombian 

white-sand forests (caqu.wsf.CO, and guai.wsf.CO), Peruvian white-sand forests 

(lore.wsf.PE), and western Brazil white-sand forests (acre.wsf.BR). The species 

distributional dataset resulted in 69,986 unique plant records representing all these 

species. Of the total 69,986 records in the dataset 74% (51,790 records) corresponded 

to “habitat generalist” species, 21% to “poor-soil specialists” (14,723 records), and 

5% to “white-sand specialists” (3,473 records). In terms of species, 43% of the total 

vascular flora occurring on white-sand forests was found to be habitat generalist, 

34% poor-soil specialist, and 23% white-sand specialist. Table 3 summarizes the 

richness of families, genera, and species found in the three designated habitat 

preference categories.  

 

 



CHAPTER 3: Phytogeography and floristic patterns 

 

63 

 

Table 3. Summary statistics and ecological preferences of 1,180 species 

found in four western Amazonia white-sand forests.  

 

Ecological 

preference No. families No. genera 

No. 

species 

(%) Records 

habitat generalist 103 295 509 (43) 51,790 

poor-soil specialist 89 208 406 (34) 14,723 

white-sand 

specialist 65 160 277 (23) 3,473 

Total general 133 491 

1,180 

(100) 69,986 

 

3.3.2. Distribution of species in biomes 

 

Of the total number of vascular plant species found in the white-sand forests of the 

western Amazon, two biomes outside of wet and moist forests had the highest 

number of shared species: Tropical and Subtropical Grasslands, Savannas and 

Shrublands (48%), and Tropical and Subtropical Dry Broadleaf Forests (34%) (Table 

4). 
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Table 4. Percent of families, genera, and species distribution found in each 

biome using the total dataset 

 

Biome 

code Biome name 

No. 

families 

No. 

genera 

No. 

species 

(%) Records 

1 

Tropical and 

Subtropical Moist 

Broadleaf Forests 133 490 

1,180 

(100) 5,9267 

2 

Tropical and 

Subtropical Dry 

Broadleaf Forests 104 250 403 (34) 3,848 

3 

Tropical and 

Subtropical 

Coniferous 

Forests 66 104 128 (11) 1,671 

4 

Temperate 

Broadleaf and 

Mixed Forests 3 3 3 (0) 6 

5 

Temperate 

Conifer Forests 8 8 8 (1) 44 

7 

Tropical and 

Subtropical 

Grasslands, 

Savannas and 

Shrublands 105 298 570 (48) 3,728 
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8 

Temperate 

Grasslands, 

Savannas and 

Shrublands 1 1 1(0) 1 

9 

Flooded 

Grasslands and 

Savannas 36 48 51 (4) 80 

10 

Montane 

Grasslands and 

Shrublands 53 89 111 (9) 168 

12 

Mediterranean 

Forests, 

Woodlands and 

Scrub 1 1 1 (0) 1 

13 

Deserts and Xeric 

Shrublands 66 113 152 (13) 378 

14 Mangroves 81 153 207 (18) 794 

Total general 133 491 

1,180 

(100) 69,986 

 

When restricting the analysis to the white-sand specialist dataset, the largest 

proportion of species was shared with the Tropical and Subtropical Grasslands, 

Savannas and Shrublands (28%) (Table 5). However, the number of species shared 

with Tropical and Subtropical Dry Broadleaf Forests dropped to only 4% (Table 5). 

 



CHAPTER 3: Phytogeography and floristic patterns 

 

66 

 

Table 5. Percent of families, genera, and species of white-sand specialists 

found in each biome using only the white-sand specialist dataset. 

 

Biome 

code Biome name 

No. 

families 

No. 

genera 

No. 

species 

(%) Records 

1 

Tropical and 

Subtropical 

Moist 

Broadleaf 

Forests 65 160 277 (100) 3180 

2 

Tropical and 

Subtropical 

Dry Broadleaf 

Forests 8 9 11 (4) 17 

7 

Tropical and 

Subtropical 

Grasslands, 

Savannas and 

Shrublands 37 60 79 (29) 267 

9 

Flooded 

Grasslands 

and Savannas 1 1 1 (0) 1 

13 

Deserts and 

Xeric 

Shrublands 1 1 1 (0) 1 
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14 Mangroves 4 4 4 (1) 7 

Total general 65 160 277 (100) 3473 

 

3.3.3. Distribution patterns in ecoregions 

 

White-sand forests of the western Amazon had a large proportion of their species 

occurring within ecoregions of the Guiana Shield area. When using the white-sand 

specialists from the four white-sand forests, 88% of the total (247 white-sand 

specialists species out of 279 species) occur within the limits of the Guiana Shield 

region with the remaining being endemics to the western Amazon. When confining 

the analysis to white-sand forests outside of the Guiana Shield region (acre.wsf.BR 

(Brazil), lore.wsf.PE (Peru)), 59% of white-sand specialist species were found to be 

distributed in the Guiana Shield while the rest (41%) would represent endemics of 

the western Amazon. When looking at which ecoregion had more than 10% of 

western Amazon white-sand specialists, the majority (seven to eight out of ten) were 

ecoregions from the Guiana Shield region.  

 

There were differences in the ecoregion that shared most of the species depending on 

the inclusion of white-sand forests of Colombia (caqu.wsf.CO, guai.wsf.CO). In 

general, when using only the non-Guiana Shield white-sand forests (acre.wsf.BR, 

lore.wsf.PE), the proportion of species shared with different Guiana Shield 

ecoregions dropped. The three ecoregions from the Guiana Shield with the highest 

percentage of species also distributed in the western Amazon were: Caquetá Moist 

Forests (69-30%), Guayanan Highlands Moist Forests (51-33%), Negro-Branco 

Moist Forests (49-43%). Table 12, and 13 (Appendix I) list statistics for each 

ecoregion and white-sand species representation. 
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Table 6. Ecoregions with at least 20% of white-sand specialists using the (a) 

whole white-sand specialist dataset compared to using only the (b) non-

Guiana Shield white-sand dataset. Note changes in the proportions and 

ecoregions according to the dataset used. 

 

a) Whole white-sand dataset: 

caqu.wsf.CO (Colombia), 

guai.wsf.CO (Colombia), 

acre.wsf.BR (Brazil), 

lore.wsf.PE (Peru) 

 

b) non-Guiana Shield white-

sand dataset: acre.wsf.BR 

(Brazil), lore.wsf.PE (Peru) 

 

 

Ecoregions 

No. 

species 

% 

species Ecoregions 

No. 

species 

% 

species 

Caquetá moist 

forests 191 69% Iquitos varzea 86 97% 

Guayanan 

Highlands moist 

forests 142 51% 

Napo moist 

forests 56 63% 

Negro-Branco 

moist forests 137 49% 

Southwest 

Amazon moist 

forests 43 48% 

Iquitos varzea 95 34% 

Negro-Branco 

moist forests 38 43% 

Tepuis 93 34% 

Guayanan 

Highlands 

moist forests 29 33% 
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Japurá-Solimoes-

Negro moist 

forests 64 23% 

Caquetá moist 

forests 27 30% 

Guianan moist 

forests 61 22% 

Japurá-

Solimoes-

Negro moist 

forests 25 28% 

Napo moist forests 59 21% 

Uatuma-

Trombetas 

moist forests 25 28% 

Uatuma-

Trombetas moist 

forests 56 20% 

Solimoes-

Japurá moist 

forest 22 25% 

Solimoes-Japurá 

moist forest 55 20% Tepuis 21 24% 
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Figure 12. Proportion of western Amazon white-sand specialists shared 

among different ecoregions within Amazonia. White sand areas: (1) 

acre.wsf.BR (Brazil), (2) lore.wsf.PE (Peru), (3) caqu.wsf.CO (Colombia), (4) 

guai.wsf.CO (Colombia). 1 and 2 = non-Guiana-Shield western Amazon 

white-sand areas, 3 and 4 = GuianaShield western Amazon white-sand 

areas. GS limit = Guiana Shield limit. 

 

 

 

3.3.4. Floristic similarity analysis 

3.3.4.1. Floristic dataset 

 

A total of 31 floristic datasets at the level of provinces were compiled which 

included four western Amazon white-sand forests (Figure 11; Table 7). There were a 

total of 26,887 vascular plant species in the floristic dataset grouped in 2,865 genera, 

and 268 APG III families. Table 5 gives a summary of the area and number of 

vascular plant species found at each evaluated site. The number of species in the 
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white-sand forest dataset ranged from 363 (acre.wsf.BR) to 955 species 

(guai.wsf.CO). The number of species in the province checklists ranged from 607 

(Vichada, Colombia) to 8,355 species (Amazonas, Brazil). 

 

Table 7. Number of vascular plant species found at each study site ordered 

by ascending number of species. Studied western Amazon white-sand 

forests in bold: acre.wsf.BR (Brazil), caqu.wsf.CO (Colombia), lore.wsf.PE 

(Peru), guai.wsf.CO (Colombia).  

 

 

Site 

 

 

Province 

 

 

Area (km2) 

 

Country No. spp. 

 

acre.wsf.BR Acre - Brazil 363 

CO.VD Vichada 38734.93 Colombia 607 

caqu.wsf.CO Caquetá - Colombia 657 

lore.wsf.PE Loreto - Peru 731 

guai.wsf.CO Guainía - Colombia 955 

PE.UC Ucayali 105078.38 Peru 1,148 

CO.GN Guainía 68819.14 Colombia 1,289 

CO.VP Vaupés 53242.63 Colombia 1,738 

VE.DA 

Delta 

Amacuro 

38230.4 Venezuela 

1,765 
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CO.GV Guaviare 55570.16 Colombia 1,769 

EC.SU Sucumbios 18041.41 Ecuador 1,959 

PE.MD 

Madre de 

Dios 

84420.81 Peru 

2,088 

BR.AP Amapá 141105.57 Brazil 2,523 

BR.RR Roraima 224384.08 Brazil 2,688 

BR.RO Rondonia 236376.67 Brazil 2,882 

CO.CQ Caquetá 90029.75 Colombia 3,021 

EC.PA Pastaza 29723.82 Ecuador 3,154 

BR.MT 

Mato 

Grosso 

599681.47 Brazil 

3,247 

EC.MS 

Morona-

Santiago 

24055.22 Ecuador 

3,384 

CO.AM Amazonas 107462.42 Colombia 3431 

BR.AC Acre 152729.51 Brazil 4,214 

SR Surinam 146011.49 Surinam 4,886 

GF 

French 

Guiana 

83014.98 French Guiana 

5,166 

PE.LO Loreto 375550.2 Perú 5,271 

BO.AM Amazon 681909.86 Bolivia 5,378 
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region 

EC.NA Napo 33833.15 Ecuador 5,765 

BR.PA Pará 892481.47 Brazil 6,098 

GY Guyana 209549.47 Guyana 6,938 

VE.BO Bolivar 193997.81 Venezuela 6,941 

VE.AM Amazonas 179579.86 Venezuela 7,146 

BR.AM Amazonas 1570659.01 Brazil 8,355 

 

3.3.4.2. Cluster analysis  

 

The proportion of tied values in the dissimilarity matrix constructed with the 

Sørensen-adjusted index was very low (0.86 %) with no zero values (Figure 13).  
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Figure 13. Frequency distribution of dissimilary values present in the species 

per site dissimilarity matrix built using the adjusted-Sørensen index. 

 

 

 

Cluster topologies created by both recluster and pvclust differed in the proportion of 

support value given to each node of the dendrogram: recluster analysis gave 100% 

bootstrap values to all recovered nodes at all levels of analysis (Appendix I: Figure 

30) whereas pvclust assigned a more conservative AU support value that ranged from 

50 to 100% (Figure 14). Given that recluster assigned to all nodes 100% support, and 

to err on the side of caution, further discussion and interpretation will be based only 

on the results from pvclust. 

 

 

 

 



CHAPTER 3: Phytogeography and floristic patterns 

 

75 

 

Figure 14. Cluster analysis of floristic checklists based on Multi-scale 

bootstrap results from pvclust with Average linkage as clustering algorithm. 

AU bootstrap p-values at each node (left). Standard bootstrap probability 

(BP) to the right (right). Cluster numbers in grey. Dashed rectangles enclose 

clusters with AU support p-values ≥ 85. Western Amazon white-sand forests: 

acre.wsf.BR (Brazil), caqu.wsf.CO (Colombia), lore.wsf.PE (Peru), 

guai.wsf.CO (Colombia). 

 

 

 

The analysis of cophenetic correlation among the five algorithms ranged from 0.47 to 

0.83 (Figure 31: in Appendix I). The best performing clustering algorithm was 

Neighbour joining with an r cophenetic correlation of 0.83 followed by Average 

Linkage with r = 0.70, and Complete Linkage clustering (r = 0.63). The Ward 

clustering algorithm had the second lowest cophenetic correlation (r = 0.58) after the 

Single linkage clustering algorithm (r = 0.47). Hereafter I only discuss the 

biogeographical patterns recovered by the Neighbour joining and Average linkage 

(UPGMA) algorithms.  
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3.3.4.3. Neighbour joining vs. Average linkage floristic patterns 

 

Overall, the cluster analysis using the two best performing algorithms (Neighbour 

Joining, and Average linkage) recovered similar floristic clusters with respect to 

western Amazonian white-sand forests (Figure 14; Appendix I: Figure 31). Peruvian 

(lore.wsf.PE) and western Brazilian (acre.wsf.BR) white-sand forests were joined in 

the same floristic group by both algorithms along with the floras of Acre (BR.AC), 

Amazonas (BR.AM), and Loreto (PE.LO). Colombian white-sand forests 

(guai.wsf.CO, and caqu.wsf.CO) on the other hand were floristically distinct and 

placed in their own clusters by both Neighbour joining and Average linkage 

algorithms. Both algorithms, however, showed that caque.wsf.CO was closer 

floristically to other Colombian floras in the area (CO.GV, CO.CQ, CO.AM, 

CO.VP), whereas guai.wsf.CO was most similar floristically to the floras of Vichada 

(CO.VD), Guainía (CO.GN), and Amazonas in Venezuela (VE.AM). 

 

The Neighbour joining algorithm clustered the northern Peruvian Amazon flora 

(PE.LO) with the floras of the southern Peruvian Amazon (Ucayali (PE.UC), Madre 

de Dios (PE.MD)) and the Amazonas province of Bolivia (BO.AM) without 

including the Peruvian white-sand forests (lore.wsf.PE) (Appendix: Figure 32). In 

contrast to this result, Average linkage clustered the PE.LO flora with the Peruvian 

white-sand flora (lore.wsf.PE) located in the same region (AU p-value = 97) (Figure 

14).  

 

Finally, the white-sand forests of Caquetá (caqu.wsf.CO) were clustered with the 

flora of Guaviare (CO.GV) by both the Average linkage and the Neighbour joining 

algorithms, only differing in that Neighbour joining put this cluster in a different 

agglomeration, apart from the other three western Amazonian white-sand forests 

(Appendix I: Figure 32), which remained in the same cluster region defined by 

Average linkage clustering (Figure 14).  
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In a wider geographical context, white-sand forests of Peru (lore.wsf.PE) and 

western Brazil (acre.wsf.BR) are more closely related floristically to the white-sand 

forests of Colombia (guai.wsf.CO, and caqu.wsf.CO) than to forests of the core 

Guiana Shield area: VE.DA, GF, SU, GY, VE.BO, BR.RR (Figure 14). The only 

exception may be the forests of the Brazilian province of Amazonas (BR.AM), 

which in the cluster analysis using the Average linkage clustered with the forests of 

Acre (BR.AC) including the white-sand forests of this region (acre.wsf.BR) (Figure 

5). In the Neighbour Joining clustering, the flora of the Amazonas province of Brazil 

grouped with the flora of Rondonia (BR.RO), apart from western Amazon white-

sand forests (Appendix I: Figure 32). 

 

3.3.4.4. Cluster bootstrap support values 

 

Relatively high levels of unbiased bootstrap support values (AU) were found by the 

pvclust randomization procedure for all clusters with white-sand forests sites, which 

suggest that these clusters are well supported by the analysed data (Figure 14). In 

particular, the cluster grouping the four western Amazonian white-sand floras along 

with other non-white-sand floras had an AU pv-value of 76 (Figure 14). It is, 

however, clear from the pvclust analysis that guai.wsf.CO is nested within two floras 

more representative of the western lowlands of the Guiana Shield area (CO.GN, and 

VE.AM (AU p-value = 73)) than to the other three western Amazonian white-sand 

sites. 

 

A first division of the dendrogram generated by Average linkage occurs at 

approximately 0.70 where all Ecuadorian western Amazon floras clustered with a 

very high AU p-value = 100. A second division occurs at 0.64 height with two big 

agglomerations of sites, one containing only western Amazon floras (PE.UC, 

BO.AM, PE.MD), and another big cluster with a mix of white-sand forests and other 

floras of the Amazon-Guiana regions. At 0.57 of dendrogram height, all south-

western Amazon floras form a single group with 96% AU bootstrap support value. 
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At 0.52 dendrogram height, all western Amazon white-sand forests are clustered in 

the same group, and always mixed with other floras within the same province, with 

AU p-value = 76. At the same height, a second group clustered sites representative of 

the Guiana (GF, SU, GY, VE.BO, VE.DA, CO.VD) and Brazilian Shield regions 

(BR.RO, BR.AP, BR.PA, BR.MT, BR.RR).  

 

At approximately 0.48 of dendrogram height, four different clusters are formed: one 

containing guai.wsf.CO along with CO.GN, and VE.AM (AU P-value = 73), another 

one containing all other three western Amazon white-sand sites (caqu.wsf.CO, 

lore.wsf.PE, acre.wsf.BR) with mostly Colombian floras (CO.CQ, CO.GV, CO.AM, 

CO.VP) (AU p-value = 89), a third cluster with Brazilian shield floras (BR.RO, 

BR.MT, BR.AP, BR.PA) (AU p-value = 51), and a final cluster containing Guiana 

Shield sites (BR.RR, GF, SR, GY, VE.DA, CO.VD, VE.BO) (AU p-value = 58). At 

a dendrogram height of 0.44, the white-sand forest of Caquetá (caqu.wsf.CO) is 

grouped only with Caquetá (CO.CQ), and Vaupés (CO.VP) (AU p-value = 91).  

 

At this same height of 0.44, the white-sand forest of Peru (lore.wsf.PE), and western 

Brazil (acre.wsf.BR) form a single cluster along with the floras of Amazonas 

Colombia (CO.AM), Vaupés (CO.VP), the northern Peruvian Amazon (PE.LO), 

Amazonas Brazil (BR.AM), and the flora of the Brazilian province of Acre (BR.AC) 

(AU p-value = 87). At 0.31 dendrogram height, caqu.wsf.CO only clusters with the 

flora of Guaviare (CO.GV) (AU p-value = 80), and lore.wsf.PE clusters only with the 

flora of Loreto (PE.LO) (AU p-value = 97). At the same height, the white-sand 

forests of western Brazil (acre.wsf.BR) form a cluster with BR.AM, and BR.AC (AU 

p-value = 86). Finally, at 0.19 dendrogram height, Guainía white-sand forests 

(guai.wsf.CO) is clustered only with the flora of the Amazonas province of 

Venezuela (VE.AM), whereas Acre white-sand forests (acre.wsf.BR) is clustered 

only with the flora of Acre (BR.AC) (Figure 14). 
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The standard error of the majority AU bootstrap values in pvclust was close to 0.1 or 

below (Figure 14) which gives confidence that the existence of these 

phytogeographic clusters is supported by data. Only clusters 1 (formed by 

acre.wsf.BR and Acre) and 15 (formed by Caquetá’s white-sand forests 

(caqu.wsf.CO) with Caquetá (CO.CQ) and Guaviare (CO.GV)) had the highest 

standard errors in the bootstrap procedure. The observed AU p-values for both 

cluster 1 and 15 however, fell within their expected ranges and provide confidence of 

their existence (Appendix I: Table 14). 

 

3.3.4.5. Optimal number of clusters 

 

The optimal number of clusters as defined by the highest Mantel (Pearson) 

correlation between the original dissimilarity matrix and pre-defined binary 

dissimilarity matrices cut at various k levels was found to be five (Figure 15). 
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Figure 15. Matrix correlations between the original distance matrix and 

binary dissimilarity matrices computed from the dendrogram segmented at 

various k levels. 

 

 

 

3.3.4.6. Cluster membership evaluation 

 

The cluster membership evaluation confirmed previous results from recluster and 

pvclust in which all western Amazonian white-sand forests were agglomerated 

within the same cluster along with some floras of the Colombian Amazon, 

Venezuela, and Brazil (Figure 16). According to this analysis, three sites, BR.AC, 

BRA.AM, PE.LO, were misclassified within cluster 1 as interpreted by their negative 

Silhouette width values (Appendix I: Table 15).  
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Figure 16. Silhouette plot of the 31 analysed floras from the Amazon-Guiana 

regions. Negative Silhouette values indicate misclassified sites. BR.AC, and 

PE.LO would be better placed in cluster 2. BR.AM would be better placed in 

cluster 4. j = cluster number, nj = number of sites in cluster j. Average 

Silhouette values per cluster to the right. 

 

 

Both BR.AC and PE.LO may be better placed in the neighbour cluster 2, along with 

most western Amazon floras (PE.MD, PE.UC, BO.AM). The misclassified flora of 

Amazonas Brazil (BR.AM) may be better placed in cluster 3, along with the 

Brazilian Shield floras of Pará (BR.PA), Mato Grosso (BR.MG), Rondonia (BR.RO), 

and Amapá (BR.AP).  
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3.3.4.7. Ordination 

 

The NMDS ordination analysis recovered similar phytogeographic patterns to cluster 

analysis results as interpreted by the relative distances between floras and white-sand 

forests portrayed by this analysis in the ordination space (Figure 17).  

 

Figure 17. Relationships of western Amazon white-sand forests with 

provinces (political units) in the Amazon and Guiana regions as represented 

by non-metric Multidimensional Scaling (NMDS) ordination. WSF = western 

Amazon white-sand forests. Province names as in Table 6. 

 

 

In this analysis, all four western Amazonian white-sand floras were relatively closer 

to each other and more similar to Colombian floras compared to other floras in the 

Amazon-Guiana region. Furthermore, these white-sand forests were more similar 
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floristically to other Colombian floras than to other floras in the Guianan-Amazon 

region (Figure 17).  

 

White-sand forests of Acre (acre.wsf.BR), Loreto (lore.wsf.PE), and Caquetá 

(caqu.wsf.CO) are closer to each other floristically than they are to the white-sand 

forests of Guainía (guai.wsf.CO). These results mirror similar patterns found by 

Neighbour joining and Average linkage clustering, providing further confidence in 

the phytogeographical patterns revealed by cluster analysis.  

 

The Sheppard plot indicates that there is a good fit of the ordination distance among 

sites against the original dissimilarity distance which is expressed in the relatively 

low stress value (stress = 0.12) (Appendix I: Figure 34 ). 

 

3.3.4.8. Spatial distance and floristic similarity 

 

I found a significant positive Mantel correlation between the floristic distance and 

geographical distance matrices (Mantel’s r = 0.4866, p<0.001). Based on this result I 

reject the null hypothesis that these two matrices are not related and hence the 

geographical separation of sites may explain a portion of the observed floristic 

dissimilarities (Figure 9). 
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Figure 18. Floristic similarity as a function of geographic distance between 

pairs of floras in the Andes-Guiana Shield region. Statistical significance from 

Mantel test. 

 

 

 

3.4. Discussion 

3.4.1. Patterns in habitat specialization 

 

Viewed from the air and explored on the ground, Amazonian white-sand forests are 

no doubt distinctive in physiognomy and structure compared to neighbouring upland 

forests on clay soils (Anderson 1981, Prance 1996, Coomes & Grubb 1996, Bongers 

et al. 1985, Duivenvoorden 1995, García-Villacorta et al. 2003, Fine et al. 2010, 

Silveira 2003, Vicentini 2004, Ferreira 2009). In terms of species composition, 

however, my results shows that only about a quarter (23%) of the total 1,183 

vascular plant species inhabiting western Amazonian white-sand forests are 

specialized to these forests while the vast majority (77%) also occur on non-white-

sand habitats (Table 3). This finding contradicts the idea that this unique vegetation 

type is inhabited mainly by white-sand specialists. I suggest that the combination of 
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soil nutrient factors along with their variable drainage conditions opens these habitats 

to members from other habitat types. This species distributional pattern only 

becomes evident when the analysis is done at large geographical scale as this study 

has attempted to do. The finding that only a small proportion of species is specialized 

to certain environmental conditions of emblematic Amazonian vegetation types has 

also being documented recently for Amazonian swamps. In these habitats less than 

10% of species were found to be swamp specialists whereas more than 80% of the 

species also occur in neighbouring well-drained forest types (Pitman et al. 2014). 

 

In contrast to this result, previous work on white-sand floristics and phytogeography 

have looked at taxonomic sub-sets of floras or taken a sub-regional geographic 

approach in their analyses, which despite showing the influence of plants also found 

in other habitats, they may have overestimated the proportion of true white-sand soil 

specialists. For instance, a floristic study of the white-sand forests of the Brazilian 

Amazon found that the majority of the species (54.5%) were restricted to this 

vegetation type, whereas 23.6% occurred in non-white-sand terra firme forests, 20% 

in igapo forests, and 2.6% in varzea forests (Anderson 1978, cited in Anderson 

1981). Similarly, a previous analysis of the Peruvian white-sand tree flora found that 

52% of them were white-sand specialists, while the rest were facultative specialists 

(9%), and habitat generalists (39%) (Fine et al. 2010). Considering the local to 

regional scope of both Anderson (1981), and Fine et al. (2010) studies, my results 

highlight the importance of taking a wider taxonomic and geographic approach when 

studying the distributional patterns of species in relation to habitat specialization.  

 

Studies of plant communities in north-western Peruvian Amazonia have documented 

the existence of high edaphic heterogeneity closely matched with distinct plant 

communities (Tuomisto & Ruokolainen 1994, Tuomisto et al. 1995, Ruokolainen & 

Tuomisto 1998, Tuomisto et al. 2003). Likewise, tree plot inventories in the western 

Amazonian forests close to the Andean piedmont have documented that most of the 

species are rare in the landscape while the majority of trees belong to a small set of 

abundant species apparently indifferent to edaphic conditions (Pitman et al. 2001, 
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2002). Despite the high proportion of species not restricted to white-sand forests 

found in this study, none of these generalists reaches dominance in terms of biomass 

or stem numbers in white-sand forests. Dominance in these forests is exerted by a 

selected number of white-sand specialist (Fine et al. 2010, Stropp et al. 2011) or 

species with tolerance to water-logged soils conditions (Freitas Alvarado 1996, 

García-Villacorta et al. 2003, Vicentini 2004, Fine et al. 2010). Within these hydro-

edaphic stressed forests, community dominance can only be achieved by a suite of 

taxa possessing particular trait combinations to outperform less adapted competitors. 

Candidate traits for conferring community dominance include relatively high levels 

of anti-herbivore toxins (Janzen 1974, Fine et al. 2006), slow growth (Fine et al. 

2006), tolerance to flooding and drought (ter Steege 1994, Damasco et al. 2013, 

Aymard-C et al. 2014), high wood density (Baker et al. 2004, Baraloto et al. 2011), 

large seed size (Hammond & Brown 1995, ter Steege & Hammond 2001, Baraloto & 

Forget 2007), multi-stemmed growth (Vormisto et al. 2000), mast-fruiting (Janzen 

1974), and ectomycorrizal associations (Henkel 2003, McGuire 2007, Smith et al. 

2013).  

 

3.4.2. Distributional patterns 

 

Of the total Western Amazonian white-sand specialists, 88% of them occurred in 

floras within the Guiana Shield region, whereas approximately 12% would represent 

endemics to the western Amazon region. This pattern of phytogeographic connection 

was still high when only non-Guiana Shield white-sand forests were considered 

(59%). Caquetá moist forests, Guayanan Highlands Moist Forests, and Negro-Branco 

Moist Forests had the highest proportions of western Amazon white-sand specialists. 

These ecoregions are located at the southwestern fringe of the Guiana Shield region 

(Figure 12) which may explain why, when including the Colombian white-sand 

forests (caqu.wsf.CO, and guai.wsf.CO), the proportion of shared phytogeographic 

patterns increased substantially (30% to 69% in Caquetá Moist Forests, 33% to 51% 

in Guayanan Highlands Moist Forests, and 43% to 49% in Negro-Branco Moist 

Forests). This suggests that white-sand forests of the western Amazon, not only 
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white-sand forest from the Colombian Amazon, have their stronger phytogeographic 

links with the western fringe of the Guiana Shield lowland floras (Table 6).  

 

The fact that the three top ecoregions with the highest percentage of non-Guiana 

Shield western Amazon white-sand forest species are located in the western Amazon 

(Iquitos varzea, Napo moist forests, and Southwest Amazon moist forests; Table 6) 

indicate that white-sand forests in this region share a lesser number of white-sand 

species with the Guiana Shield flora compared to Colombian white-sand forests. The 

phytogeographic connection between Colombian white-sand forests and the Guiana 

Shield flora has been demonstrated before (Cortés et al. 1998). Interestingly, the 

most important taxa in these Colombian white-sand forests of Chiribiquete were 

mainly shrubs and herbs in the families Rubiaceae, Melastomataceae, Orchidaceae, 

and Bromeliaceae (Cortés et al. 1998). These plant groups are favoured in open 

white-sand areas with a rocky substrate common not only in the Chiribiquete area of 

Colombia but also in the Pantepui mountain summits of the Guiana Shield (Berry & 

Riina 2005). Similar rocky outcrops are for the most part absent in the white-sand 

forests of Loreto (Perú) and Acre (Brazil) (see Chapter 2 for more details).  

 

The high proportion of species not specialized to white-sand habitats that occur on 

the western Amazon white-sand habitats may result from: (i) the combined 

mechanisms of mass-effect dispersal of species present in neighbouring habitats, 

which may have the ability to survive and reproduce in both white-sand and non-

white-sand habitats (true generalists); (ii) widespread species that occur on poor-

nutrient soils, including white-sands, which may be in the process of ecological 

parapatric adaptation or on-going speciation; and (iii) cryptic undescribed species –

i.e., the populations found on white sand may be different species, but are not 

morphologically characterisable and therefore not recognised as such. The 

distribution of generalist species over poor-nutrients soils in Amazonia, including 

white-sands, suggests that (ii) and (iii) may be complementary. The few taxonomic 

revisions and phylogenetic analyses including species and populations inhabiting 

white-sand forests tend to find cryptic, undescribed species restricted to white-sand 
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habitats within taxa previously thought to represent widespread habitat generalists 

(see Humiria in Cuatrecasas (1961); Potalia in Struwe & Albert (2004); Pagamea in 

Steyermark (1965), and Vicentini (2007); and Protium in Daly & Fine (2011), for 

some examples).  

 

Revision of some plant groups has highlighted the existence of cryptic species within 

these taxonomic complexes when more collections, ecological, genetic, and/or 

reproductive biology data have been gathered. For instance, studying the 

distributional patterns of the Passiflora vitifolia complex (Passifloraceae) in the 

Peruvian Amazon, Gentry (1981) observed the segregation of four different species 

within this complex among four habitat types: one on seasonally inundated forests, 

another on non-inundated clay-rich soils, a third on non-inundated alluvial soils, and 

a fourth on non-inundated white-sand soils. This last species was previously lumped 

within a more wide-ranging species and was described as new by Gentry (1981).  

 

Likewise, a cryptic species in the genus Protium (Burseraceae) was found under the 

name of a species that occurred both on white-sand and non-white sand soils (Daly & 

Fine 2011). Molecular phylogenetics  has shown that this species was in actuality 

two species, with subtle morphological cues only discerned after careful cross-habitat 

checking (Daly & Fine 2011). Similarly, a recent study on reproductive biology, 

phenotypic differences, and ecological preferences within the Pagamea coriaceae 

complex (Rubiaceae) identified two different species distributed in sympatry and 

exploiting different gradient combinations of light and drainage within white-sand 

forests (Esteves & Vicentini 2013). Elucidating what proportion of non-specialist 

white-sand species are simply the outcome of mass-effect seed dispersal from non-

white sand species from neighbouring habitats, true habitat generalists, cryptic 

undescribed species, or potentially incipient species undergoing ecological 

adaptation, will remain uncertain until more taxonomic, field, and molecular-based 

studies are done on these taxa. 
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3.4.3. Floristic patterns 

 

All studied white-sand forests clustered with the flora of the province where they 

belong geographically (Figure 14). Given the overall dominance of non-white-sand 

specialists in western Amazon white-sand floras, this result suggests that the floristic 

patterns are driven by the overwhelming number of non-white-sand specialist 

species; this is, by the interaction of local and especially regional historical processes 

(Ricklefs 1987, Cornell & Lawton 1992, Holt 1993, Latham & Ricklefs 1993, 

Cottenie 2005, Ricklefs 2008). This result supports the hypothesis of a flora 

constructed via long-distance dispersal or stepping-stone dispersal from nearby 

white-sand habitats as well as well as taxa from other less oligotrophic habitats of the 

Amazon, on which these forests are embedded (poor-soil specialists, and generalists).  

 

Current estimates of the extent of Arenosols and Podzols soils in the Amazon region 

suggests that these soils may account for a small proportion of the soil cover: 2.7% 

(20 million ha), and 1.9% (14.1 million ha) respectively (Chapter 2). This estimation 

is based on the presence of these soils in different parts of the Guiana Shield and the 

Amazon, which more probably developed diachronically by several physical, 

biological and chemical processes (Chapter 2). Fine et al. (2010) studied the floristic 

composition of white-sand forests of Peru and found that patterns of dominance were 

less predictable compared to non-white-sand forests (i.e. different patches were 

largely dominated by a different set of species). They interpreted this finding as a 

result of the dispersal capacity of plants and the variable size of white-sand habitat 

patches (Fine et al. 2010).  

 

Alternatively, pedogenic processes of white-sand soil formation in association with 

the most widespread soils in the Amazon, Ferralsols and Acrisols, have been 

demonstrated by several studies in both the Amazon and Guiana Shield region 

(Chapter 2). Podzolisation processes are local phenomena occurring on other 

oligotrophic (sandy-clay) substrates over time, which raises the possibility that 
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oligotrophic soils on clay substrates (not the extremely poor white-sands) represent 

habitats that can be used by oligotrophic-loving species that are common in the 

eastern Amazon and the Guiana Shield region. These “oligotrophic families” may 

include: Lecithydaceae, Chrysobalanaceae, Ochnaceae, Clusiaceae, Malpighiaceae, 

Myrtaceae, and Sapotaceae (Terborgh & Andresen 1998, Berry et al. 1995). Indeed, 

biogeographical patterns of plant species distribution in Amazonia have been related 

to the regional variation in soil fertility (ter Steege et al. 2000, Quesada et al. 2011). 

The hypothesis that species from these families can endure white-sand soil 

conditions may explain the abundance of non-white-sand specialists on Amazonian 

white-sand habitats; even though they are not restricted to white-sand soils, species 

in these families may be adapted to occupy a part in the Amazon soil gradient 

towards nutrient-poor soils. 

 

In connection with this, the great majority of western Amazonian white-sand species 

(77%) occur widely distributed on different vegetation types, including other less 

extreme, oligotrophic soils (Figura 12; Table 6). The clustering of white-sand forests 

with nearby floras indicates that dispersal processes from other white-sand areas and 

from water-logged stressed habitats may be the main process shaping the evolution 

and community assembly of these forests. In this regard, peat-accumulating palm 

swamps (Tuomisto et al. 1994, Lähteenoja et al. 2009), and old terraces of terra 

firme forests on sandy-clay soils (García-Villacorta et al. 2010) may provide 

adequate environmental stress (i.e. poor drainage, or slightly nutrient-poor soils 

respectively) that may be used by poor-soil plant specialists as dispersal corridors to 

reach isolated white-sand forests (García-Villacorta et al. 2011).  

 

Ancient hilly terraces on poor oligotrophic clay soils were found to be a common 

feature at certain drainage divides of the western Amazon (Stallard 2011). These 

eroded hilly terraces are extensive in these areas and several taxa commonly 

occurring as white-sand poor-soil specialists have been found on them (García-

Villacorta et al. 2010, 2011). Similarly, some non-specialist white-sand species have 

been found on swamp habitats of the Amazon flood-plain (Tuomisto et al. 1994, 
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Lähteenoja et al. 2009, Lähteenoja & Page 2011, García-Villacorta et al. 2011, 

Dávila et al. 2013, Draper et al. 2014), which suggest that edaphic conditions on 

these habitats may facilitate their species range distribution. Habitat heterogeneity in 

these areas is high and the top areas of the hills are composed of nutrient-poor Plio-

Pleistocene alluvial sediments (2 Mya), whereas middle and lower areas can have 

outcrops of Pebas formation soils (6 Mya), higher in nutrients, or most commonly 

covered with younger poor fluvial sediments like Nauta sandy-clay formations 

(Räsänen & Linna 1998, Stallard 2011). 

 

Previous studies of plant species distributional data across a broad range of edaphic 

gradients have reported that species are often found associated with certain edaphic 

and topographical characteristics which imply that they may have played a role in 

plant evolution in the Amazon. For instance, Schulman (2003) described the 

ecological restriction of the shrub Adelobotrys ruokolainenii (Melastomaceae) to 

nutrient-poor hills on sandy-clay soils which correspond to the geological formation 

known as Nauta C in northern Peruvian Amazonia. Similarly, two species of 

Clidemia (Melastomataceae) that occur sympatrically, but on different habitat types 

with contrasting soil cation concentrations, were proposed to have evolved by 

ecological speciation in response to environmental variation (Schulman et al. 2004). 

Likewise, Tuomisto (2006) studied the geographic and ecological distribution of 

seven Polybotrya fern species across a large swathe of the western Amazon 

(Colombia, Ecuador, and northern Peru). She found that each species occurred in a 

unique set of hydro-edaphic conditions. A single study site encompassed only a small 

proportion of their preferred edaphic gradient, with complete absence of certain 

species from some sites when the proportion of sand in the soil exceeded 60% 

(Tuomisto 2006). Similar explanations have been invoked for palm species in the 

western and eastern Amazon regions (Roncal 2006, Gomes de Freitas et al. 2014). 

 

Most of the species shared with other biomes in the western Amazon white-sand 

forests come from areas with rainfall or edaphic constraints like seasonally dry 

forests or savanna forests (Table 3). The patterns revealed by the distributional 
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analysis using the whole dataset by biomes suggest a connection with Tropical and 

Subtropical Grasslands, Savannas and Shrublands (48%) followed by Tropical and 

Subtropical Dry Broadleaf Forests (34%). Species restricted to white-sand soils in 

the western Amazon have a lesser connection with these biomes: the proportion of 

white-sand species found in Tropical and Subtropical Grasslands, Savannas and 

Shrublands dropped to around quarter (25%) whereas Tropical and Subtropical Dry 

Broadleaf Forests dropped to an almost insignificant 4% of shared species. This 

sharp drop in shared species when using the white-sand specialist dataset may be 

related to the intrinsic differences in soil nutrient levels between these two biomes, 

savannas being more nutrient-poor habitats, and usually found on sandy soils 

compared to relatively cation-rich seasonally dry forests (Beard 1953, Prance 1996, 

Huber 2006, Pennington et al. 2006).  

 

I found that western Amazonian white-sand forests are floristically more related to 

each other and to floras of the western edge of the Guiana Shield region than to other 

floras in the Amazon-Guiana region (Figure 11-12). Specifically the Colombian 

lowland floras of Caquetá (CO.CQ), Guaviare (CO.GV), Vaupés (CO.VP), and 

Guanía (CO.GN), which are part of the western Guiana Shield region (Figure 3), 

were found to be floristically close to western Amazonian white-sand forests in both 

cluster and NMDS analysis (Figures 8, and12). The two other lowland floras of the 

western side of the Guiana Shield region with similarities to the studied white-sand 

forests were the floras of the Brazilian provinces of Amazonas (BR.AM) and Acre 

(BR.AC), and Amazonas in Venezuela (VE.AM). Furthermore, a massive number of 

western Amazonian white-sand specialists were found to occur within the Guiana 

Shield region (88%). Within this region, Caquetá moist forests, Guayanan Highland 

moist forests, and Negro-Branco moist-forests sub-biomes had the highest proportion 

of shared species. Previous studies in the Caquetá region have reported the presence 

of white-sand taxa with geographical affinities with the Guiana Shield region 

(Duivenvoorden 1995, Cortés et al. 1998, Arbeláez & Duivenvoorden 2004) and my 

results confirm these findings.  
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Geographical proximity among studied floras and white-sand forests may help 

explain the observed phytogeographical affinities. Both BR.AM, and VE.AM 

provinces are geographically adjacent to each other as well as to the Colombian sites 

described above to have close links to western Amazonian white-sand forests. This 

may help explain why acre.wsf.BR (Brazil) and lore.wsf.PE (Peru) are more similar 

to each other and to caqu.wsf.CO (Colombia) than to guai.wsf.CO (Colombia), the 

latter being closer in geographic distance to the core Guiana Shield region (Figure 

12). A correlation analysis of the geographic distance and floristic matrices (Mantel 

test) in the dataset found a significant association between them, implying that 

spatially closer sites are also floristically more similar.  

 

It has been hypothesized that the species occurring on Amazonian white-sand forests 

were part of a historical, mostly continuous, landscape of sandy soils that were later 

fragmented as the Amazon biome developed during the Miocene (Struwe & Albert 

2004). This hypothesis implies a mostly uniform white-sand forest floristic 

composition across the Amazon, and given its old relative age compared to other 

habitat types, the existence of endemic relict species (paleo-endemics) in white-sand 

forest patches is possible (Struwe & Albert 2004). If some white-sand forests in the 

Amazon are younger than others, as suggested by the relative age of soils (Chapter 

2), their floristic composition might be biased towards well dispersed members of the 

Amazonian white-sand species pool. If this is the case, the existence of local 

endemics in the white-sand forests of the western Amazon will be somewhat 

puzzling because it implies that these species diverged relatively recently. 

 

Several studies of plant dispersal syndromes in Amazonian white-sand forests have 

suggested that long-distance dispersal may be an important ecological process in the 

maintenance, and perhaps origin, of Amazonian white-sand forests. In an “open 

campina” white-sand forest in Manaus, Brazil, the proportion of plant species with 

hypothesised capability for long-distance dispersal was relatively high in the studied 

plant community (76%), with 59% of the plants being bird-dispersed species 

(Macedo & Prance 1978). Prance & Schubart (1978) also reported that long-distance 



CHAPTER 3: Phytogeography and floristic patterns 

 

94 

 

dispersal might be an important factor shaping the similarity of white-sand forests 

near Manaus in the lower Rio Negro basin of Brazil. Finally, Arbeláez & Parrado-

Roselli (2005) characterized the dispersal syndromes of different sandstone 

vegetation types in the Colombian Amazon. They found that anemochorous (40.2%) 

and zoochorous (37.8%) were the dominant dispersal syndromes in the forest-scrub 

vegetation whereas autochory (60%) was the main dispersal syndrome in the open-

herbaceous vegetation. Overall birds were the most important dispersal agents 

(58.9%). Geographic distance, the connectivity of white-sand forests with less 

oligotrophic soils, and the spatial distribution of the white-sand forest archipelagos, 

all together may have some influence in the origin, community structuring and 

maintenance of this Amazonian plant community.  

 

3.4.4. Conclusions 

 

In returning to my initial questions, I found that about a quarter (23%) of the western 

Amazon white-sand flora is specialized to white-sand substrates whereas the great 

majority (77%) also occur in other habitat types in the Amazon. This finding 

contradicts the general idea that white-sand forests are mainly inhabited by 

specialized species as has been usually described in the botanical, ecological and 

taxonomic literature. Because of adaptations to stressing hydro-edaphic conditions, 

white-sand forests of the Amazon are physiognomically well defined. Floristically, 

however, they receive a large number of species that possess similar physiological 

and ecological preferences but that are not restricted to white-sand habitats. Some of 

these non-specialist white-sand species may represent species that preferentially 

disperse from nearby less oligotrophic soils and water-stressed habitats of the 

Amazon basin. 88% of the white-sand specialist species are shared with the Guiana 

Shield region, whereas 12% would represent local endemics. The distributional 

analysis shows that white-sand forests share a substantial number of species with 

extra-Amazonian biomes like savanna forests, and seasonally dry forests, especially 

amongst their non-specialist representatives.  
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Cluster analysis and NMDS ordination concurred that the white-sand forests of the 

western Amazon are floristically more similar to floras of the geographic region to 

which they belong. In general, the composition of white-sand forests of the western 

Amazon is more similar to floras of the western side of the Guiana Shield than to the 

rest of floras in Amazonia. There was significant distance decay in similarity of 

overall floristic composition, which implies that dispersal processes are playing an 

important role in driving current floristic assemblage patterns. Also, both the floristic 

and distributional analysis point to the western oligotrophic floras of the Guiana 

Shield as their closest floristic affinities. Geographical distance seems to explain an 

unmeasured fraction of the floristic similarity between white-sand floras and other 

floras in the Amazon. Therefore, regional dispersal processes may have more 

importance than local species interactions in structuring Amazonian white-sand plant 

communities. Taken as whole, my results suggest the western Amazon white-sand 

forests are relatively recent assembled floras of different ages, structured mainly by 

dispersal processes from other, geographically proximate white-sand forests and with 

a large component of non-white-sand specialist taxa immigrating from less extreme 

oligotrophic habitats nearby. Nevertheless, at the local and regional level white-sand 

forests possess a significant number of endemics that add up to the regional and beta 

diversity in the Amazon. Additionally, they represent a unique combination of 

Amazonian hydro-edaphic conditions that can serve as natural laboratories to 

understand the evolution of habitat specialization, plant-animal interactions and 

physiological adaptations to drought and flooding. The existence of a variety of soils 

and habitats, from extreme-poor to relatively-rich in close proximity of the same 

geographic space, may provide the evolutionary arena for habitat specialization, 

which may be essential for the generation and maintenance of the plant biodiversity 

across the Amazon and Guiana regions. 
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Chapter 4:  Pervasive habitat switching and the evolution of 

habitat specialization in lowland Neotropical forests 

 

“And yet, when the constituent plants of the different classes 

 of forest come to be compared together, they are found to  

correspond to a degree quite unexpected; for although the  

species are almost entirely diverse, the differences are  

rarely more than specific. It is only in the caatingas  

that a few genera, each including several species,  

seem to have taken up their exclusive abode” 

—R. Spruce (1908) 

 

4.2. Introduction 

 

Edaphic diversity across Amazonia is greater than previously appreciated (Quesada et 

al. 2011; Chapter 2). The length of the soil gradient varies at local and regional scales, 

with some areas having a concentration of extremely nutrient-poor habitats (ter Steege 

1993, Stropp et al. 2011), others having more cation-rich soils, at least by Amazonian 

standards (Gentry 1986, 1988), and others having a mixture of both extremes within 

the same geographical area (e.g. Tuomisto et al. 1995, Ruokolainen & Tuomisto 1998, 

Pitman et al. 2008). This asymmetrical variation in edaphic conditions across 

Amazonia (Quesada et al. 2010, 2011) may have its roots in the unique 

geomorphological histories that each sub-region experienced in the past (Salo et al. 

1986, Rossetti et al. 2005, Higgins et al. 2011; Chapter 2). This variation of edaphic 

characteristics that creates differences in habitat types—from various types of terra 

firme non-inundated forests to seasonally flooded forests—was recognized early on by 

Amazonian naturalists (Bates 1863, Spruce 1908) and it is represented in 

contemporary classification of habitats and vegetation types in this region (Macedo & 
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Prance 1978, Encarnacion 1985, Kalliola et al. 1991, Duivenvoorden & Lips 1995, 

Kvist & Nebel 2001, Salovaara et al. 2005, Huber 2005, Josse et al. 2007, Gond et al. 

2011, Junk et al. 2011). 

 

Amazonian white-sand soils are found at one extreme of this edaphic gradient in terms 

of soil nutrients and water availability. These quartz-rich sandy soils are classified as 

Arenosol or Spodosol in the soil literature (Chapter 2; FAO 1988, Buol et al. 2011) 

and support a physiognomically distinctive forest type, with many endemic plants and 

animals, which is variously known as campina, campinarana, varillal, chamizal, bana, 

Amazon caatinga or wallaba forest depending on the country where it occurs (Davis & 

Richards 1933, Ducke & Black 1953, Lisboa 1975). For a casual observer, the 

transition from a typical rainforest to a white-sand forest can be quite dramatic: from a 

multi-layered, tall and exuberant rainforest to a stunted forest with voluminous stem 

density and high levels of sunlight reaching the forest floor. It has been shown that 

inhabiting these nutrient-poor habitats require certain physiological adaptations that 

have a genetic component and that trade-off with plant growth (Proctor 1999, Fine et 

al. 2004, Lamarre et al. 2012). Leaves are characteristically leathery and well 

protected (rich in lignin and secondary compounds), and the forest floor is sometimes 

covered with an irregular and thick tapestry of organic layer, both of which are an 

indication of its nutrient-poor soil condition (Duivenvoorden & Lips 1995, Cuevas 

2001). The drainage system is characterized by black-water rivers and streams which 

result from the high levels of tannins and other secondary compounds leaching 

vertically and laterally from the slowly-decomposing leaves and organic matter 

(Janzen 1974, Proctor 1999, Lucas et al. 2012).  

 

The study of the evolution of tolerance to nutrient-poor habitats and specialization to 

different edaphic conditions may help us to explain extant diversity patterns in 

Neotropical plants. In this context, two basic models of edaphic niche evolution have 

been advanced in the Amazon. Firstly, Gentry (1981) proposed that divergent 

specialization to different edaphic conditions may have been important in the 

diversification of the Amazonian flora. Using field and herbarium studies of the 
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distributional patterns of the Passiflora vitifolia complex (Passifloraceae) in which 

four different species occupied four different edaphically-determined habitat types in 

the Peruvian Amazon—seasonally inundated forests, non-inundated clay-rich soils, 

non-inundated alluvial soils, and non-inundated white-sand soils—he proposed that 

habitat specialization may have been an important driver in the diversification of 

Neotropical plants. This mechanism of species habitat sorting through evolutionary 

time could be expressed by lineages showing high levels of edaphic niche lability that 

facilitate niche evolution by habitat switching. 

 

On the other hand, Kubitzki (1990) put forward the hypothesis of a younger 

evolutionary origin of the lowland flora of Amazonia compared to a hypothesized 

mainly Cretaceous-age radiation of the Guiana Shield flora. According to this 

hypothesis the evolution of a proto-Amazonian flora found on nutrient-poor substrates 

may have taken place at the southern margin of the Guiana Shield before the 

availability of younger and richer soils in the Miocene (Kubitzki 1989). This implies 

niche conservatism of Guianan-centered lineages that were exposed for millions of 

years to infertile substrates on the Guiana-Shield region, from the time the South 

American plate drifted from Africa ca. 100 Mya until the emergence of the northern 

Andes, extinction of the Pebas lake-system and establishment of the modern Amazon 

biome (ca. 8 Mya) (Chapter 2). As new habitats were created, these basal lineages may 

have tracked and diversified in their “preferred” nutrient-poor niches across the 

Amazon (Kubitzki 1989, 1990), including white-sands substrates (Frasier et al. 2008). 

This interpretation suggests that niche conservatism for ancestral edaphic preferences 

might have influenced speciation patterns in Neotropical plants or alternatively, the 

opportunity for habitat switching with the advent of new habitats and soils may have 

increased as at no other time before, giving rise to new species via habitat 

specialization. 

 

Along these lines, in studying the biogeography of Potalia (Gentianaceae), Frasier et 

al. (2008) hypothesized that white-sand soils were widespread in the proto-Amazon 

before the rising of the Andes in the Miocene, but were later fragmented and replaced 
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by the more cation-rich Andean derived soils. Early branching lineages would 

preferentially occupy white-sand substrates in this genus, whereas plants lineages on 

clayey soils are sister to white-sand lineages. Using a combined molecular-

morphology dataset they tested the hypothesis that white-sand species of Potalia were 

early branching lineages compared to species occurring on other soil types in the 

Amazon. Species known to be restricted to the Guiana Shield and Amazonian white-

sands were found to be early branching lineages in relation to to the rest of the 

members in the phylogeny, thus implying that non-white-sand species in other regions 

of the Neotropics were derived from them (Frasier et al. 2008). 

 

Several studies in the tribe Protieae (Burseraceae), along with other white-sand 

species, are among the few that have addressed the role of habitat heterogeneity in the 

evolution of ecological specialization using a combination of molecular phylogenies, 

natural transplant experiments, and measurements of phenotypic variations of species 

ecotypes (e.g. Fine et al. 2004, 2005, Lamarre et al. 2012, Fine et al. 2013). Studying 

the evolution of ancestral soil associations, Fine et al. (2005) used species 

distributional data from floristic plots located in three different soil types of the 

Peruvian Amazon and Ecuador (clay, terrace, and white-sand) to classify species by 

their soil preference. Twenty six species out of 35 showed habitat specialization to one 

of the soil types, with terrace (sandy-clay) soil inferred as probably being the ancestral 

state with subsequent speciation on clay and white-sand soils (Fine et al. 2005). Using 

a molecular biogeographic approach, Fine et al. (2014) also investigated, among other 

questions, the habitat evolution of Protieae in the Neotropics. They found the terra 

firme forests were the most probable ancestral habitat of Protieae with multiple 

transitions to other habitats, especially in western Amazonia and towards white-sand 

habitats (Fine et al. 2014).  

 

In Chapter 3 I showed that a large proportion of species inhabiting the white-sand 

forests of the western Amazon also occur on other habitat types somewhere in their 

overall distributional range. This result suggests that the ecological conditions 

prevalent on white-sand soils are tolerated by various species that are not white-sand 
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specialists, highlighting the importance of looking at the overall species distribution in 

order to properly evaluate habitat preference and associations. Given the complex geo-

climatic history of the Amazonian biome, with a flora relatively rich in local and 

regional endemics, it is at present not clear whether edaphic niche conservatism or 

evolutionary habitat switching of ancestral habitat preferences has played a major role 

in speciation via habitat specialization.  

 

Variation of habitat diversity in space and time during the formation of the Amazon 

biome, and the Neotropics in general, may have influenced profoundly the current 

levels of plant taxonomic diversity in this region. For this reason, the study of 

phylogenetic niche conservatism may give us insights into how it may have influenced 

extant diversity patterns. Furthermore, because of their different physiological 

requirements, studying the degrees of tolerance to edaphic conditions may give us 

some clues about their influence on the general patterns of plant species diversification 

in the Neotropics. I used a molecular phylogenetic approach in two diverse 

Neotropical plant families, Sapotaceae and Chrysobalanaceae, to investigate the 

phylogenetic patterns of tolerance to extremely nutrient-poor soils and the evolution of 

edaphic niches via habitat switching from and into other habitat types. In particular I 

asked the following questions:  

 

(i) are Amazonian white-sand specialists early branching taxa relative to non-

white-sand habitats across the Neotropical forests? 

(ii) are white-sand specialist species clustered in certain clades of the phylogenetic 

trees? 

(iii) does tolerance to extremely nutrient-poor soils in the Neotropics show signs of 

edaphic niche conservatism over evolutionary time? 

(iv) what were the most likely ancestral edaphic preferences among different 

species in Neotropical Sapotaceae and Chrysobalanaceae? 
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(v) what is the role of niche conservatism and/or habitat switching in generating 

the extant species diversity in these two Neotropical clades? 

 

If species on early branches of the phylogenies are found in white-sand habitats then 

this suggests that white-sand specialism could be the ancestral habitat type, regardless 

of where they occur geographically in the Neotropics (i.e. Amazon white-sand 

specialists clustering with Guiana-Shield specialists). If tolerance to extremely 

nutrient-poor white-sand soils is a conserved trait, I would expect that this trait may 

have evolved early in the history of a clade (i.e. deeper in the phylogeny) and has 

remained conserved (i.e. not shifted to other habitat types) over evolutionary time. 

This result would support a role for edaphic niche conservatism in the evolution of 

habitat specialization. On the other hand, if tolerance to stressful hydro-edaphic 

conditions is a labile trait, I will not expect to find any large clade composed 

exclusively of white-sand specialists, but instead they will be scattered across the 

phylogenies. This latter result will support a role of habitat specialization through 

habitat switching in the evolution of species diversity in these Neotropical clades.  

 

4.3. Methods 

4.3.1. Clade selection 

 

Clades were selected using the following criteria: (a) they have species occurring on 

both white-sand and non-white-sand forests, (b) they have taxa distributed in both the 

Amazon and the Guiana Shield regions, and (c) they have a well revised taxonomy 

which included molecular phylogenies that could be expanded upon with additional 

white-sand and non-white-sand species in this project. Among the candidate groups, 

two well-defined Neotropical monophyletic clades were selected to study the 

evolution of habitat specialization: Chysophylloideae (Sapotaceae), and the 

Licania/Hirtella/Couepia/Gaulettia (Chrysobalanaceae) clades (Swenson et al. 2008, 

Bardon et al. 2013). Species in both clades are important components of Amazonian 
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tree diversity and density (Terborgh & Andresen 1998, ter Steege et al. 2000, Pitman 

et al. 2001, ter Steege et al. 2013), inhabiting a wide range of habitat types (Prance 

1972, Pennington 1990, Prance & White 1988).  

 

Chysophylloideae, with ca. 600 species, is one of the three sub-families in Sapotaceae 

(the other two being Sapotoideae and Sarcospermatoideae) and like the family is 

distributed pantropically (Bartish et al. 2011). Using a robust, fossil-calibrated 

phylogeny it was estimated that Chrysophylloideae first diversified in Africa (73-83 

Mya) after splitting from Asian Xantholis, with subsequent colonization of South 

America via long-distance trans-oceanic dispersal 54–64 Mya (Bartish et al. 2011). 

The Neotropical species of Chrysophylloideae fall into ‘clade G’ as defined by 

Swenson et al. (2008), and include species assigned to Pouteria, Chrysophyllum, 

Pradosia (minus P. spinosa), Micropholis, Ecclinusa, Elaeoluma, plus Sarcaulus 

brasiliensis and Diploon cuspidatum. This clade G is the subject for the Sapotaceae 

analysis and newly generated sequences were added and aligned for Bayesian 

phylogenetic and molecular dating analysis (see phylogenetic reconstruction and 

dating section). 

 

Chrysobalanaceae is also a pantropical family with the vast majority of its species 

restricted to the Neotropics (ca. 423 species, 80%). Using a Bayesian and Maximum 

likelihood approach to phylogenetic reconstruction the family was inferred to have 

originated in the Paleotropics about 80 Mya with subsequent repeated dispersal to the 

Neotropics ca. 40-60 Mya (Bardon et al. 2012). Clade N in the recently derived 

molecular phylogeny of the family includes only Neotropical species (species in the 

genus Hirtella, Licania, Couepia and Gaulettia) (Bardon et al. 2013) and forms the 

backbone for the habitat reconstruction analysis here. Species identities included in the 

analysis follow recent taxonomic rearrangements in this clade in which some Couepia 

taxa were transferred to the genus Gaulettia (Sothers et al. 2014). Molecular 

phylogenetics has also provided support for the transfer of some Asian Licania into 

their own genera (Angelesia) and the re-circumscription of Licania as entirely 

Neotropical (Sothers & Prance 2014). 
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4.3.2. Field work 

 

Fieldwork to collect white-sand and non-white-sand species for phylogenetic analysis 

was conducted in the Peruvian Amazon and the rainforests of Guyana. I made a total 

of 118 collections of Chrysobalanaceae (42 species total: 17 in Guyana and 31 in Peru) 

and 140 of Sapotaceae (43 species total: seven in Guyana and 39 in Peru) in both 

regions. Differences in the number of species per region and the total samples 

collected result from widespread species collected in both regions (six species in 

Chrysobalanaceae, three species in Sapotaceae). All collections were dried in the field 

using silica gel and duplicate vouchers for herbarium specimens were prepared 

following standard botanical practices. Botanical vouchers are stored at the MOL 

(Universidad Agraria La Molina, Peru) and RBGE (Royal Botanic Garden of 

Edinburgh) herbaria. I visited six sites in the Peruvian Amazon, from the lowlands 

(Allpahuayo-Mishana, Puerto Almendras, Tamshiyacu, and Jenaro-Herrera; 

elevational range: 129-162 m a.s.l.) to areas closer and within the Andes (Davicillo 

and Aguas Verdes; elevational range: 189-1,155 m a.s.l.). In Guyana I collected at 

three sites: Soesdyke-Linden Highway (38-58 m a.s.l.), Bartica-Potaro road (73-85 m 

a.s.l.), and Mabura-Hill (105-127 m a.s.l.). Specimens were preliminarily identified in 

the field and subjected to further work at the RBGE herbarium using taxonomic keys, 

exsiccatae previously identified by taxonomic experts and digital resources available 

in online databases.  

 

4.3.3. Taxon sampling 

 

A total of 147 species (24.5% of total species in the family, 369 accessions) of 

Chrysophylloideae (Sapotaceae) were used in the phylogenetic reconstruction and 

molecular dating analysis. Sapotaceae samples were subject to molecular work in the 

lab facilities of the RBGE. Chrysobalanaceae samples were sent in collaboration for 

DNA extraction and sequencing to the research lab of Dr. Jérôme Chave (Université 

Paul Sabatier, France) where Léa Bardon is working on the phylogenetic systematics 
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and biogeography of the family as her PhD project. 167 species (39.5% of total species 

in the family) were used in reconstructing the molecular phylogeny of 

Chrysobalanaceae of which 36 species were collected in fieldwork carried out during 

this project (21% of species in the phylogeny). 

 

4.3.4. DNA extraction, PCR amplification and sequencing 

 

I worked on 49 accessions representing 40 Sapotaceae species from Peru and Guyana, 

extracting total genomic DNA from field-collected silica-dried samples using Qiagen 

DNeasy Plant Mini Kit spin columns following their standard protocol (Qiagen Inc., 

Valencia, California). The nuclear ribosomal ITS region was amplified and sequenced 

for the collected samples using the primers ITS5p (forward) and ITS4 (reverse) 

following Swenson et al. (2008).  

 

The ITS region is composed of two sub-regions (ITS1 and ITS2) flanking the sub-

units of the nuclear ribosomal RNA genes: 18S, 5.8S, 26S (Figure 19). Due to its high 

copy number and easy of amplification by standard PCR technology it has been 

proven to be an important tool in molecular plant phylogenetics (Baldwin 1992, 

Baldwin et al. 1995). A number of genetic processes may impact the utility of the ITS 

region in phylogenetic inference, including the presence of pseudogenes, evolutionary 

constraints to maintain rRNA secondary structure, extensive  ancient or recent 

duplication events and lack of complete concerted evolution (Álvarez & Wendel 2003, 

Small et al. 2004). Also, the presence of multiple arrays of divergent rRNA due to 

organismal processes of hybridization and polyploidization add another layer of 

complexity for resolving phylogenetic relationships using the ITS region. All of these 

processes can manifest in a network of paralogous/orthologous events that can affect 

phylogenetic reconstruction (Álvarez & Wendel 2003).  
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Countering these proceses, the ITS region undergoes an homogenization process 

known as concerted evolution, in which if a mutation occurs in one copy of the region 

it is generally corrected to match the other lead copy. Concerted evolution then would 

in theory eliminate or minimize paralogous sequences in the multiple copies of ITS 

region within the individual cell, thereby facilitating the recovering of true homology 

and phylogenetic relationships between taxa. However, this homogenization process is 

not always completed and the ITS region can be polymorphic within the individual 

plants due to incomplete concerted evolution (Álvarez & Wendel 2003, Bailey et al. 

2003). 

 

Figure 19. Organization of the ITS region within the nuclear ribosomal DNA 

(rDNA). Arrows indicate the direction and approximate location of primer sites 

to amplify the region. ITS5 and ITS4 primers were used in this study. 

Conventional name for primers follows White et al. (1990)(1990). Adapted 

from Baldwin et al. (1995). 

 

 

  

Despite these potential drawbacks for phylogenetic reconstructions, the ITS region has 

proven useful for inferring the phylogenetic relationships in Sapotaceae. Swenson et 

al. (2008) studied the molecular phylogenetics in the family and sub-families and 

found that the combined nuclear ribosomal Internal Transcribed Spacer (ITS)/chalcone 
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synthase gene intron (ChsI) resulted in a similar topology compared to a gene tree 

topology generated by combining seven chloroplast loci (Swenson et al. 2008). 

Additionally, the ITS region has been found to be the most informative genetic marker 

compared to other molecular markers in helping discriminate among Neotropical 

Sapotaceae species (Vivas et al. 2014).   

 

PCR products of each targeted taxon were purified with ExoSAP-IT® following the 

manufacturer’s instructions. Sequencing reactions were analyzed on the ABI 3730 at 

the Genepool facilities of the University of Edinburgh. In both selected clades the 

phylogenetic and molecular dating estimation was done de novo. 

 

4.3.5. Phylogenetic reconstruction and molecular dating 

 

In the following section, I describe how the Sapotaceae and Chrysobalanaceae trees 

were built along with their associated divergence date estimates. 

 

4.3.5.1. Sapotaceae phylogeny 

 

Raw sequences for each newly generated taxon were imported into the program 

Sequencher® v4.3 where they were edited and combined into consensus sequences. 

These consensus sequences were then imported into the program Mesquite® for 

manual alignment with sequences previously obtained in other studies of the same 

taxa. Additional ITS accessions from French Guiana (65 species) generated by Julien 

Vieu (Dr. J. Chave lab) were aligned manually to the original matrix before 

performing the phylogenetic analysis. To obtain a hypothesis of the evolutionary 

relationships in Neotropical Chrysophylloideae (Sapotaceae) a phylogenetic tree 

estimation and concurrent molecular dating was performed under a Bayesian approach 

using the program BEAST v1.8.0 (Drummond et al. 2012) in the CIPRES computer 

cluster gateway (https://www.phylo.org/).  
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Bayesian phylogenetic analysis uses the Markov Chain Monte Carlo (MCMC) method 

to sample the posterior probability distribution to generate multiple phylogenetic tree 

topologies and divergence times, along with their associated parameter values 

(Drummond et al. 2006). It is called posterior probability because the probability is 

assigned after taking into account the prior evidence given by the data at hand. 

Bayesian inference of phylogenetic trees and divergence times in BEAST requires, 

among other data, a model of sequence evolution, a prior probability on the fossil and 

a prior on the phylogeny (the tree prior). Below I describe briefly some one of the 

most critical elements. 

  

It has been widely recognized that molecular rate variation is largely heterogeneous 

among and within lineages (Welch & Bromham 2005) and that in order to estimate 

absolute species divergence time across the tree this needs to be calibrated with 

external temporal data, usually a fossil with known estimated age. Fossil data can only 

provide reliable minimum age constraints on lineage divergence events (Donoghue & 

Benton 2007) because there is no guarantee that the lineage we are trying to calibrate 

has not been in existence well before the appearance of the fossil (Ho & Phillips 

2009). In accordance with the criterion of the use of safe minimum ages, and because 

the exact age of a fossil within a stratigraphic deposit is uncertain, it is advisable to use 

the upper limit (i.e. the most recent) of the oldest geologic deposit in which the fossil 

has been recovered (Ho 2007, Sauquet 2013). 

 

In the case of Chrysophylloideae, the oldest geological deposit of fossils is pollen of 

Paleocene/early Eocene age (59-47 Ma) from the Maracaibo basin, western 

Venezuela. This pollen fossil was identified as Psilatricolporites maculosus Regali, an 

extinct species associated with Neotropical Chrysophyllum (Sapotaceae) (Rull 2000). 

This fossil represents a minimum age for the presence of Chrysophylloideae in the 

New World.  
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In a Bayesian phylogenetic analysis this fossil is assigned to calibrate a node in the 

phylogenetic tree and is assumed to be distributed in the form of a parametric 

distribution to model calibration uncertainty. Assuming that the ages on the actual 

calibration nodes follow parametric distributions incorporates the intrinsic uncertainty 

of dating a molecular phylogeny (Drummond et al. 2006). This prior information in 

the form of parametric distributions (known as prior probability distribution) can take 

different shapes (e.g. normal, lognormal, exponential, Figure 20) which are chosen 

based on a comprehensive analysis of the fossil record of the clade of interest (Nowak 

et al. 2013). 

 

Figure 20. Some methods for calibrating estimates of substitution rates and 

divergent times: a) point calibration: fixing the node age to a specific value, b) 

normal distribution, c) lognormal distribution with a rigid minimum bound, d) 

exponential distribution with a rigid minimum bound. Adapted from Ho (2007). 
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For instance, exponential priors are useful when our preliminary assessment of the 

calibration node with the available fossil information indicates that the internal nodes 

are more likely to have smaller values than larger ones and there is no expectation for 

what the mode of the distribution might be (Ho & Phillips 2009). In other words, there 

is a long tail in the probability distribution towards higher ages (there is a higher 

probability of a nodal age being equivalent to the oldest fossil and unlikely to be much 

older) and the mode of the exponential distribution is set at the hard minimum age or 

offset value. Consequently, an exponential prior age estimate of 55 Ma (mean = 1.0, 

offset = 55, in BEAST) was assigned to the stem node which included all Neotropical 

Sapotaceae in the dataset. Two non-Neotropical Chrysophylloideae members, the 

Southeast Asian species Xantolis siamensis and the African Omphalocarpum 

strombocarpum, were assigned as outgroups.  

 

The branching pattern in the tree was constrained to follow a Yule process (Yule tree 

prior in BEAST), a simple uniform probability speciation process in which 

symmetrical trees are more likely than asymmetrical trees (Yule 1925, Huelsenbeck & 

Kirkpatrick 1996, Mooers & Heard 1997, Aldous 2001). I chose the General Time 

Reversible (GTR) model with the option “Estimated” base frequencies and site 

heterogeneity model set as “Gamma” with four categories as the model parameters of 

nucleotide substitution for the analysis. Under the GTR model the rate of change of 

each nucleotide state is the same in any direction and the Gamma distribution 

approximates the rate variation across sites (Salemi et al. 2009). 

 

The information necessary for the phylogenetic analysis in BEAST requires a specific 

formatting of the data which is facilitated using the program BEAUti. This program 

saves the data file in XML (Extensible Markup Language) format, a text-based format 

to handle, store, and transport data. Thus, an XML file was prepared in the program 

BEAUti v1.8.0 with chain length set to 600,000,000 generations. The length of the 

chain was determined after previous runs to determine the most appropriate number of 

generations based on parameter convergences.  
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The Bayesian phylogenetic tree search reconstruction and dating was done in two 

independent runs. Results from each simulation were screen-logged every 1,000 

generations, saving the results and estimated trees each 10,000 generations for a total 

120,000 estimated trees (60,000 per run). I used Tracer v1.6 to explore the 

convergence of the estimated parameters. The majority of estimated parameters 

obtained by the combined MCMC runs reached Effective Sample Size (ESS) larger 

than 200 which means that the estimated model parameters converged (Drummond et 

al. 2006). Parameter values with ESS less than 100 means that the MCMC chain has 

not run long enough to get a valid estimate of the parameters because it may contain a 

large number of correlated samples and may not represent well the posterior 

distribution of the estimated parameters (Drummond et al. 2007). The likelihood, 

coefficient of variation and tree likelihood parameters had ESS values in the range of 

184-194.  

 

I used LogCombiner v1.8.0 to combine into one file the log and tree file data 

generated in the two independent Bayesian analyses by BEAST. I then used 

TreeAnotator v1.8.0 to find the best supported tree (the tree with the highest posterior 

probability, known as the Maximum Clade Credibility Tree) from the 120,000 trees 

obtained by BEAST. 12,000 trees were used as burnin (10% of total trees obtained) 

leaving the posterior probability limit to zero in order to annotate all nodes. Node 

heights were set to mean heights (estimated ages).  

 

4.4.5.2. Chrysobalanaceae phylogeny 

 

For Chrysobalanaceae, a preliminary phylogenetic tree was first produced based on 

combining 49 cpDNA genomes developed by using a whole genome “shotgun 

sequencing” methodology described in Malé et al. (2014) (see also Cronn et al. 2008, 

Straub et al. 2012, McPherson et al. 2013). Using this tree, new primers were designed 

and 120 more individuals (including samples from Peru and Guyana) were sequenced 

using standard Sanger sequencing methodology, similar to that described for 
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Sapotaceae above. Using both molecular datasets a new phylogeny was produced by 

RAxML (Randomized Axelerated Maximum Likelihood) methodology, in which 

nodes resolved by the whole cpDNA genomes were used to constrain well supported 

groups in the combined molecular phylogeny. RAxML uses maximum likelihood with 

tree search optimizations to evaluate tree topologies in distributed and parallel 

computer systems, which allows it to explore phylogenies with thousands of species 

(Stamatakis et al. 2005). All the lab work and analysis described above was done at 

the research lab of Dr. Jérôme Chave (Université Paul Sabatier, France). 

 

I edited this resulting phylogeny by pruning all non-Neotropical species (i.e. species 

from Africa, Madagascar, and Asia), species without full taxonomic names, and 

species with no habitat classification. To focus the analysis on the Neotropical region, 

two genera with known Palaeotropical as well as Neotropical distribution, Parinari 

and Chrysobalanus, were also pruned from the original tree. Of the total 167 species, 

62 species were pruned from the tree including the outgroup Euphronia guianensis, 

leaving 105 species for further analysis. This phylogenetic tree contained the 

monophyletic Neotropical clade of Hirtella/Coupia/Licania/Gaulettia which was 

dated using secondary calibration (Bardon et al. 2013) via relaxed penalized likelihood 

(Sanderson 2002). Secondary calibration uses ages dated in a previous study to 

calibrate the node ages and species divergence in another non-calibrated phylogenetic 

tree. Similar to Bayesian phylogenetic dating, penalized likelihood attempts to 

incorporate the intrinsic rate variation of different lineages in a phylogenetic tree (i.e. 

rate variation is minimized in neighbor branches). Instead of using statistical prior 

distributions on which to center the tree nodes and search for posterior probabilities as 

in Bayesian molecular dating, penalized likelihood uses a semi-parametric approach 

within a maximum likelihood framework with a smoothing parameter that penalizes 

rapid changes on the tree (Sanderson 2002).  

 

The smoothing parameter was set to zero, which means that rate variation was allowed 

to vary as much as possible (Paradis et al. 2014). Minimum and maximum age 

constraints were specified on two nodes of the tree using dates reported in a previous 
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study dealing with the whole family (Bardon et al. 2013). A hard minimum age bound 

was set to 54 Mys to represent the minimum age for the presence of Chrysobalanaceae 

in the New World as recovered by Bayesian phylogenetic dating (Bardon et al. 2013). 

A leaf fossil assigned to Hirtella found in Minas Gerais, Brazil, and dated from the 

Eocene (54-34 Mys), provided the minimum age (34 Mys) for the Hirtella clade. 

Therefore, the node containing L. alba and L. michauxii was set to bounds within 40-

54 Mys, and the node containing Hirtella davisii and Licania licaniiflora was set to be 

constrained within 34-54 Mys. Bardon et al. (in prep.) have recently reviewed the 

fossil evidence for Chrysobalanaceae and concluded that most of the fossil data used 

in Bardon et al. (2013) is not reliable. This decision pushes the age constrain for the 

presence of the Neotropical clade in the New World to ca. 40 Mya. Because of the 

inherent uncertainty in fossil calibrations I kept the calibration process as in Bardon et 

al. (2013), which do not affect the ancestral reconstruction of edaphic preferences as 

would tree topology or the distribution of characters among the tips (Mooers & 

Schluter 1999). The Chrysobalanaceae chronogram was created using functions of the 

R statistical packages phytools (Revell 2015) and ape (Paradis et al. 2014). 

 

4.3.6. Defining and classifying habitat specialists 

 

Habitat selection can promote habitat specialization (Holt 1987) which in turn can be 

associated with tolerances to certain edaphic characteristics. In addition, there is a 

strong relationship between physiological tolerance and plant species distribution 

(Ackerly 2003). Therefore, the study of the evolution of physiological tolerance can 

provide important insights to understand the processes in species evolution. I classified 

habitat specialization of each species in the Sapotaceae and Chrysobalanaceae 

phylogenies according to their degree of tolerance or intolerance to white-sand soils in 

the Neotropics. Tolerance to nutrient-poor soils for each species in the phylogenies 

was based on the evidence of species occurrences on different habitat types as 

described in taxonomic monographs (Prance 1972, Pennington 1990) and habitat 

descriptions from herbarium labels available at the Missouri Botanical Garden (MBG) 
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online database Tropicos (www.tropicos.org) supplemented with field experience for 

species occurring in the western Amazon region and Guyana.  

 

An estimated 3,500 herbarium label specimens were checked in Tropicos to classify 

species in both families. In an attempt to be as comprehensive as possible and to 

reduce the possibility of white-sand false positives (i.e. species classified as a white-

sand specialist when in reality it has a broader soil preference) the classification 

looked at the entire species distribution and associated habitat preferences across as 

many sources as possible. For related reasons, species with only one field collection 

record, or records ambiguously describing the habitat types where they were collected, 

were pruned from the phylogenetic trees before conducting the analysis. 

 

I defined white-sand tolerant species as species reaching white-sand habitats across the 

Amazon, and Guiana regions but not restricted to them. White-sand intolerant species 

are species never found or reported from white-sand habitats. The white-sand tolerant 

species category was sub-divided according to their degree of habitat specialization to 

white-sand soils as: (1) white-sand specialist (WS-S): species restricted to white-sand 

soils, igapo/sandy beaches, coastal sand dunes or sandstone areas; (2) white-sand 

poor-soil specialist (WS-PSS): species occurring on white-sand soils but also on other 

less nutrient-poor soils like old clay terraces or sandy-clay soils; and  (3) white-sand 

generalist (WS-G): species occurring in a variety of soils and habitat types including 

white-sand, clay, sandy-clay, flooded varzea forests, riparian forests, montane forests, 

roads and open areas. The definitions of the different sub-sets of white-sand tolerant 

species are in accord with the ones used in the phytogeographic analysis of Chapter 3. 

Two additional categories were included to accommodate the distribution of species 

never found on white-sands, namely: (4) non-white-sand-poor-soil specialist (NWS-

PSS) and (5) non-white-sand generalist (NWS-G). These two latter categories 

constitute white-sand intolerant species as defined above.  
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4.3.7. Defining phylogenetic niche conservatism 

 

Most species and clades only occupy certain environmental conditions which are 

determined by their intrinsic biological traits (e.g. physiological tolerances) and biotic 

interactions. The concept of the “niche” has been widely reviewed in the ecological 

literature (e.g. Whittaker et al. 1973, Chase & Leibold 2003, Peterson 2011). Here it is 

defined as a set of biotic or abiotic conditions that allow the persistence of species, 

which is Hutchinson’s “fundamental niche” (Holt & Gaines 1992, Pulliam 2000, 

Colwell & Rangel 2009). Because physiological tolerances are heritable traits shared 

by common ancestry they can provide important insights from analysis of patterns of 

trait evolution and speciation using phylogenetic trees. Harvey & Purvis (1991) coined 

the term “phylogenetic niche conservatism” to refer to one of the three components 

affecting the similarity of related species in a phylogeny; the two others being 

phylogenetic time lags and adaptive responses. If phylogenetic niche conservatism for 

tolerance to certain edaphic factors is important in the evolution of a clade, its 

ancestral condition will determine the range of habitats it can occupy. On the other 

hand, niche evolution (i.e. the expansion of niche breath or specialization to new 

habitats) is what allows invasion of new habitats and climatic regimes (Wiens & 

Donoghue 2004). Because species within a clade may have different distributional 

ranges, comparing the dynamics between niche conservatism and niche evolution 

within a clade may give us important insights into their biogeographic and 

diversification patterns (Wiens & Donoghue 2004). For the purposes of this study I 

define edaphic niche conservatism as the tendency of closely related species to retain 

their ancestral edaphic preferences over evolutionary time. This tendency can be 

studied by evaluating evolutionary outcomes reflected in well resolved phylogenetic 

trees. In this sense phylogenetic niche conservatism for edaphic conditions is studied 

here as an evolutionary pattern (Losos 2008, Crisp & Cook 2012, cf. Pyron et al. 

2014) which can be the product of several evolutionary processes over time (Wiens 

2004, Revell et al. 2008, Crisp & Cook 2012). 
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4.3.8. Studying the evolution of nutrient-poor soil tolerance 

 

I studied the evolution of nutrient-poor soil tolerance by mapping the distribution of 

white-sand tolerant and intolerant species on the time-calibrated phylogenetic trees. In 

order to quantify the level of convergent evolution for edaphic niche conservatism 

across the trees I measured phylogenetic signal for nutrient-poor soil tolerance.  

 

4.3.8.1. Measuring phylogenetic signal 

 

One way to approach the study of evolutionary lability of a trait is by measuring how 

much of the traits shared by species in the phylogeny are explained by their 

evolutionary relatedness. Species traits, like tolerance to nutrient-poor soils or 

waterlogged soils, are not statistically independent because shared evolutionary history 

leads to shared phenotypic similarity (Felsenstein 1981, Harvey & Pagel 1991). In 

comparative studies of trait evolution among species we need to take into account this 

intrinsic property of molecular phylogenies in order to make sound evolutionary 

inferences. 

 

Measurement of trait similarity patterns due to phylogenetic relatedness across a tree 

(e.g., correlated evolution due to edaphic niche conservatism) can be accomplished by 

estimating the “phylogenetic signal” for a trait in the dataset (Revell et al. 2008). 

Phylogenetic signal, also called phylogenetic constraint or phylogenetic inertia (but 

see Blomberg & Garland 2002 for reasons to avoid the use of these terms), is the 

tendency for related species to resemble each other more than they resemble species 

drawn at random from a phylogenetic tree (Freckleton et al. 2002, Losos 2008). There 

are several methods used to measure phylogenetic signal depending on the trait data at 

hand being continuous or discrete. 
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To measure phylogenetic signal in both datasets I used the phylogenetic D statistic 

developed by Fritz & Purvis (2010) for discrete binary characters as implanted in the 

caper R package (Orme et al. 2013). The D statistic tests for a significant association 

between the observed sum of sister clade differences across the entire phylogeny 

compared to (1) sum of sister-clade difference in phylogenies where the traits have 

been shuffled randomly a large number of times (e.g. 1,000 times) and (2) sum of 

sister-clade differences expected from a random phylogenetic pattern that follows a 

Brownian motion model of evolution (Fritz & Purvis 2010). This is the appropriate 

null model for testing phylogenetic signal of a character because we are interested in 

the evolution of the character state and the phylogenetic tree is fixed (Maddison & 

Slatkin 1991). 

 

If the D statistic of phylogenetic signal is equal to “1” the trait across the phylogeny 

has a phylogenetically random distribution (lack of phylogenetic signal). If D is equal 

to “0”, the observed traits are clumped across the phylogeny (presence of phylogenetic 

signal) as if it followed a Brownian motion model during its evolution (Fritz & Purvis 

2010). Because of the goal to explore the influence of habitat specialization through 

edaphic niche conservatism, the convergent evolution of tolerance to white-sand 

habitats was examined in two ways in both Sapotaceae and Chrysobalanaceae 

datasets: for white-sand specialists only (WS-S) and for any species inhabiting white-

sands (WS-S+WS-PSS+WS-G). 

 

4.3.9. Studying the evolution of habitat specialization to edaphic niches 

4.3.9.1. Reconstructing edaphic trait evolution 

 

I studied the evolution of habitat specialization by reconstructing the evolution of 

edaphic preferences into the five different edaphic substrates of each species in the 

phylogenies of Neotropical Sapotaceae and Chrysobalanaceae. Before starting the 

analysis, each phylogeny was pruned to be represented with only one accession per 



CHAPTER 4: Evolution of habitat specialization 

 

117 

 

species. This was a necessary step because the assignment to different edaphic types 

was done per species and not per each accession in the phylogeny. A per species 

assignment was better suited to the purpose of studying edaphic niche evolution 

because it helps to include the edaphic preference over the entire species distribution 

in the coding of species habitat preferences as explained above. 

 

From an initial 369 accessions (147 species) used in the phylogenetic reconstruction of 

Sapotaceae, 219 accessions were dropped from the phylogeny in order to have only 

one accession per species, full taxonomic identifications, only Neotropical species, 

and unambiguous habitat classification. The Chrysobalanaceae phylogeny had 

originally 167 accessions (154 species) with mostly one accession per species. As with 

Sapotaceae, 62 accessions, which included undetermined taxa, non-Neotropical 

species, and species with uncertain habitat classification, were pruned from the tree to 

leave only the Neotropical Hirtella/Licania/Couepia/Gaulettia clade. Accordingly, the 

study of tolerance and avoidance to nutrient-poor soils evolution in the Neotropics was 

conducted in 99 Sapotaceae and 105 Chrysobalanaceae species. 

 

I used different levels of tolerance to nutrient-poor soils of each species as a discrete 

trait to differentiate five edaphic conditions which correspond to five states, as 

explained above: (1) white-sand specialist (WS-S), white-sand poor-soil specialist 

(WS-PSS), (3) white-sand generalist (WS-G), (4) non-white-sand-poor-soil specialist 

(NWS-PSS), and (5) non-white-sand generalist (NWS-G). 

  

Ancestral character reconstruction (also known as character mapping or character 

optimization) (Omland 1999) is an important tool for understanding the evolution of 

traits in molecular phylogenies. Two general approaches have been developed which 

rely upon parsimony (Swofford & Maddison 1992), Bayesian (Bollback 2006) or 

maximum likelihood criteria (Schluter et al. 1997). Maximum parsimony 

reconstruction (MPR) attempts to reconstruct ancestral histories of character states at 

internal nodes of the tree in a way that minimizes the number of character changes of 
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the observed character states (Paradis et al. 2004). MPR assumes that along any tree 

branch only a single character change has occurred and does not accommodate 

uncertainty in character state estimation. It may also perform poorly when the 

opportunity for character change is high and time elapsed is long (Mooers & Schluter 

1999). It has also been shown that rapid evolution of a trait may mislead parsimony 

character reconstruction (Schultz et al. 1996, Omland 1999, Cunningham 1999). Only 

maximum likelihood reconstructions are presented and discussed in this study. 

 

Pagel (1994) was the first to develop a method for tracing the evolutionary history of a 

discrete character along the branches of a phylogeny using maximum likelihood 

(Felsenstein 2004). For a discrete binary character, there will be two likelihoods of 

fixing a character, one when fixing the state at “1” and another when fixing the 

character state at “0” (Pagel 1997). The probability of moving from one character state 

to another is determined by a transition rate with integer values taken as indices of the 

parameters (Paradis et al. 2004).  

 

Transition rates of characters states can be represented in unordered or ordered 

matrices with the “from” states on the rows, the “to” states in the columns and the 

diagonal containing the negative of the sum of the row rates, which are often simply 

represented by the symbol “˗“ (O’Meara 2012). In a phylogenetic context, maximum 

likelihood estimates of character reconstruction represent the estimation of the 

parameter values (i.e. the transition probability between character states) that makes 

the observed data more likely given a model of evolution (Pagel 1997). Figure 21 

contains the unordered transition rates of the five character states used here 

representing edaphic substrates in the Neotropics. In unordered matrices the order of 

character states in the transition matrix has no effect on how evolution modeling 

proceeds (i.e. a white-sand specialist can evolve to be a non-white-sand generalist in 

one step). 
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In the context of character evolution, model-based reconstruction means 

reconstructing the observed character states in a way that makes it most likely given a 

model of how the evolution of character may have proceeded (Pagel 1999). An 

important difference between parsimony and maximum likelihood reconstruction of 

character states is that maximum likelihood, unlike parsimony, takes into account tree 

branch lengths, thus when some part of the tree has shorter branch lengths it will 

adjust for this and not assume that they will have a similar amount of change as larger 

branch lengths of the tree (Felsenstein 2004).  

 

For three or more character states the number of possible models is very large but 

character evolution can be approximated by assessing three general models: "ER" for 

the equal-rates model (a single parameter for all transitions), "SYM" for the 

symmetrical model (a forward and reverse transition share the same parameter but 

each transition has a different probability), and "ARD" for the all-rates-different model 

(different parameters for forward and reverse for all transitions) (Paradis 2004). This 

character matrix of indices (e.g. white-sand specialist = 1, white-sand poor-soil 

specialist = 2) is used to fit a Continuous Time Markov Chain Finite State Space 

(CTMC-FSS) model with maximum likelihood methods.  
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Figure 21. Unordered transition rate matrices with the five character states 

used in maximum likelihood ancestral character reconstruction. a) ER = equal 

rates, b) SYM = symmetrical rates, c) ARD = all rates different. 1 = WS-S 

(white-sand specialist), 2 = WS-PSS (white-sand poor-soil specialist), 3 = 

NWS-PSS (non-white-sand poor-soil specialist), 4 = NWS-G (non-white-sand 

generalist), 5 = WS-G (white-sand generalist).  

 

 

a)                  To: 

  

 

 

From: 

 1 2 3 4 5 

1 - 1 1 1 1 

2 1 - 1 1 1 

3 1 1 - 1 1 

4 1 1 1 - 1 

5 1 1 1 1 - 

 

 

b)                  To: 

  

 

 

From: 

 1 2 3 4 5 

1 - 1 2 3 4 

2 1 - 5 6 7 

3 2 5 - 8 9 

4 3 6 8 - 10 

5 4 7 9 10 - 

 

c)                  To: 

  

 

 

From: 

 1 2 3 4 5 

1 - 5 9 13 17 

2 1 - 10 14 18 

3 2 6 - 15 19 

4 3 7 11 - 20 

5 4 8 12 16 - 

 

CTMC-FSS is a random simulation process in which the probability to change into the 

next state depends only on the present state—the Markov property (O’Meara 2012). 

The Markov process is used to model state transitions of discrete data, with random 

walks in continuous time as the explicit evolutionary model (Schluter et al. 1997). The 

random nature of the Markov model is known to capture many of the complexities of 

the evolutionary process (Schluter et al. 1997, Pagel 1999, Ronquist 2004). 
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To specialize into white-sand soils (or to be white-sand tolerant) may require certain 

physiological pre-adaptations, trade-offs, or genetic backgrounds (Fine et al. 2006; 

Lamarre et al. 2012) that may prove fruitful to be incorporated into models of edaphic 

character evolution. For example, we can assume that evolving from a white-sand 

generalist (or from a white-sand poor-soil specialist) into a white-sand specialist is 

easier (i.e. require less steps) than evolving from a non-white-sand generalist. On the 

other hand, in order for a non-white-sand generalist to become a white-sand specialist 

it has to pass alternate states before it can evolve into a white-sand specialist.  

 

I investigated these possibilities by using an ordered transition matrix where 

consecutive states are assumed to be neighbouring states (i.e. one state has to pass a 

neighbouring intermediate state in order to change to a subsequent state) and certain 

transitions between states were not allowed (Figure 2). Given that both Neotropical 

Sapotaceae and Chrysobalanaceae arrived into the New World at least 54 Mya 

(Bartish et al. 2011; Bardon et al. 2013), when edaphic conditions were dominated by 

nutrient-poor Guiana-Shield sediments (Chapter 2), the assumption of gradual changes 

among nutrient-poor conditions and weights against certain transitions may hold for 

studying their habitat evolution.  

 

In the context of this study this means that transitions from certain edaphic states were 

allowed to occur in the simulations whereas others were prohibited (i.e. transitions 

from white-sand specialist state to any non-white-sand state were not allowed; 

transitions from white-sand poor-soil specialist to non-white-sand generalist were not 

allowed; any states were allowed to transition to a white-sand generalist state). This 

rationale for coding and weighting of character states has a biological and 

biogeographical basis and was represented by the order of the character code in the 

transition matrices (Figure 22). 

 

In order to evaluate which model of character evolution (each with its own transition 

matrix) in each family was more appropriate for evolutionary inference based on 
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current species edaphic preference, they were model-fitted using maximum likelihood. 

This analysis was done for both the ordered and unordered matrices. Fitted models are 

usually evaluated by comparing metrics that balance the likelihood of models with the 

number of estimated parameters, including: lnL (log-likelihood), AIC (Akaike 

Information Criterion), and AICc (Akaike Information Criterion corrected for small 

sample sizes).  

 

Figure 22. Ordered transition rate matrices with the five character states used 

in maximum likelihood ancestral character reconstruction. a) ER = equal rates, 

b) SYM = symmetrical rates, c) ARD = all rates different. 1 = WS-S (white-

sand specialist), 2 = WS-PSS (white-sand poor-soil specialist), 3 = NWS-PSS 

(non-white-sand poor-soil specialist), 4 = NWS-G (non-white-sand generalist), 

5 = WS-G (white-sand generalist). “0” scores in the transition rates matrices 

mean corresponding transitions are prohibited. 

 
 

a)                  To: 

  

 

 

From: 

 1 2 3 4 5 

1 - 1 0 0 1 

2 1 - 1 0 1 

3 0 1 - 1 1 

4 0 0 1 - 1 

5 1 1 1 1 - 

 

 

b)                  To: 

  

 

 

From: 

 1 2 3 4 5 

1 - 1 0 0 4 

2 1 - 2 0 5 

3 0 2 - 3 6 

4 0 0 3 - 7 

5 4 5 6 7 - 

 

c)                  To: 

  

 

 

From: 

 1 2 3 4 5 

1 - 3 0 0 11 

2 1 - 6 0 12 

3 0 4 - 9 13 

4 0 0 7 - 14 

5 2 5 8 10 - 
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In general, adding complexity to a model will increase its likelihood (lnL), but 

choosing the model with the highest lnL does not guarantee it is the best model for the 

data. On the other hand, AIC favors less complex models to avoid over-fitting; models 

with lower AIC (or AICc) values are preferred because they are a good approximation 

of the information in the data (Anderson 2007). Since the number of samples (species 

number) in both studied families was much larger (i.e. each family had around 100 

species) than parameters in all evaluated models, AIC scores converged to AICc 

scores. Thus only AIC scores were used here for model evaluation. 

 

I plotted the resulting marginal likelihoods of character change obtained from the five 

states at each node in the phylogeny using pie diagrams. The analyses of character 

state estimations with maximum likelihood, and the fitting of the six models (ER, 

SYM, ARD, unordered ER, unordered SYM, unordered ARD) to the transition 

probabilities of the different species groups was executed in the R package geiger 

(Harmon et al. 2014). Ancestral state reconstructions at nodes onto the phylogenies 

under the different models were implemented in the R package APE (Paradis et al. 

2004). 

 

4.4. Results 

4.4.1. Phylogenetic patterns 

 

Tolerance to white-sand soils has evolved repeatedly in the evolutionary history of 

Neotropical Sapotaceae and Chrysobalanaceae as shown by the scatter of white-sand 

species across the phylogenetic trees. Even though both Sapotaceae and 

Chrysobalanaceae can be classified as nutrient-poor tolerant families due to their 

number of white-sand tolerant species, there were a larger number of white-sand 

specialists in Chrysobalanaceae compared to Sapotaceae (Figure 23, and 24).  
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Figure 23. Distribution of nutrient-poor tolerant taxa (red branches) in the 

phylogeny of Neotropical Sapotaceae. Asterisks indicate white-sand specialist 

species (WS-S). Clades in red, with their subtending stem branch, are those 

that are comprised entirely of species that are tolerant of white sand soils. 

Scale in millions of years. 
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Figure 24. Distribution of nutrient-poor tolerant taxa (red branches) in the 

phylogeny of Neotropical Chrysobalanaceae. Asterisks indicate white-sand 

specialist species (WS-S). Clades in red, with their subtending stem branch, 

are those that are comprised entirely of species that are tolerant of white sand 

soils. Scale in millions of years. 
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A total of 80 white-sand tolerant species was found in Sapotaceae (out of 99 species 

analyzed) with only three found to be white-sand specialists compared to 59 white-

sand tolerant species in Chrysobalanaceae (out of 105 species analyzed) with 14 

species classified as white-sand specialists.  No white-sand specialists in both families 

were found to be early branching divergent taxa in the phylogenetic trees (Figure 23, 

and 24). 

 

4.4.2. Phylogenetic signal 

 

I found that tolerance to nutrient-poor soils was not correlated with phylogenetic 

history in both Sapotaceae and Chrysobalanaceae (Figure 5, and 6). Nutrient-poor soil 

tolerance was found to be a highly labile trait in both families as measured by the D 

statistic, which tended strongly towards a lack of phylogenetic signal (Sapotaceae 

estimated D = 0.88, p(Brownian) = 0, p(random) = 0.15; Chrysobalanaceae estimated 

D = 0.91, p(Brownian) = 0, p(random) = 0.22).  

 

There was a lack of phylogenetic signal for white-sand specialism in Sapotaceae (D 

estimated = 0.40; p(Brownian) = 0.43; p(random) = 0.11. There was a significant 

strength for randomness in the evolution of phylogenetic signal for white-sand 

specialization in Chrysobalanaceae (D estimated = 0.55; p(Brownian) =0.04, 

p(random) = 0.004). The scatter in the phylogenetic distribution of white-sand 

specialists due to low number of species in this category made the frequency of the 

density plots in both expected models (Brownian and random) less clear cut and noisy 

than the frequency distribution for nutrient-poor soil tolerance in both families (Figure 

25a, and 25c).  

 

The lack of phylogenetic signal was found at the three sub-sets of the datasets 

representing distinct levels of habitat specialization in each family: with only white-

sand specialists, with all white-sand tolerant species, or white-sand intolerant species 
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(only the first two are shown in Figure 25). Given the differences in tolerant and 

specialist species in both Sapotaceae and Chrysobalanaceae, the finding of lack of 

phylogenetic signal in both families further strengthens the result that niche 

conservatism to edaphic conditions in Neotropical trees is a highly labile trait. 

 

Figure 25. Density plots of the distribution of the simulations of the nutrient-

poor soil tolerance trait under Brownian and random models for both 

Sapotaceae (a-b) and Chrysobalanaceae (c-d). a) Sapotaceae WS-S, b) 

Sapotaceae WS-tolerant, c) Chrysobalanaceae WS-S, d) Chrysobalanaceae 

WS-tolerant. D(est.) = D estimated, p(Brow.) = probability of estimated D  

resulting from a Brownian process (presence of phylogenetic signal), p(rand.) 

= probability of estimated D resulting from random phylogenetic structure (lack 

of phylogenetic signal).  

 

a) 

 

b) 
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c) 

 

d) 

 

 

4.4.3. Ancestral edaphic reconstruction 

 

Model selection of edaphic trait evolution under different evolutionary models favored 

the ordered rate matrices, with a symmetrical rate model (ordered SYM) favored in 

Sapotaceae and an all-rates-different model (ordered ARD) favored in 

Chrysobalanaceae as measured by the AIC scores (Table 8). Accordingly, the 

character state reconstruction of these two models are presented and discussed below. 
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Table 8. AIC scores in ascending order of the evaluated ancestral habitat 

reconstruction models. ER = equal rates, SYM = symmetrical, ARD = all rates 

different, ord. = ordered model, unord. = unordered model. Lowest AIC scores 

suggest the preferred model according to the data. 

 

Sapotaceae 

 

Chrysobalanaceae 

 

Model AIC Model AIC 

ord. SYM 415.5439 ord. ARD 339.7559 

unord. SYM 421.5439 unord. ER 339.9851 

ord. ARD 424.2028 ord. ER 340.2486 

unord. ARD 436.1816 ord. SYM 341.1941 

ord. ER 452.2659 unord. SYM 344.6436 

ER 475.9077 unord. ARD 348.5013 

 

4.4.3.1. Sapotaceae ancestral edaphic character reconstruction 

 

Maximum likelihood reconstruction of white-sand species tolerance across the 

phylogeny of Sapotaceae using an ordered symmetric model (ord. SYM) shows that a 

non-white-sand condition was the most likely ancestral state in the family (Figure 8). 

This non-white-sand condition appears to have shifted towards nutrient-poor soil 

tolerance around 32 Mya and with the first appearance of white-sand poor-soil 

specialists 28-25 Mya (Figure 26). 
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The ancestral reconstruction for two Sapotaceae white-sand specialists 

(Chrysophyllum eximium, Elaeoluma schomburgkiana) shows that their most likely 

recent ancestor was a white-sand specialist whereas the ancestral state for Pradosia 

schomburgkiana was recovered to be white-sand tolerant, with no clear certainty 

whether its most recent ancestor was a white-sand generalist or a white-sand poor-soil 

specialist.  As with other species in the family, deeper in the tree all three white-sand 

specialists likely evolved from non-white-sand ancestors (Figure 26). In Sapotaceae, 

the ancestral reconstruction of white-sand specialism shows that it probably evolved in 

the last 18-8 Mys whereas the non-white-sand condition is much older, going back to 

the arrival of the family into the New World (ca. 55 Mya) (Figure 26).  
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Figure 26. Maximum likelihood ancestral reconstruction of edaphic 

preferences in Neotropical Sapotaceae  (ordered SYM model). Areas of pies 

indicate the relative support for different ancestors. Color of pies and taxa 

coded as in Figure 3. Scale in millions of years. 
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4.4.3.2. Chrysobalanaceae ancestral edaphic character reconstruction 

 

In contrast to Sapotaceae, the overall pattern of ancestral edaphic reconstruction in 

Chrysobalanaceae shows that white-sand tolerance has been the norm across the 

evolution in the family (Figure 27). Although it is not clear which edaphic group 

within the white-sand tolerance is more likely, the summation of marginal likelihoods 

in the supported ARD model shows that white-sand tolerant states (WS-S + WS-PSS + 

WS-G) are always higher compared to non-white-sand tolerant states (NWS-PSS + 

NWS + G) across all nodes in the phylogeny (Figure 27).  

 

The edaphic ancestral state reconstruction in Chrysobalanaceae indicates that there is a 

high likelihood that white-sand specialists and non-white-sand species in this family 

have evolved from any of the white-sand tolerant groups (WS-S, WS-PSS, or WS-G). 

The origin of white-sand specialist species in Neotropical Chrysobalanaceae seems to 

be a recent event compared to Sapotaceae, occurring mostly toward the tips of the 

phylogeny, within the last 11 Mys or younger (ca. 2 Mya) in the case of a subset of the 

Hirtella clade (Figure 27). 
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Figure 27. Maximum likelihood ancestral reconstruction of edaphic 

preferences in Neotropical Chrysobalanaceae (ordered ARD model). Areas of 

pies indicate the relative support for different ancestors. Color of pies and taxa 

coded as in Figure 3. Scale in millions of years. 
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4.5. Discussion 

4.5.1. Phylogenetic signal for nutrient-poor soil tolerance and niche 

evolution 

 

In studying the evolution of habitat specialization in closely related species of 

Neotropical Sapotaceae and Chrysobalanaceae I measured the strength of the 

phylogenetic signal for nutrient-poor soil tolerance. This tolerance was based on the 

species occurrence on white-sand or non-white-sand soils. Phylogenetic signal for this 

complex trait was generally weak or absent, which suggest that species evolution in 

these families has not been constrained by their habitat preferences or edaphic 

tolerances. My results are therefore not in accord with the idea that species niche 

conservatism for ancestral ecological conditions has been fundamental in the 

accumulation of species diversity in Neotropical lowland plant lineages (cf. Ackerly 

2003, Wiens & Donoghue 2004).  

 

The reconstruction of the ancestral edaphic preferences within these families gives us 

a better indication of how it may have influenced its present diversity and 

biogeographic patterns. In order for a species to diverge from its ancestral edaphic 

preference (i.e. niche evolution) edaphic niche lability may be a requirement. 

However, most of these speciation events promoted by habitat switching in a clade 

may occur when clades invade geographies that possess habitats not too extreme from 

their ancestral habitat preferences. This is because when gradual spatial gradients in 

space and time in the environment deviate only slightly from the ancestral niches of 

species, it allows species populations to evolve (and avoid extinction) compared to 

sharp habitats transitions (Holt & Gaines 1992). My results of the evolution of 

ancestral edaphic preferences (Table 1, Figures 8, and 9) in both families support this 

theoretical expectation and suggest that whilst there has been a lot of habitat 

switching, this tend to be amongst similar edaphic conditions, towards poor-nutrient 

edaphic preferences for Chrysobalanaceae, and towards non-poor-nutrient edaphic 

preferences for Sapotaceae. 
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4.5.2. The origin and evolution of white-sand specialists and white-sand 

tolerant lineages 

 

The phylogenetic pattern for nutrient-poor tolerance is widespread in both studied 

families (Figure 23 and 24). In this context, Arenosol and Podzol soils represent only 

4.7% (34.1 million of hectares) of the Amazon and Guiana Shield regions, whereas 

less nutrient-poor soils like Ferralsol accounts for about 235 million hectares (32% of 

the Amazon and Guiana Shield combined), and distributed mostly in the eastern 

Amazon (Chapter 2). In essence, Arenosol-, Podzol-, and Ferralsol-dominated habitats 

may constitute the fundamental edaphic niche for Guiana-centered taxa, with the two 

first soil classes representing the most extreme edaphic classes. Previous floristic and 

phytogeographic analyses have shown that both Sapotaceae and Chrysobalanaceae 

have their abundance, endemism and most of their diversity biased towards the Guiana 

Shield region (Prance & White 1988, Terborgh & Andresen 1998, ter Steege et al. 

2000, Hopkins 2007). This would suggest that the large extension of oligotrophic 

habitats in this region may have favored the evolution of these families within the 

range of their fundamental edaphic niche.  

 

On the other hand Chrysobalanaceae had more white-sand specialists than Sapotaceae. 

The fact that some lineages have more white-sand specialists suggest that within 

Neotropical lineages, some clades are more likely to evolve specialist species than 

others (Futuyma & Moreno 1988). Alternatively, extinction rates may be higher in 

white-sand specialists or that once this complex trait is lost in the evolution of a 

lineage it is difficult to be regained. Both Sapotaceae and Chrysobalanaceae 

chronograms show that white-sand specialists in these Neotropical clades evolved 

relatively recently (18-8 Mya and 8-2 Ma respectively) (Figures 26 and 27). This is a 

period within the range of the rising of Amazon and the extinction of Pebas mega-lake 

(Chapter 2). Studies in Amazonian Protieae trees (Burseraceae) have also found that 

white-sand specialism is a derived trait in Protium, with white-sand specialists nested 

within non-white-sand clades (Fine et al. 2005). White-sand specialism on the other 

hand may have evolved early or later in the history of Neotropical plant groups, and 
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only a more inclusive ancestral edaphic reconstruction—sampling very widely 

taxonomically—may help us clarify further deep in its evolutionary history. 

 

The Neotropical region has been enriched by plant lineages that penetrated it at 

different times in history and arriving from various regions using different 

biogeographical routes. These historical contingencies may have affected species 

adaptive diversification, with certain clades being more successful than others in 

diversifying on different habitat types including oligotrophic habitats. For instance, 

Lauraceae eco-geographical diversification in the Neotropics may provide one 

example of this pattern. This family is a temperate plant group that has at least 11 

species endemic to western Amazonian white-sand forests belonging to six different 

genera (R. García-Villacorta, unpub.). Lauraceae was not part of the Guiana-Shield 

flora stock that reached towards white-sand habitats in the Amazon after they 

developed (Kubitzki 1989). With more than 1,000 extant species, Lauraceae reached 

South America from the North and radiated there both in the lowlands and highlands 

since the early Miocene, 20 Mya (Rohwer & Kubitzki 1993, Chanderbali et al. 2001).   

 

On the other hand it is also possible that specialization to nutrient-poor soils may be an 

evolutionary dead end (Simpson 1943), not spurring the same level of species 

proliferation as other oligotrophic tolerant species that can switch between habitats 

more frequently as conditions change. Potalia (Gentianaceae) and Lissocarpa 

(Ebenaceae) represent two interesting cases of small clades with white-sand specialists 

that diversified preferentially on nutrient-poor substrates. Frasier et al. (2008) studied 

the phylogenetic relationships in Potalia and found that white-sand Amazonian 

lowland Potalia were early branching members in the phylogeny along with western 

Guiana Shield species, whereas non-white-sand species were sister lineages that 

diversified in younger Andean-sourced soils. The minimum age for the presence of 

Potalia in the Neotropics is the middle Eocene (ca. 48-37 Mya) (Frasier et al. 2008) 

well before Lauraceae reached South America; the Potalia clade, however, did not 

reach anything near the level of species diversity as Lauraceae. The small clade in the 

mono-generic sub-family Lissocarpoideae (eight species, Ebenaceae) provides a 
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similar phylogenetic pattern of a clade that occurs preferentially on white-sand 

substrates in the Neotropics that has not diversified at similar pace as its sister clade 

Diospyros. This genus is endemic to South America (Duangjai et al. 2009) and 

speciated mainly on extremely nutrient-poor substrates (i.e. white-sand soils, Andean 

sandstones) with few species occurring on clayey soils (Wallnöfer & Halbritter 2003) 

(Chapter 5). Similar to Potalia, Lissocarpa is an early branching clade within the 

Ebenaceae family that did not reached the level of diversity as its sister pantropical 

clade Diospyros (~500 species) despite being hypothesized to have a Gondwanan 

origin (Raven & Axelrod 1974, Duangjai et al. 2009). The timing and route taken to 

reach South America between these three nutrient-poor tolerant lineages (Lauraceae, 

Potalia, and Lissocarpa) may have impacted their diversification patterns and 

influenced their extant species diversity.  

 

In any case, because of their small size Potalia (nine species total), Lissocarpa (8 

species total) and similar white-sand specialist lineages may not be representative of 

Amazonian species diversification related to habitat specialization to different edaphic 

conditions. They instead may prove useful to understand how certain clades diversify 

from an ancestral preference for extreme nutrient-poor soils to less oligotrophic 

habitats. These taxa are also important in terms of local endemism in the areas where 

they occur (e.g. Frasier et al. 2008; Wallnöfer & Halbritter 2003). 

 

In this study white-sand specialists were not clustered, but scattered across the 

phylogenies, which indicates that white-sand specialists evolved multiple times from 

different edaphic ancestors within the two studied families. Also, white-sand tolerance 

was a widespread and evolutionary labile trait in both families. Together, these results 

give support to the hypothesis of ecological speciation by filling different edaphic 

niches (Gentry 1981) which may be facilitated by edaphic niche lability. 

Consequently, there is weak support for the idea that closely related species diversified 

confined to their preferred habitat type (Kubitzki 1989, 1990). The Guiana Shield 

however may have been an important source area for Amazonian plant taxa after the 

extinction of the Pebas mega-lake and the formation of modern Amazonia (Antonelli 
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et al. 2009, Roncal et al. 2013), only that adaptive diversification was largely not 

constrained by their ancestral specific habitat preferences. 

 

In general, I suggest that tolerance to nutrient-poor habitats has evolved repeatedly in 

other Neotropical plants groups that had a genetic background for nutrient-poor 

tolerance. Few early branching, nutrient-poor clades (e.g. Potalia) may have retaining 

this ancestral condition (i.e. may show higher levels of edaphic niche conservatism). 

In the majority of cases, like in Sapotaceae and Chrysobalanaceae, white-sand 

specialists evolved early or at later stages from poor-soil tolerant or relatively 

intolerant Neotropical ancestors. Tolerance to stressed hydro-edaphic conditions may 

be ancestral or derived trait within a bigger clade, like Chrysobalanaceae, which has 

allowed them to occupy and speciate whithin their range of ancestral habitat 

conditions in tropical environments. The latter is shown in some members of the the 

Hirtella clade that includes H. arenosa which represents a transition from a non-white-

specialist (Figure 27).  

 

An analysis at higher phylogenetic levels (e.g. genera) may prove fruitful to assess this 

deeper level effect that edaphic niche conservatism may have in certain clades. I 

would predict that within lowland Neotropical clades tolerance to nutrient-poor soils 

has evolved multiple times (i.e. it is highly labile trait) but it is not randomly 

distributed, with some clades being more prone to evolve white-sand tolerant and 

white-sand specialist taxa while other clades tracking more tightly their ancestral 

edaphic conditions. 

 

4.5.3. Phylogenetic signal in complex traits and functional trade-offs 

 

Lack of phylogenetic signal in a trait does not mean that species will not exhibit 

phylogenetic signal for other characters that may be related to the trait. This is 

especially true for a complex trait like tolerance to nutrient-poor habitats in which taxa 
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must have developed (or had in their ancestral genetic background) physical, 

physiological, and chemical adaptations to inhabit these habitats. These adaptations 

may affect each other and include: adaptations to drought (Brunig 1969, Sobrado 

2009), adaptations to growth on nutrient-poor soils (Jordan 1985, Cuevas & Medina 

1988, Medina et al. 1990), adaptation to waterlogged soils (Bongers et al. 1985, 

Coomes & Grubb 1996, Proctor 1999); and adaptation to germinating on extremely 

phyto-toxic and acidic soils (Janzen 1974, Proctor 1999, Luizão et al. 2007). Even 

though these adaptive traits are listed individually above, several studies in controlled 

and natural populations have documented that a few genes can be responsible for 

changes associated with habitat switching and other ecological transitions (Schemske 

& Bradshaw 1999, Bradshaw & Schemske 2003, Levin 2009).  

 

On this line, the acquisition of certain ecological traits may favor ecological transitions 

towards habitat specialization. For instance, the acquisition of ecological traits for 

tolerance to drought or flooding in plants may favor habitat specialization in these 

habitats. Using a combination of field measurements coupled with ancestral state 

reconstructions of species soil transitions in molecular phylogenies, Cacho & Strauss 

(2014) showed that adaptation to open habitats was the evolutionary precursor towards 

specialization to California ultramafic soils (i.e. tolerance to open areas evolved before 

tolerance to soils). Similar results of pre-adaptive traits that enhanced diversification 

are inferred in the evolution of C4 photosynthesis from C3 photosynthesis in flowering 

plants and grasses (Osborne & Freckleton 2009, Christin et al. 2013). In the case of 

the Neotropical taxa studied here, it would be interesting to investigate whether the 

evolution of habitat specialization to certain habitat types was facilitated by first 

acquiring certain traits, especially traits that confer tolerance to drought and flooding. 

It will also be important to test whether habitat shift has preceded the evolution of 

traits that confer tolerance to different habitat types (cf. Huttunen et al. 2012). 

 

Phylogenetic signal may be low when the evolutionary history of a group has filled all 

niches due to the long time since its evolution. Alternatively, a trait may lack 

phylogenetic signal if it has recently evolved as has been suggested for chemical 
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defenses in Inga (Kursar et al. 2009), and habitat preferences in Quercus (Cavender-

Bares et al. 2004). Plant defenses (different chemical combinations as well as physical 

defenses) in several Amazonian genera in which species pairs occupied nutrient-poor 

or richer soils were found to be phylogenetically constrained with white-sand species 

having higher total defense investment compared to clay specialists (Fine et al. 2006). 

However, since the studied genera had a variety of defensive options to choose from, 

protection effect or growth were found to be phylogenetically labile which result in 

species not constrained to a particular soil type (Fine et al. 2006).  

 

A variety of ecological traits may trade-off amongst each other in order to allow 

growth on different habitat types. Tolerance for nutrient poor-soils in particular may 

work in association with traits that confer tolerance to flooding (or anoxic conditions) 

and drought conditions. The presence of a hardpan layer close to the soil surface 

makes some white-sand habitats prone to have waterlogged conditions, whereas the 

existence of well-drained Arenosols makes water-stress a permanent feature in others 

(Chapter 2). Given that most of the South American oligotrophic flora may have 

originated in the Guiana and Brazilian Shield regions, its associated black-water 

seasonally flooded habitats (i.e. igapo forests) may have also been a permanent feature 

in the evolution of this oligotrophic flora (Kubitzki 1989). Other functional and 

ecological traits that may be important in trading-off among each other to occupy and 

speciate on these environments include flowering time (Savolainen et al. 2006), seed 

size (Hammond & Brown 1995, Coomes & Grubb 1996, ter Steege & Hammond 

2001), dispersal syndrome (Macedo & Prance 1978, Arbeláez & Parrado-Rosselli 

2005), plant height (Brunbjerg et al. 2014), root, stem and leaf tissue (Fortunel et al. 

2012), and wood density (Chave et al. 2006, Swenson & Enquist 2007, Wright et al. 

2007, Fortunel et al. 2012, Quesada et al. 2012). 

 

Ecological studies of functional traits have shown that white-sand forest in Amazonia 

are functionally distinct compared to terra firme and flooded forests (e.g. Fortunel et 

al. 2014) and in this study I have shown that white-sand tolerant and white-sand 

specialists of the western Amazon region are phytogeographically closer to seasonally 
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dry forests, savanna habitats, and Guiana Shield ecoregions containing black-water 

ecosystems compared to other regions (Chapter 3). In this regard, the western side of 

the Amazon holds more fertile soils than eastern Amazonia (e.g. Quesada et al. 2010, 

2011) which may have an effect on eco-physiological traits with regional 

consequences for species evolution.  

 

These functional and ecological traits may contain important phylogenetic information 

related to adaptations to different habitat conditions that may be correlated with their 

evolution and diversification. For instance, slow growth in Amazonian and Guiana 

Shield oligotrophic habitats correlates well with high wood density in Amazonian 

trees (Baker et al. 2004, ter Steege et al. 2006, Quesada et al. 2012) and there is an 

association between diversification rates and high generation times in some western 

Amazon tree lineages (Baker et al. 2014). Also, because deep clay soils with higher 

water-holding capacity are common in eastern and southern Amazonia compared to 

western Amazonia, species in these regions are able to extract water during the dry 

season which favors a semi-evergreen or deciduous habit (Lloyd et al. 2009). The 

spatial and temporal distribution of these eco-geographical factors may have had an 

important effect in the evolution of plant habitat specialization and hence in the 

evolution of clades distributed in certain geographic regions and habitat types. 

 

4.5.4. Evolutionary processes and habitat switching 

 

Lack of phylogenetic signal for edaphic preferences detected in both phylogenies 

suggest that this complex trait has been subject to some kind of selection pressure 

(different conditions of stabilizing selection or divergent selection) or lineages 

experiencing environments that increased their rates of niche shifts initially with a 

later slowdown, or with initial high rates of genetic drift; all of which are conducive to 

low phylogenetic signal over time (Revell et al. 2008, Crisp & Cook 2012). For these 

reasons it would be difficult to infer evolutionary processes responsible for the 

phylogenetic lability to nutrient-poor conditions by only measuring phylogenetic 
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signal. However, the reconstruction of the phylogenetic history of the five edaphic 

conditions studied under different evolutionary models provides additional insights, 

along with phylogenetic signal, to suggest that niche lability may have facilitated 

niche evolution via habitat switching and other associated ecological shifts. The 

pervasive presence of niche lability for edaphic preferences may have promoted 

species accumulation via ecological speciation in these clades.  

 

From an evolutionary standpoint it is appropriate to ask why edaphic niche lability 

would be so pervasive in the studied Neotropical plants. Due to the vastness of the 

Amazonian biome with no apparent physical barrier to split species populations to 

promote allopatric speciation, the lability for edaphic preference may help to take 

advantage of ecological opportunities in terms of habitat occupation and speciation 

when opportunities arise. Phylogenetic niche lability of Neotropical plant species may 

be a reflection of the geological dynamism that has prevailed since the Miocene in the 

Neotropical region, when new, cation-rich sediments and the expansion of riparian and 

seasonally flooded habitats created new ecological opportunities for species adaptive 

diversification. In the studied families, tolerance to nutrient-poor edaphic conditions is 

found in a large number of their component species (Figure 23, and 24). Unlike 

phylogenetic structuring usually found when studying diversification patterns due to 

climatic niche conservatism induced by physiographic heterogeneity (Pennington et al. 

2010, Särkinen et al. 2012) or biome shifting (Crisp et al. 2009, De-Nova et al. 2012, 

Dick & Toby Pennington 2012, Donoghue & Edwards 2014) the lack of phylogenetic 

niche conservatism and lack of geographical structuring for edaphic preferences in the 

studied phylogenies points to a role of habitat switching in the accumulation of species 

within the Neotropics. Changes in habitat heterogeneity in space and time in the 

Neotropical lowlands may have provided opportunities to different plant lineages for 

habitat switching facilitated by niche lability for edaphic preferences. 

 

Ecological speciation occurs when ecological differences between populations arise 

due to biotic or abiotic environmental factors conducive to independent genetic pools 

in the presence of gene flow (Schluter 2000, Nosil 2012). The mapped habitat 
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preferences and switching patterns in the studied phylogenies provide important 

insights into the evolution of Neotropical plants. In order for a lineage to enter or 

invade new adaptive zones or niches, the ability to switch habitats without strong 

physiological constraints, at least within a certain range of their fundamental niche, 

may be a requirement for subsequent lineage diversification. Invasion of new edaphic 

conditions may result in the formation of new adaptive genotypes, perhaps via 

hybridization (Rieseberg et al. 2003, Nosil 2008, Papadopulos et al. 2013, Misiewicz 

& Fine 2014). Lineage diversification in Neotropical lowland regions then would not 

result from the classical adaptive radiation documented for oceanic islands (e.g. 

Baldwin & Sanderson 1998) or high elevation systems (Hughes & Eastwood 2006, 

Madriñán et al. 2013) in which closely related species diversify by occupying different 

niches within a certain shared temporal frame, but instead be the product of species 

accumulation by continuous habitat shift over evolutionary time. 

 

4.5.5. Ancestral edaphic state reconstructions models 

 

There will always be uncertainty in the estimation of character evolution in 

phylogenetic trees. Given a phylogenetic tree and a transition matrix with character 

states different than zero, any transition state can be possible only that some are more 

likely (Harvey & Pagel 1991). According to AIC scores the preferred models of 

edaphic trait evolution with the analyzed phylogenetic datasets were transitions 

matrices with ordered SYM and ARD models in both Sapotaceae and 

Chrysobalanaceae respectively. If character states are coded consistently and correctly, 

selected models should reflect how trait evolution was likely to have proceeded in the 

studied families. The selection of ordered models as best models supports the notion 

that incorporation of informed biological and biogeographic assumptions provides 

important information in the analysis of trait evolution. The selection of the ARD 

ordered model for Chrysobalanaceae implies that within this family certain directions 

of change are more frequent compared to the selected SYM ordered model in 

Sapotaceae. The Gaulettia and Hirtella clade that includes H. arenosa are examples of 
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this, with both groups exhibiting a tendency to have white-sand specialists derived 

from an ancestor that had a trait for white-sand tolerance (Figure 27).  

 

Overall, maximum likelihood reconstruction shows that ancestral conditions for both 

Sapotaceae and Chrysobalanaceae are somewhat different in terms of nutrient-poor 

tolerance, with white-sand tolerance recovered as most likely for the ancestor in 

Chrysobalanaceae, and non-white-sand tolerance as the most likely ancestor in 

Sapotaceae. Both Chrysobalanaceae and Sapotaceae are eastern Amazon (Guiana-

Shield/Brazilian-Shield) families in terms of diversity and abundance (Prance & White 

1988, Terborgh & Andresen 1998, ter Steege et al. 2000, Hopkins 2007). However, 

the Andean flank of the Andes rivals the Guiana Shield region in Sapotaceae diversity 

(J. Richardson, pers. comm.) which is in accord with the finding of ancestral condition 

for non-white-sand soil in this family. Both Sapotaceae and Chrysobalanaceae do not 

have western Amazon white-sand specialists, while white-sand specialists distributed 

in the eastern and central Amazon. 

  

4.5.6. The interplay between niche conservatism and niche evolution 

 

The phylogenetic signal and character evolution patterns found in this study support 

the idea that the niche lability for edaphic preferences allows the studied families to 

speciate in different habitat types. In terms of niche conservatism both families can 

exploit a range of nutrient-poor soils in the Amazon-Guiana region (coastal sandy 

areas, igapo forests, savanna on sandy soils, serranias, Andean sandstones, or old-clay 

terrace soils) whereas white-sand soils in the western Amazon may have different ages 

of origin, from recent to very old (Chapter 2). As these substrates developed in the 

lowlands they may have been colonized by nutrient-poor tolerant families from 

different biogeographic origins. Similar conditions for high levels of ecological 

transitions may have occurred with western Amazon plant families like 

Moraceae/Myristicaceae, or some genera like Inga that diversified mostly on more 

fertile soils (Richardson et al. 2001). If the idea that edaphic niche lability facilitates 
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niche evolution and related ecological transitions, it would be expected that western 

Amazon-centred taxa will show similar levels of lack of phylogenetic signal for 

habitat preferences. On this point, the existence of nutrient-poor tolerant species (but 

not white-sand specialists) in western Amazon taxa (e.g. Inga, Guarea, Virola) has 

been documented by floristic studies on white-sand forests (e.g. García-Villacorta et 

al. 2003, Fine et al. 2010, Stropp et al. 2011). Yet, even in these taxa with preference 

for cation rich soils, like Inga, adaptive responses to edaphic gradients may have been 

important in the evolution of their extant diversity patterns (Palow et al. 2012). 

Neotropical palm lineages with different clades restricted to the Andes and lowland 

habitats provides another example of the interplay of niche conservatism and evolution 

(Eiserhardt et al. 2013). In this case both edaphic and climatic niche conservatism 

appears to have been important in the evolution in this family.  

 

The failure to invade new habitats or climatic niches that are adjacent to the 

geographic range of a species or clade can be taken as evidence for niche 

conservatism; at a broad global scale one expression of this is the tropical 

conservatism hypothesis (Wiens & Donoghue 2004). Licania michauxii is sister to 

South American Chrysobalanaceae and represent a good example to illustrate the 

influence niche conservatism can exert in the evolution and diversification of 

Chrysobalanaceae. This species is a nutrient-poor specialist and it is endemic to the 

Sand Hills of Florida, coastal Mississippi and Georgia (USA) (Prance 1970, GBIF 

2013). In relation to the Neotropical clade and other members in the family (i.e. non-

Neotropical clades), the node leading to L. michauxii is closer to the root of the tree 

and hence can be interpreted as an early branching taxon (Crisp & Cook 2005). 

 

Given that both L. michauxii and the Neotropical clade studied here 

(Licania/Couepia/Hirtella/Gaullettia clade) have the same age (i.e. they are sister 

clades) the failure for L. michauxii to diversify in the North American temperate 

environments suggest that climatic niche conservatism for tropical climates and 

edaphic niche conservatism for nutrient-poor soils may have played an important role 

in its evolution and biogeographic history. On the contrary, the invasion of tropical 
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South America by its sister clade ca. 49 Mya (Bardon et al. 2013) coupled with trait 

lability for habitat/edaphic niche conservatism may have provided ample ecological 

opportunities to evolve in different habitat niches and to reach its outstanding species 

diversity: 80% of the whole family or about 531 species (Bardon et al. 2013). Whereas 

the interplay of niche conservatism and niche evolution may have influenced the 

biogeographic history and species generation within particular clades, several 

biogeographic patterns suggest that edaphic niche evolution has been more important 

in the accumulation of species diversity in Neotropical lowland forests compared to 

edaphic niche conservatism. First, Arenosol, Podzol and similar sandy/rocky soil 

conditions exist in other parts of North America (Schwendiman 1977, Anderson et al. 

2007, Chesworth 2008), but L. michauxii has not extended its current distribution 

more than 33° latitude north (GBIF 2013). Second, as showed by several 

biogeographic and ecological studies, some plants groups, like Chrysobalanacae and to 

some extent Sapotaceae, are more diverse in the Guiana Shield region (Gentry 1982, 

Prance & White 1988, Terborgh & Andresen 1998, ter Steege et al. 2000, Hopkins 

2007), which has been shown to be towards the nutrient-poor spectrum of the 

Amazonian edaphic gradient (ter Steege et al. 2000, Hammond 2005, Quesada et al. 

2011; Chapter 2). It thus seems clear that niche conservatism for tropical climates has 

impeded species divergence of Chrysobalanaceae in temperate and cold climates, 

whereas edaphic niche evolution through habitat switching may have facilitated their 

diversification in the Neotropical region. 

 

Furthermore, as discussed above, conservatism for white-sand soils—which it would 

be expected to impose stronger selection pressures to taxa compared to most benign 

habitats—has not generated large diversity in clades (e.g. in Ebenaceae, 

Gentianaceae). Together, these patterns suggest that edaphic niche evolution has been 

more important than climatic niche conservatism for Neotropical lowland taxa. 

Edaphic niche lability may have facilitated habitat switching (i.e. edaphic niche 

evolution), invasion of different habitat types—mostly within a clade’s ancestral 

fundamental edaphic niche—and subsequent niche divergence and speciation. This 

series of evolutionary transitions may have developed the outstanding plant diversity 

of the Neotropical lowland region. 
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4.5.7. Habitat switching, plant-animal interactions, and ecological 

speciation 

 

A discussion of the evolution of the Neotropical lowland flora would be incomplete 

without considering the influence that its rich fauna may have had on the different 

diversification paths of plant lineages. The evolutionary flexibility to adapt to 

particular hydro-edaphic conditions in the terra firme (from relatively nutrient-rich 

clay to nutrient-poor sand/sandstone), flooded (igapo and varzea forests) and swamp 

habitats of the Neotropics may facilitate speciation in correlation with other ecological 

traits. Habitat switching may indeed precede other ecological switches like pollinator 

switching or disparity in flowering times, both of which promote genetic isolation 

between populations (Levin 2004, 2009). It has been shown that flowering disparity 

indeed facilitates habitat tolerance to new conditions (Rice 1987, Brady et al. 2005, 

Wright et al. 2006, Sambatti & Rice 2007, Levin 2009) which in turn may promote 

assortative mating within habitats as a by-product and hence ecological speciation in 

the presence of gene flow (Paterniani 1969, Rice & Salt 1988, 1990, Dieckmann & 

Doebeli 1999).  

 

On the other hand, it has been repeatedly shown that (animal) behavioral traits are 

more labile compared to morphological or physiological traits (Gittleman et al. 1996, 

Blomberg & Garland 2002). Because a substantial number of rainforest plants rely on 

animals for seed dispersal (Howe & Smallwood 1982, Fleming et al. 1987), plant 

lability for edaphic preference over evolutionary time may have also been influenced 

by their seed dispersers in their quest to exploit new habitat types or while responding 

to changing environmental conditions. On this line, different animal frugivorous guilds 

evolved at different times in the Neotropics (Fleming & John Kress 2011, Correa et al. 

2015). For example, fish frugivore families in the Neotropics arose ca.70 Mya whereas 

frugivorous families in birds, bats and primates originated much later, between 36-10 

Mya (Fleming & John Kress 2011, Correa et al. 2015, Bond et al. 2015). A wide 

variety of dispersal agents move the seeds of both Sapotaceae and Chrysobalanaceae 

including fish, water current, primates, bats, birds, and rodents (Prance & White 1988, 
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Pennington 1990). Plant-animal evolutionary associations may have certainly 

influenced the evolution and diversification of plant lineages in association with 

differential seed dispersal, pollinator shifts and other ecological transitions across 

habitat types. 

 

All in all, the existence of different edaphic conditions and the spatio-temporal 

variation in habitat heterogeneity that the Neotropics has passed through (Chapter 2) 

may have facilitated ecological speciation by jointly amplifying the effect of (i) 

herbivory pressure in the allocation of differential growth and defense resources (Fine 

et al. 2004, 2005, 2006, Lamarre et al. 2012), (ii) contrasting flowering-time 

phenologies (Savolainen et al. 2006, Hall & Willis 2006, Levin 2009), (iii) pollinator 

shifting (van der Niet et al. 2006, Whittall & Hodges 2007, Kay & Sargent 2009, 

Johnson 2010, van der Niet & Johnson 2012), and (iv) differential seed dispersal along 

topographic and hydro-edaphic gradients (Gomes de Freitas et al. 2012, Barbosa et al. 

2013, Britton et al. 2014).  

 

In closing, it is only fair to mention that by using a phylogenetic pattern approach to 

study the evolution of ancestral habitat preferences and plant diversity in the 

Neotropical lowlands, this study has not addressed the specific processes that operate 

at population levels that translate in species evolution. However, analyzing the 

evolution of ecological traits using molecular phylogenies is useful if we are 

attempting to gain insights into the build-up of species diversity (Pagel 1997, Mooers 

& Heard 1997) by means of integrating certain aspects of ecology, evolution, and 

biogeography (Ricklefs & Schluter 1993, Losos 1994, Moritz et al. 2000, Silvertown 

& Antonovics 2001, Wiens & Donoghue 2004, Ricklefs & Jenkins 2011).  

 

Additional studies may certainly provide further insights of the factors responsible for 

species divergences in Neotropical habitats, especially by addressing the specific 

processes at the population levels (e.g. Da Silva & Patton 1998, Dick et al. 2003, 

Capurucho et al. 2013, Fine et al. 2013, Misiewicz & Fine 2014) and with field 
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experiments (e.g. ter Steege 1994, Coomes & Grubb 1998, Parolin 2002, Fine et al. 

2004, Baraloto et al. 2007, Lamarre et al. 2012, Stropp et al. 2014). Likewise, 

exploring the evolution or conservatism of other ecological traits, especially the ones 

that confer tolerance to drought, water-logging, and flooding conditions, may give us a 

deeper understanding of the order in the evolutionary transitions that gave origin to the 

Neotropical lowland plant diversity. They can also serve as a basis to inform us about 

the ability of different plant groups to adapt to on-going and future environmental 

changes.  

 

Meanwhile, the results of this study support the idea that edaphic niche lability has 

facilitated niche evolution by allowing habitat switching over evolutionary time due 

probably to ecological opportunities arising from spatio-temporal changes in habitat 

heterogeneity over time, playing thus a fundamental role in species formation in the 

Neotropics. 

 

4.6. Conclusions 

 

Habitat specialization through continuous habitat switching has occurred multiple 

times in the evolution of Neotropical plant lineages. Edaphic niche conservatism, as 

measured by phylogenetic signal, was found to be weak or absent. In general, edaphic 

switching among closely related species appears to be pervasive. White-sand tolerant 

species were not biased to any particular clade within Sapotaceae and 

Chrysobalanaceae; instead they were distributed randomly across the phylogenies. It 

thus appears that a large number of species in these two species-rich Neotropical 

families have the capacity to tolerate nutrient-poor water-stressed habitats. 

Chrysobalanaceae showed a weak signal for convergent evolution of tolerance to 

extreme nutrient-poor soils (white-sand specialism) and white-sand specialists were 

found scattered and usually nested within white-sand tolerant taxa. Chrysobalanaceae 

had more white-sand specialists than Sapotaceae but overall tolerance to nutrient-poor 

soils has not resulted in a particular species radiation towards white-sand specialists or 
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any other edaphic condition. Yet, phylogenetic patterns in some genera indicate that 

edaphic niche conservatism may be stronger in some Neotropical clades (e.g. 

Lissocarpa) but they cannot explain alone the overall species diversity in the 

Neotropical lowlands.  

 

Although the interplay between tropical niche conservatism (Wiens & Donoghue 

2004) and edaphic niche conservatism (Kubitzki 1990) may have influenced the 

biogeography and speciation of some lowland Neotropical clades, edaphic niche 

evolution may have been more important overall. The restricted distribution of Licania 

michauxii (the sole species sister to the Neotropical Chrysobalanaceae clade) confided 

to the sandy soils of Florida, and its lack of expansion and diversification further north 

since splitting from its sister Neotropical clade (ca. 49 Mya), implies niche 

conservatism for both (sub)tropical climates and edaphic conditions. Contrary to this 

phylogenetic pattern its Neotropical sister clade invaded and diversified on different 

edaphic conditions, mostly within its ancestral fundamental edaphic niche, to achieve 

almost 80% of the overall family diversity. These biogeogeographic and phylogenetic 

patterns strongly suggest that edaphic niche evolution, and possibly subsequent 

species divergence and speciation, may have been facilitated by edaphic niche lability 

fostering habitat switching. Habitat switching may thus have been a common 

ecological transition taking advantage of ecological opportunities in heterogeneous 

environments created ultimately by geological changes in the Neotropical landscape.  

 

The ancestral edaphic state of Sapotaceae is more likely to have lacked the trait of 

nutrient-poor tolerance, whereas the ancestral state in Chrysobalanaceae is more likely 

to have possessed a trait for white-sand tolerance. The five studied edaphic 

conditions—which cover most of the habitat types from terra firme to flooded forests 

in the Neotropics—appear to evolve frequently over evolutionary time. White-sand 

specialists are not early branching members in the studied Neotropical families as 

proposed by Frasier et al. (2008) and they can arise early on or at later stages in the 

history of Neotropical plant clades. The results of this study support the hypothesis of 

habitat specialization by adaptation to different edaphic niches proposed by Gentry 
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(1986) and found a weak support that edaphic niche conservatism produced the 

diversity of species in Amazonia as proposed by Kubitzki (1990). Habitat 

specialization through continuous niche switching in space and time, favored by 

edaphic niche lability, may have been a major determinant in the evolution of tree 

diversity in Neotropical lowland forests. 
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Chapter 5: General conclusions and future prospects 

5.1. Overview 

 

This dissertation aimed to understand the origin and evolution of western Amazonian 

white-sand forest communities and investigate the evolution of habitat specialization 

to different edaphic conditions as a driver in the accumulation of plant diversity in 

the Neotropical lowlands. In addressing these goals, I used two different but 

complementary approaches. First, an analysis of the floristic composition and 

phytogeographical affinities of western Amazonian white-sand forests helped to put 

into perspective these forests in relation to various floras of the Amazon and the 

Guiana Shield region. Second, I used molecular phylogenies of two very diverse 

Neotropical plant families—Sapotaceae and Chrysobalanaceae—to investigate the 

historical construction of these forests in association to habitat specialization. This 

was done by analysing the phylogenetic patterns of habitat preferences among 

species—including white-sand specialists—as well as reconstructing the likely 

ancestral edaphic conditions in both families. In order to have a background on the 

edaphic and habitat conditions against which to interpret these ecological and 

evolutionary patterns, I reviewed the geological and soil science literature on 

Amazonian white-sand soils. This review put into context the different origins of 

these soils, the likely processes involved in their origin and the range of ages of these 

soils across the basin. In this final chapter I present in a summarized way the main 

findings of this dissertation and elaborate on several ideas that are intended as future 

research questions which may help us to obtain deeper insights into the origin, 

evolution and maintenance of Amazonian plant diversity. 

 

5.2. On the origin of Amazonian white-sand soils 

 

The origin of white-sand soils, one of the most stressful environments in which 

plants can grow in Amazonia, is related to the geo-temporal dynamics of soil 

formation in this region. These soils have more likely developed at different times in 
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the different areas of the Amazon and Guiana Shield regions. The age of white-sand 

soils in the Amazon and Guiana Shield region can be very recent or very old, within 

the range of 3,000 yrs to 23 Mys. This range corresponds to white-sand soils from 

the Guiana Shield region (Manaus, and the Colombian Amazon respectively). This 

broad age range is shown to have ecological and evolutionary implications expressed 

in the plant community composition, phytogeographical relationships and the 

phylogenetic patterns of nutrient-poor edaphic tolerance and white-sand specialists 

(Chapter 3, and 4). The Guiana Shield region contains both the oldest and the 

youngest white-sand soils, whereas in the rest of Amazonia the age of these soils age 

ranged from 600,000 to 5 Mys. The upper age limit in both estimated ages is based 

on the relative position of other sediment layers (relative dating by stratigraphy) and 

hence it is possible that these upper limits are overestimated. For example, 

cosmogenic dating of a white-sand outcrop from the Peruvian Amazon puts the age 

range of these soils within 600,000-800,000 yrs (M. Roddaz, pers. comm.), which 

corresponds to the mid-Pleistocene. More geological and pedological studies with 

absolute dating analysis are needed to shed more light into the temporal origin of the 

variety of soils, and hence habitat types, in Amazonia. 

 

The processes by which these soils developed in the Amazon and the Guiana Shield 

region can be classified into four mechanisms: (1) the product of deep in situ 

weathering of quartzitic sandstones (Kubitzki 1989; Hammond 2005); (2) deposition 

by eolian (wind) transport (Horbe et al. 2004); (3) as fluvial deposits after paleo-

channel abandonment by fault reactivation (Klinge 1965; Hoorn 1994; Räsänen et al. 

1998; Roddaz, Babby, et al. 2005; Rossetti et al. 2012); and (4) the final product of 

on-going Ferralsol/Acrisol to Podzol transformation (Lucas et al. 1984; Dubroeucq 

& Volkoff 1998; Lucas et al. 2012; Mendonça et al. 2014). 

 

The relative importance of these processes across the basin varies according to the 

presence of different geomorphic features and past historical processes affecting the 

landscape. Of the four general processes suggested above for the existence of these 

extremely poor-soils in the Amazon and Guiana regions, fluvial deposition by paleo-
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channel(s) abandonment, possibly—but not necessarily— along structural highs on 

the terrain (the Iquitos Arch) may have been an important source in the western 

Amazon. I suggest an additional role of geological arches in developing contrasting 

topographic patterns of hills and valleys, each with differential erosive rates, which 

in turn create sharp edaphic gradients that affect the distribution of plants and 

animals. These non-white-sand habitats extend the areas on which non-white-sand 

specialists distribute. Erosion of in situ Palaeozoic or pre-Cambrian cratonic outcrops 

(e.g. tepuis, serranias) might be more prevalent in the areas where they are more 

common: the Guiana and Brazilian Shield region (e.g. Serra do Cachimbo) and some 

outliers at the margins of the Amazon like Serra do Moa, Sierra del Divisor, Cerro de 

Contamana, Cordillera del Condor. They might also have sourced extinct paleo-

channels which deposited their sandy sediments later covered or recyclied by 

younger Andean soils.  

 

Transformation of Ferralsol/Acrisol soils to Podzols (Podzolisation) may have also 

been an important process for the origin of white sands, especially in the eastern and 

central Amazon and the Guiana Shield where relatively older sandy-clay soils are 

common compared to western Amazonia. In general, eolian activity may have been 

of minor importance for white-sand soil formation in the Amazon but with some 

importance in coastal areas of the Guiana and Brazilian Shields, nearby sandstone 

tepuis, and at the margin of northeast Amazonia. In these marginal regions seasonal 

climatic regimes and paleo-winds that were stable over millennia may have provided 

optimal conditions for the formation of paleodunes now fixed by savanna vegetation 

(Teew & Rhodes 2004). The existence of white-sand soils in the Neotropics may 

have influenced the diversification of clades with higher tolerance to nutrient-poor 

soils that arrived to the Neotropical region at different geological times during the 

formation of the Amazon biome as may be exemplified by genera like Potalia 

(Gentianaceae), Caraipa (Clusiaceae), Lissocarpa (Ebenaceae), Jacqueshuberia 

(Leguminosae) (Barneby 1990, León 2006, Frasier et al. 2008), among others; all of 

which have western Amazon white-sand endemics.  
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5.3. Phytogeographical patterns of western Amazon white-sand 

forests 

 

To study the phytogeographical patterns of white-sand forests of the western 

Amazon, 27 up-to-date vascular plant lists for each political province in the Amazon 

and Guiana Shield regions were compiled, as well as four western Amazon white-

sand forests from Colombia, Peru, and Brazil. A combined approach of distributional 

analysis, hierarchical cluster analysis with support evaluation by bootstrap, and Non-

metric Multidimensional Scaling (NMDS) ordination were performed on a 

taxonomically standardized dataset. Of a total of 1,180 vascular plant species from 

western Amazonian white-sand forests, the majority (77%) are found to occur on 

non-white-sand substrates with only 23% showing habitat specialization to white-

sand soils. Of the total white-sand specialists, 87% are present in the Guiana-Shield 

region, whereas 13% are endemic to the western Amazon region.  

 

A preliminary list of 166 vascular plant species (83 of which are trees) endemic to 

the northern Peruvian Amazonia (Pitman et al. 2013) shows that white-sand habitats 

there account for a substantial number of these species with ca. 24% (39 species) 

occurring on white-sand habitats. Thus, compared to other regions in which white-

sand forests are absent, like the Madre de Dios region, south of the Peruvian 

Amazon, and in which the levels of endemism, at least for trees, is very low (Pitman 

et al. 2002), the existence of white-sand forests in any geographical area of 

Amazonia may increase local, between habitat, and regional diversity (cf. Tuomisto 

et al. 1995; Vásquez-Martinez & Phillips 2000; Vormisto et al. 2000).  

 

Of the total white-sand specialists, 56% are found in the Caquetá moist forests, 55% 

in the Guayanan Highlands moist forests, and 53% in the Negro-Branco moist 

forests, which suggest that western Amazon white-sand forests have strong 

phytogeographic links with the western fringe of the Guiana-Shield lowland floras. 

Further supporting this result, cluster analysis and NMDS ordination concurred that 

the white-sand forests of the western Amazon are floristically more similar to floras 
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of the geographic region to which they belong. In general, the composition of white-

sand forests of the western Amazon is more similar to floras of the western side of 

the Guiana Shield than to the rest of floras in the study region. Regional dispersal 

processes may be one of the fundamental processes in the origin of Amazonian 

white-sand forests. 

 

5.4. The evolution of habitat specialization in the Neotropics 

 

Edaphic niche conservatism can be defined as the tendency of lineages to keep track 

of their ancestral edaphic preferences over evolutionary time. The evolution of 

ancestral edaphic preferences along a nutrient and water-conditioned gradient can be 

examined by studying the evolution of tolerance to these conditions under a 

comparative phylogenetic framework. Given that white-sand soils impose nutrient 

and water-related stress conditions on the plants inhabiting them it would be 

expected that these plants should respond with physical, chemical, physiological 

adaptations and trade-offs as has been documented (Fine et al. 2004; Fine et al. 

2006; Lamarre et al. 2012). It has been suggested that white-sand soils in the 

Amazon may represent ancestral soil types that were in the past larger in extension, 

later fragmented when new Andean-derived substrates developed in the Miocene. 

The phylogenetically basal position of early branching Potalia (Gentianaceae) 

species from Amazonian white-sands along with Guiana Shield white-sand species 

gave support this hypothesis (Frasier et al. 2008). However, given its small size 

(eight species) it is hard to pinpoint whether Potalia represents a general pattern 

found in many other Neotropical plant lineages.  

 

In this dissertation I have shown that in the western Amazon a large proportion of 

plant species occurring on these habitats also occur on other habitat types—from 

clay-rich terra firme forests to seasonally flooded forest to montane forests—

whereas white-sand specialists can be distributed locally (local endemics) or 

regionally (shared with other white-sand patches). This would suggest that tolerance 
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to nutrient-poor water-stressed soils may be a trait shared by many species of the 

Amazonian flora. On the other hand, if tracking ancestral edaphic preferences were 

important in the diversification of a clade (Kubitzki 1989; 1990) this should be 

reflected in the phylogenetic distribution of white-sand specialist species and in the 

ancestral reconstructions of their edaphic preferences. If closely related species 

occupy different habitat types this would suggest evolution through ecological 

switching related to habitat heterogeneity and environmental gradients (Gentry 

1981). I used a phylogenetic comparative approach to test these hypotheses by 

examining phylogenetic patterns of habitat preferences, measuring phylogenetic 

signal and reconstructing ancestral edaphic conditions in two species-rich 

Neotropical families: Sapotaceae and Chrysobalanaceae.  

 

I found that habitat preference was a highly labile trait, suggesting that habitat 

switching has played a major role in the evolutionary history of Neotropical tree 

lineages. White-sand tolerant species were not biased to any particular clade within 

the groups of Sapotaceae and Chrysobalanaceae; instead they were distributed 

randomly across the phylogenies. The same pattern of scatter was found in white-

sand specialists, which were usually nested within white-sand tolerant taxa. 

Chrysobalanaceae showed a weak signal for convergent evolution of tolerance to 

extreme nutrient-poor soils (white-sand specialism). White-sand specialists are not 

early branching members in the studied Neotropical families as proposed by Frasier 

et al. (2008). The ancestral edaphic state of Sapotaceae is more likely to lack the trait 

of nutrient-poor tolerance, whereas the ancestral state in Chrysobalanaceae is more 

likely to have possessed a trait for white-sand tolerance.  

 

The results of this study support the hypothesis of habitat specialization by 

adaptation to different edaphic niches proposed by Gentry (1986) and found weak 

support that edaphic niche conservatism produced the diversity of plant species in 

Amazonia as proposed by Kubitzki (1990), even in extremely nutrient-poor 

environments like white-sand forests. The existence of contrasting edaphic 

conditions in Amazonia (i.e. habitat heterogeneity in time and space) may facilitate 
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ecological speciation by jointly amplifying the effect of (i) herbivory pressure in the 

allocation of differential growth and defence resources (Fine et al. 2004; Fine et al. 

2005; Fine et al. 2006; Lamarre et al. 2012), (ii) contrasting flowering-time 

phenologies (Savolainen et al. 2006; Hall & Willis 2006; Levin 2009), pollinator 

shift (van der Niet et al. 2006; Whittall & Hodges 2007; Kay & Sargent 2009; 

Johnson 2010; van der Niet, T., & Johnson 2012) , and (iii) differential seed dispersal 

along topographic and edaphic gradients (Gomes de Freitas et al. 2012, Barbosa et 

al. 2013, Britton et al. 2014). Habitat specialization through continuous niche 

switching may have been a major determinant in the evolution of tree diversity in 

Neotropical lowland forests. 

 

5.5. Future prospects 

5.5.1. Mapping white-sand and other habitat types in the Neotropics 

 

Our current understanding of habitat diversity in Amazonia has increased 

considerably in the last few years but it is still a work in progress. In order to test 

evolutionary questions about transitions between habitat types it is imperative to 

generate better vegetation and habitat maps that make sense to the plants and animals 

tropical biologists study in this region (Hughes et al. 2013). Local and regional maps 

of Amazonian white-sand habitats exist but have not been properly integrated (but 

see Adeney 2009 for a first approximation). Current vegetation maps still do not 

incorporate into a single map the distribution of white-sand habitats in Amazonia and 

this has consequences for the advance of basic research and applied conservation. 

There are several approaches that can be used to refine our current understanding of 

the distribution of these and other habitat types in the Neotropics, which include the 

use of freely available satellite imagery, environmental layers and canopy reflectance 

analysis to distinguish different vegetation types (Tuomisto et al. 1994, Franklin 

1995, Roberts et al. 1998, Salovaara et al. 2005).  
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In the particular case of white-sand habitats, another approach would be to use the 

distribution of white-sand specialists as a proxy of this habitat type along with other 

environmental layers (e.g. elevation, geology, soil type) to approximate the 

distribution of white-sand habitats (cf. Rotenberry et al. 2006, Särkinen et al. 2011). 

Subsequent ground-truthing work and/or comparison with independently derived 

maps can then improve our knowledge of their spatial distribution in Amazonia that 

can be used to assess for the first time their conservation status. A preliminary 

glimpse of the likely distribution of these habitats within the current soil map of 

Amazonia, as suggested by white-sand specialist species, indicates that they are more 

common and patchy outside the Guiana Shield region, nested within other soil types, 

than is indicated on current soil maps (Figure 28). 

 

Figure 28. Distribution of western Amazonia white-sand specialist species on 

a soil map of the Amazon and Guiana regions (map adapted from Quesada 

et al. 2012). 
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Given that white-sand specialists only occur on edaphic conditions classified as 

Podzol or Arenosol (red and yellow colours in Figure 1 respectively), the distribution 

of these species on other mapped soil types, especially on Leptosols (maroon) and 

Regosols (sky blue), indicates that all these soils have common hydro-edaphic 

characteristics or alternatively that Leptosols and Regosols include unmapped 

Arenosols and Pozdols. In either case the temporal and spatial distribution of these 

habitats on the Neotropical landscape may have influenced the diversity and 

evolution of edaphic tolerant taxa that need to be taken into account. Similar 

evolutionary scenarios may have influenced the plant diversity in other edaphic 

conditions of the terra firme and flooded forests in Amazonia. 

 

5.5.2. Ancestral range reconstruction of habitat specialization in 

Amazonian forests 

 

A fundamental but still largely elusive question in evolutionary biology and 

biogeography is to understand the specific processes involved in the evolution of 

diversity in different biomes of the world. This question is difficult to tackle if only 

because the processes involved in speciation largely surpasses biologists’ lifespans. 

Fortunately, molecular phylogenies give us a window to the evolutionary past, 

which, coupled with model-based comparative approaches, can be a powerful tool to 

infer which specific processes may have played a major role in the accumulation of 

extant diversity. In this study, the phytogeographic and floristic analysis shows that 

western Amazon white-sand forests are more related to floras from the western 

Guiana-Shield region than to other floras elsewhere in Amazonia and also share a 

large proportion of species with extra-Amazonian biogeographic regions like 

Neotropical savannas and seasonally dry forests (Chapter 3). Furthermore, 

biogeographical studies in other families with habitat specialists (e.g. white-sand, 

flooded forests, clayey soils) like Lauraceae suggest that they reached the New 

World from the north and diversified in the lowlands and highlands of the Neotropics 

(Chanderbali et al. 2001) including on white-sand soils (Van Der Werff 1992, 

Rohwer & Kubitzki 1993). Thus, the contribution of other biogeographic regions and 
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the likely routes followed to occupy the different habitat types in the Neotropics is 

still not well understood. To gain further insights into the evolution of habitat 

specialization in the Neotropics it will be useful to develop model-based ancestral 

range reconstructions. The most recent development of these methods assign species 

distributions to regions, and uses their phylogenetic relationships and probabilities of 

dispersal between regions under a maximum likelihood framework to infer the 

origin, direction, and processes thought to be responsible (e.g., various combinations 

of dispersal, extinction, vicariance and founder event-speciation) for extant 

distributional ranges across nodes of a phylogeny (Matzke 2014). A next step of this 

study will be to use the currently available phylogenetic datasets in Sapotaceae, 

Chrysobalanaceae and other taxa and attempt to answer these questions. Ancestral 

range reconstruction of Neotropical habitat specialists and generalists will certainly 

improve our understanding of the evolution and building of the plant biodiversity in 

this region. 

 

5.5.3. Nutrient-poor tolerance in other Neotropical plant lineages 

 

In Chapter 4 I have shown that two Neotropical species rich families, Sapotaceae and 

Chrysobalanaceae, occur specialized to different habitat types and that 

phylogenetically-close related species occupy different edaphic conditions.  When 

measuring the phylogenetic signal for white-sand tolerance in both families this 

tended to be randomly distributed across the phylogenies. Because of the scatter in 

the distribution of white-sand specialists in the phylogenetic trees, the phylogenetic 

signal for this group of species in each family was less clear. In any case the 

acquisition or loss of the nutrient-poor tolerance trait in the evolutionary history of 

these monophyletic clades supports the finding of pervasive habitat switching in 

these families.  

 

Previously, it has been found that certain clades diversified preferentially on nutrient-

poor substrates with only few species occupying other habitat types. This would 

suggest that certain clades may show higher levels of edaphic niche conservatism 
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than others, especially clades with Guiana-Shield-centred distributions (e.g. Rapatea 

in Givnish et al. 2004, Potalia in Frasier et al. 2008). In order to understand better 

the similarities and differences in the evolution of habitat specialization between 

these phylogenetic patterns it would be useful to explore this question in other 

lineages; especially ones with species occurring on different habitat types of the 

western Amazon, Guiana-Shield and other Neotropical regions.  

 

As part of the field work during this dissertation I collected plant material for 

molecular work in carefully selected plant taxa. These taxa share several 

characteristics which make them attractive for addressing these questions which 

include shared species between western Amazon white-sands and Guiana-Shield 

white-sand forests, relatively small numbers of species (making phylogenetics 

feasible), and with species representatives on non-white-sand habitats (Table 9).  

 

Molecular work carried out on some of these taxa (i.e. Macrolobium, Caraipa, 

Haplochlatra) is being undertaken in collaboration with other researchers and 

taxonomists. In the case of Lissocarpa (Ebenaceae), I have started some molecular 

work to attempt to complete the taxon sampling of a previously derived phylogeny. 

Drs. Rose Samuel and Barbara Turner (University of Vienna, Austria) shared some 

previously obtained sequences that were jointly analysed with sequences produced 

by my research. Preliminary phylogenetic results in the genus Lissocarpa 

(Ebenaceae) suggest a geographical structure in the phylogeny in which western 

Amazon white-sand species from Peru (L. kating) is sister to L. stenocarpa from the 

white-sand forests of the Amazonas state in Venezuela.  
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Table 9. Additional taxa for studying the origin of Amazonian white-sand 

forests and the evolution of habitat specialization. Y = Yes; N = No. 

 

Taxon 

Species 

restricted to 

Amazonian 

white-sands 

Species 

restricted to 

the Guiana 

Shield 

region 

Species 

occurring on 

non-white-

sand 

habitats 

Total 

number of 

species 

 

Lissocarpa Y Y Y 8 

Retiniphyllum N Y Y 20 

Dicymbe N Y N 16 

Macrolobium N Y Y 22 

Anaxagorea Y Y Y 25 

Caraipa Y Y Y 28 

Haploclathra Y Y N 6 

Taralea N Y N 9 

 

Most of the species in this genus are distributed on nutrient-poor substrates in the 

Amazon and the Andes region suggesting edaphic niche conservatism in this clade 

(Figure 29). L. benthamii (endemic to the white-sand and igapó forests—seasonally 

flooded black-water forest) of the western Guiana-Shield region—appears early 

branching and sister to a clade comprised by L. stenocarpa (endemic to the 
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sandstone/tepuis of the Venezuelan Amazon) and L. kating (endemic to the white-

sand forest of the Peruvian Amazon). This phylogenetic pattern suggests that 

Peruvian white-sand endemics originated from western Guiana-Shield white-sand 

congeners supporting the finding of Frasier et al. (2008) in relation to the evolution 

of western Amazon white-sand specialists.  

 

Along with the phytogeographical patterns analysed in Chapter 2, this preliminary 

result further strengthened the idea that the western fridge of the Guiana-Shield 

region may have acted as a source area, mirrored in the ecological and evolutionary 

relationships we currently observe in some members of these floras and taxa. 

Lissocarpa ronliesneri and L. tetramera (from Andean sandstone and montane 

forests of Ecuador, and Peru and Boliva respectively) form a clade apart from 

Amazonian lowland species. Further phylogenetic analysis to improve the molecular 

resolution among species, habitat and ancestral range reconstructions, molecular 

dating and inclusion of two missing species (L. uyat, and L. jensonii) can sketch us a 

better picture of the evolution in this white-sand specialist lineage as well as the 

biogeographic history of Amazonian and Andean white-sand vegetation. 
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Figure 29. Preliminary Bayesian phylogeny of Lissocarpa (sub-family 

Lissocarpoideae, Ebenaceae) based on trnK-matK plastid regions.  

 

 

 

5.5.5. Phylogeographic patterns of specialists and generalists white-

sand plant populations 

 

The patchy spatial distribution of Amazonian white-sand forests in a sea of terra 

firme rainforest begs the question about the origin and maintenance of their 

populations over ecological and evolutionary time. Due to the different processes 

that can give rise to white-sands soils it seems clear that white-sand patches across 

the basin have been formed at different geological times. In the northern Peruvian 

Amazon these soils have originated between 5 Mya to ~700,000 yrs ago which is an 



CHAPTER 5: General conclusions 

 

166 

 

order of magnitude younger than the estimates for some white-sand outcrops in the 

Colombian Amazon (Chapter 2). Furthermore, some patches may be closer to 

putative source areas, for example the white-sand forests of Manaus (Brazil) are 

close to the upper Rio Negro white-sands/Guiana Shield, and I found that 

biogeographic regions from the western margin of the Guiana-Shield shared a 

substantial number of species with western Amazon white-sand forests.  This was 

also corroborated when studying the floristic composition of white-sand forests with 

the composition of other regions in Amazonia (Chapter 3). 

 

In the region of Iquitos, in the Peruvian Amazon, there are white-sand patches 

separated by kilometres on both sides of the Amazon River. Whether these patches 

have different origins or have been fragmented by the incision of the modern 

Amazon channel in this area is not known. Are white-sand patches north of the 

Amazon River in this region source for south of the Amazon River white-sand 

populations or vice verse? Over time, however, the effect of history through dispersal 

may homogenize white-sand floras and a study of the genetic structure among these 

populations can shed light into the origin and maintenance of Amazonian white-sand 

plant populations. For these reasons, it would be fruitful to use a set of species, both 

white-sand specialists and habitat generalists, occurring in several patches of the 

Amazon and the Guiana Shield to investigate how gene flow between populations 

has been structured over recent evolutionary time and whether distance to source 

areas is reflected in the phylogeographic structure of populations between patches.  

 

In a related approach, Fine et al. (2013) studied the phylogeography of two species 

of trees in the genus Protium (Burseraceae), a white-sand specialist (P. 

alvarezianum), and a habitat generalist (P. subserratum). The generalist species from 

the terrace and clay populations showed lower haplotype diversity than white-sand 

populations and were probably derived from white-sand populations (Fine et al. 

2013). Similarly, I would expect that populations of white-sand specialists show 

more restricted gene flow due to separation between patches compared to population 

of generalist species that occur on both white-sand and non-white sand habitats. 
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There is congruence in several fields that during the early middle Miocene a gigantic 

fluvio-lacustrine system—the Pebas system—lasted from 17 to 11 Mya and covered 

most of the current western Amazon region (Wesselingh & Salo 2006, Hoorn, 

Roddaz, et al. 2009, Salas-Gismondi et al. 2015, Tejada-Lara et al. 2015). This 

aquatic system left behind marine sediments after the rise of the Andes (cf. Shephard 

et al. 2010) which covered this vast area with younger cation-rich sediments. The 

existence of this extensive aquatic environment in the proto-Amazon basin may have 

prevented the occupation of the region with floristic terrestrial elements and perhaps 

acting as an effective dispersal barrier (Wesselingh & Salo 2006). Antonelli et al. 

(2009) studied the biogeographic patterns in several clades of Neotropical Rubiaceae 

and suggested that this Pebas lake-system may have acted as a dispersal barrier 

between the Andes, eastern Amazonia and the Guiana Region.  

 

The larger number of endemics in the Guiana Shield and the eastern Amazon region 

in two of their study taxa (Isertieae and Remijia) as well as the occurrence of 

putatively recently expanded species after the drying of the Pebas lake-system is 

suggested as supporting evidence for its role as a barrier that promoted species 

divergence (Antonelli et al. 2009). Remijia pacimonica Standl. is a poor-soil 

specialist treelet, inhabiting both white-sand substrates as well as old-cation-poor 

clay-terraces in the western Amazon region (García-Villacorta et al. 2011) and 

population genetic studies within this and similar white-sand tolerant taxa could help 

us to test more rigorously this Pebas lake-system barrier hypothesis. 

 

Specimens of selected taxa were collected as described previously for the 

phylogenetic work (Chapter 4), taking special consideration to choose species that 

were widespread in western Amazon white-sand populations but also distributed in 

the Guiana Shield region. I selected four species: two white-sand specialists and two 

white-sand generalists. Table 10 shows the selected species as well as preliminary 

DNA data obtained per locality. The markers chosen to study each species were 

selected on the basis of variability to discern phylogenetic relationships within the 
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selected taxa. This was facilitated by the fact that most of the selected taxa have been 

previously studied in a phylogenetic context which also can help to interpret 

phylogeographic patterns. Sampling and sequencing of more individuals and 

populations, especially from the Guiana-Shield region and eastern and central 

Amazonia (e.g. upper Rio Negro, Colombian Amazon) can help us to fill the gaps to 

understanding the origin and maintenance nutrient-poor tolerant taxa in Amazonia.  

 

Table 10. Selected species characteristics and preliminary lab results for 

studying the phylogeographic patterns and white-sand specialists and 

generalists. 

 

Species Family Habitat 

preference 

Sequenced 

DNA marker 

Nº of 

individual 

DNA 

sequenced 

(Nº 

populations) 

Retiniphyllum 

concolor 

Rubiaceae WS 

specialist 

trnL-trnF; 

rpsF-rpsR2 

5(2) 

Anaxagorea 

manausensis 

Annonaceae WS 

specialist 

trnl-trnF 2(2) 

Chrysophyllum 

manaosense 

Sapotaceae Edaphic 

generalist 

ITS 9(3) 

Micropholis 

guyanensis 

Sapotaceae Edaphic 

generalist 

ITS 7(3) 
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Appendix I 

Table 11. Plant taxonomic sources used to build the Amazon and Guiana 

Shield floristic database and four western Amazonian white-sand forests. 

 

Country/site Taxonomic Source 

caqu.wsf.CO Cortés, R., P. Franco, Rangel-Ch. (1998); Arbeláez, M. V., & 

Duivenvoorden, J. F. (2004).  

guai.wsf.CO Cárdenas, D. (2007)  

lore.wsf.PE García-Villacorta et al. (2003); Fine et al. (2010) 

acre.wsf.BR Silveira 2003; Ferreira, 2009 

Bolivia Tropicos-Bolivia. (2013). Catálogo de las plantas vasculares 

de Bolivia. Available in: http://www.tropicos.org/Project/BC. 

Last access on Jan. 2013. 

Brazil Flora do Brazil (2013). List of Species of the Brazilian Flora. 

Rio de Janeiro Botanical Garden. Available in: 

<http://floradobrasil.jbrj.gov.br/>. Last access on: Jan. 2013.  

Colombia SINCHI (2013). Herbario Amazónico Colombiano (COAH). 

Available in: http://www.sinchi.org.co/coleccionesbiologicas/. 

Last access on Jan. 2013. 

Ecuador Tropicos-Ecuador (2013). Catalogue of the vascular plant of 

Ecuador. Available in: http://www.tropicos.org/Project/CE. 

Last access on Jan. 2013. 

French Guiana Funk et al. (Eds.) 2007. Checklist of the plants of the Guiana 
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Shield (Venezuela: Amazonas, Bolivar, Delta Amacuro; 

Guyana, Surinam, French Guiana). Department of Botany, 

National Museum of Natural History. 

Guyana Funk et al. (Eds.) 2007. Checklist of the plants of the Guiana 

Shield (Venezuela: Amazonas, Bolivar, Delta Amacuro; 

Guyana, Surinam, French Guiana). Department of Botany, 

National Museum of Natural History. 

Peru Tropicos-Peru. (2013) Checklist. Available in: 

http://www.tropicos.org/Project/PEC. Last access on Jan. 

2013. 

Surinam Funk et al. (Eds.) 2007. Checklist of the plants of the Guiana 

Shield (Venezuela: Amazonas, Bolivar, Delta Amacuro; 

Guyana, Surinam, French Guiana). Department of Botany, 

National Museum of Natural History. 

Venezuela Funk et al. (Eds.) 2007. Checklist of the plants of the Guiana 

Shield (Venezuela: Amazonas, Bolivar, Delta Amacuro; 

Guyana, Surinam, French Guiana). Department of Botany, 

National Museum of Natural History. 
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Table 12. Proportion of western Amazon white-sand specialist species 

occurring within ecoregions using the whole white-sand dataset: 

caqu.wsf.CO (Colombia), guai.wsf.CO (Colombia), acre.wsf.BR (Brazil), 

lore.wsf.PE (Peru). 

 

Ecoregion 

No. 

families 

% 

family 

No. 

genera 

% 

genera 

No. 

species 

% 

species 

Caquetá moist 

forests 57 88% 117 73% 191 69% 

Guayanan 

Highlands moist 

forests 47 72% 92 58% 142 51% 

Negro-Branco 

moist forests 48 74% 95 59% 137 49% 

Iquitos varzea 33 51% 74 46% 95 34% 

Tepuis 39 60% 69 43% 93 34% 

Japurá-Solimoes-

Negro moist 

forests 27 42% 47 29% 64 23% 

Guianan moist 

forests 30 46% 49 31% 61 22% 

Napo moist 

forests 24 37% 49 31% 59 21% 
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Uatuma-

Trombetas moist 

forests 27 42% 45 28% 56 20% 

Solimoes-Japurá 

moist forest 26 40% 50 31% 55 20% 

Southwest 

Amazon moist 

forests 24 37% 41 26% 50 18% 

Guyanan savanna 29 45% 42 26% 48 17% 

Llanos 25 38% 36 23% 44 16% 

Purus varzea 17 26% 30 19% 34 12% 

Madeira-Tapajos 

moist forests 19 29% 29 18% 33 12% 

Rio Negro 

campinarana 14 22% 17 11% 23 8% 

Ucayali moist 

forests 12 18% 17 11% 19 7% 

Tocantins/Pindare 

moist forests 12 18% 14 9% 14 5% 

Mato Grosso 

seasonal forests 8 12% 10 6% 12 4% 

Peruvian Yungas 10 15% 11 7% 11 4% 
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Cerrado 7 11% 8 5% 8 3% 

Eastern 

Cordillera real 

montane forests 5 8% 6 4% 7 3% 

Marañón dry 

forests 4 6% 5 3% 5 2% 

Chiquitano dry 

forests 4 6% 4 3% 4 1% 

Venezuelan 

Andes montane 

forests 4 6% 4 3% 4 1% 

Pará mangroves 3 5% 3 2% 3 1% 

Xingu-Tocantins-

Araguaia moist 

forests 3 5% 3 2% 3 1% 

Bahia coastal 

forests 2 3% 2 1% 2 1% 

Catatumbo moist 

forests 2 3% 2 1% 2 1% 

Guianan 

mangroves 2 3% 2 1% 2 1% 

Magdalena 

Valley montane 

forests 2 3% 2 1% 2 1% 
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Maracaibo dry 

forests 2 3% 2 1% 2 1% 

Monte Alegre 

varzea 2 3% 2 1% 2 1% 

Orinoco Delta 

swamp forests 2 3% 2 1% 2 1% 

Atlantic Coast 

restingas 1 2% 1 1% 1 0% 

Beni savanna 1 2% 1 1% 1 0% 

Caatinga 1 2% 1 1% 1 0% 

Campos 

Rupestres 

montane savanna 1 2% 1 1% 1 0% 

Chaco 1 2% 1 1% 1 0% 

Chocó-Darien 

moist forests 1 2% 1 1% 1 0% 

Cordillera La 

Costa montane 

forests 1 2% 1 1% 1 0% 

Cordillera 

Oriental montane 

forests 1 2% 1 1% 1 0% 

Jurua-Purus moist 
1 2% 1 1% 1 0% 



APPENDICES 

 

212 

 

forests 

Maranhao 

Babaþu forests 1 2% 1 1% 1 0% 

Maranhao 

mangroves 1 2% 1 1% 1 0% 

Northwestern 

Andean montane 

forests 1 2% 1 1% 1 0% 

Pantanal 1 2% 1 1% 1 0% 

Pernambuco 

coastal forests 1 2% 1 1% 1 0% 

Pernambuco 

interior forests 1 2% 1 1% 1 0% 

Purus-Madeira 

moist forests 1 2% 1 1% 1 0% 

Tapajos-Xingu 

moist forests 1 2% 1 1% 1 0% 

Total general 65 100% 160 100% 277 100% 
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Table 13. Proportion of western Amazon white-sand specialist species 

occurring within ecoregions using non-Guiana Shield white-sand floras: 

acre.wsf.BR (Brazil), lore.wsf.PE (Peru). 

 

Ecoregion 

No. 

familie

s 

% 

familie

s 

No. 

gener

a 

% 

gener

a 

No. 

specie

s 

% 

specie

s 

Iquitos varzea 30 94% 67 97% 86 97% 

Napo moist forests 24 75% 48 70% 56 63% 

Southwest Amazon 

moist forests 23 72% 38 55% 43 48% 

Negro-Branco moist 

forests 21 66% 36 52% 38 43% 

Guayanan Highlands 

moist forests 17 53% 26 38% 29 33% 

Caquetá moist forests 14 44% 23 33% 27 30% 

Japurá-Solimoes-

Negro moist forests 17 53% 22 32% 25 28% 

Uatuma-Trombetas 

moist forests 16 50% 24 35% 25 28% 

Solimoes-Japurá moist 

forest 16 50% 22 32% 22 25% 

Tepuis 15 47% 20 29% 21 24% 
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Guianan moist forests 10 31% 15 22% 17 19% 

Ucayali moist forests 10 31% 14 20% 15 17% 

Purus varzea 10 31% 14 20% 14 16% 

Madeira-Tapajos moist 

forests 8 25% 11 16% 11 12% 

Guyanan savanna 7 22% 8 12% 8 9% 

Llanos 6 19% 7 10% 7 8% 

Peruvian Yungas 6 19% 7 10% 7 8% 

Rio Negro 

campinarana 4 13% 4 6% 6 7% 

Mato Grosso seasonal 

forests 3 9% 3 4% 4 4% 

Tocantins/Pindare 

moist forests 3 9% 3 4% 3 3% 

Xingu-Tocantins-

Araguaia moist forests 3 9% 3 4% 3 3% 

Cerrado 2 6% 2 3% 2 2% 

Eastern Cordillera real 

montane forests 1 3% 2 3% 2 2% 

Magdalena Valley 

montane forests 2 6% 2 3% 2 2% 
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Marañón dry forests 2 6% 2 3% 2 2% 

Venezuelan Andes 

montane forests 2 6% 2 3% 2 2% 

Atlantic Coast 

restingas 1 3% 1 1% 1 1% 

Bahia coastal forests 1 3% 1 1% 1 1% 

Beni savanna 1 3% 1 1% 1 1% 

Chaco 1 3% 1 1% 1 1% 

Chiquitano dry forests 1 3% 1 1% 1 1% 

Chocó-Darien moist 

forests 1 3% 1 1% 1 1% 

Cordillera Oriental 

montane forests 1 3% 1 1% 1 1% 

Guianan mangroves 1 3% 1 1% 1 1% 

Northwestern Andean 

montane forests 1 3% 1 1% 1 1% 

Orinoco Delta swamp 

forests 1 3% 1 1% 1 1% 

Pantanal 1 3% 1 1% 1 1% 

Pará mangroves 1 3% 1 1% 1 1% 



APPENDICES 

 

216 

 

Pernambuco interior 

forests 1 3% 1 1% 1 1% 

Tapajos-Xingu moist 

forests 1 3% 1 1% 1 1% 

Total general 32 100% 69 100% 89 100% 

 

Figure 30. Multi-scale bootstrap results from recluster with Average linkage 

as the clustering algorithm. All cluster nodes have 100% bootstrap support 

values at all five re-sampling levels. Levels 1 (right) and 5 (left) presented. 
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Appendix 6. Cophenetic correlation results of the five assessed clustering algorithms. 

The highest cophenetic correlation (Neighbour Joining, r = 0.812) is the one that best 

represent the dissimilarity matrix in its resulting dendrogram followed by Avarage 

linkage (r = 0.674). 
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Figure 31. Floristic relationships of 31 Amazon and Guiana Shield sites 

created based on Neighbour Joining using an adjusted-Sørensen index. It 

includes 4 western Amazon white-sand forests: caqu.wsf.CO (Colombia), 

guai.wsf.CO (Colombia), acre.wsf.BR (Brazil), lore.wsf.PE (Peru). 
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Table 14. Standard errors of AU bootstrap p-values. Note observed AU p-

values for the three clusters fall within expected ranges. 

 

cluster AU BP SE.AU SE.BP 

Expected AU p-

value range 

(AU+SE.AU – AU-

SE.AU) 

1 0.708 0.910 0.119 0.010 0.827-0.589 

15 0.906 0.989 0.145 0.005 1.051-0.761 

 

 

Table 15. Misclassified sites according to the Silhouette plot analysis. 

Neighbour value shows in which cluster these sites will be better placed. 

 

 

Site Cluster Neighbour 

 

Silhouette width 

BR.AC 1 2 -0.044 

BR.AM 1 3 -0.105 

PE.LO 1 2 -0.256 
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Figure 32. Standard error of AU bootstrap p-values of each identified cluster 

by pvclust. Clusters 1, and 15 showed relatively higher standard errors that 

were within the expected ranges (Table 14). 
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Figure 33. Sheppard plots of NMDS ordination plot of Amazon-Guianan 

floras including four western Amazonian white-sand forests. Stress = 0.12. 

Iterations = 500. Dimensions = 2. 
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Appendix II 

  

The following datasets are included in the CD-ROM that accompanies this thesis: 

 

AII: 1. Sapotaceae sequence alignment as XML file use as input for BEAST 
analysis. It contains the aligned sequences. File can be opened in any text editor. 

AII: 2. Chrysobalanaceae sequence alignment as Nexus format used in the analysis 
of ancestral trait reconstruction and phylogenetic signal. . It contains the aligned 
sequences File can be opened by any text editor. 

AII: 3. R code written for the phytogeographic and floristic analysis 

AII: 4. R code written for the ancestral state reconstruction in Sapotaceae 

AII: 5. R code written for the ancestral state reconstruction in Chrysobalanaceae 

 

 

 

 

 

 

 

 

 




