52 research outputs found

    Consideraciones en torno a la presencia de la prisión en el teatro de Calderón de la Barca

    Get PDF
    El presente artículo analiza la apariencia de las prisiones en la obra de Calderón cuya descripción parte de una distinción fundamental entre las prisiones reales y las metafóricas. En primer lugar, se ha tenido en cuenta una serie de criterios que está detrás de la elección de una prisión como tal: la urgencia, la localización y la exposición al público. A continuación, se ha establecido una tipología de estos lugares, seguida de su caracterización. El análisis ha permitido concluir que los autores teatrales de este período prestan escasa atención a este tema, puesto que, como género de acción que es, éste no la requiere. El teatro del Barroco se nutre principalmente del enredo. La recurrencia con la que el fenómeno del encierro aparece en la obra calderoniana tiene que ver con la preocupación que muestra este autor por la libertad del hombre.The present article analyses the description of prisons within Calderon’s work, parting from a main distinction between real prisons, where the characters are retained before they are executed, and metaphorical ones, which serve to limit people’s reasoning. Firstly, some elements are identified to explain why some enclosures are chosen to restrain people’s freedom, such as urgency, location and, exposure to public. Then, there has been established a typology of these places, followed by their characterization. It can be concluded that playwrights pay little attention to this subject, which has led me to reflect on the genre itself as it was seen at that time. In an action genre such as this, description lacks importance, since the emphasis is on the farce element in the Baroque theatre. The insistent presence of this phenomenon in this Calderon responds to his worry for man’s freedom

    Effect of Allium Extract Supplementation on Egg Quality, Productivity, and Intestinal Microbiota of Laying Hens

    Get PDF
    Simple Summary: The growing interest in phytogenic products for use in feed, especially in the poultry sector, is mainly due to the improvement in the productivity parameters and gut microbiota modulation properties. For this reason, phytogenic products are becoming excellent candidates as alternatives to the use of antibiotics in animal production to mitigate the negative effects derived from their use. The aim of this study is to explore the ability of allium extract (containing garlic and onion), used as an ingredient in laying hen feed, to improve performance. The promising results obtained in the present study suggest that Allium spp. extracts had the potential to be used in feeding laying hens to improve productivity, without affecting egg quality, and to modulate the gut microbiota. Abstract: The use of allium extract containing propyl propane thiosulfonate (PTSO) as hen feed supplement was evaluated to demonstrate its positive effect on egg production and intestinal microbiota modulation. The study was carried out on 90 laying hens whose feed was supplemented with allium extract for 28 days. Nutritional properties of eggs were not affected, whereas an improvement in productivity was observed based on the increase weight of eggs. In addition, a modulator effect on intestinal microbiota was confirmed by the increase in Lactobacillus spp. and Bifidobacterium spp., as well as by the reduction in Enterobacteriaceae populations. Finally, the preservation of egg composition was checked by monitoring the content of PTSO, using a new analytical method consisting of the use of solid phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Consequently, based on current results, Allium spp. extract rich in organosulfur compounds such as PTSO added to the diet had a beneficial effect on the microbiota and would seem to be a possible alternative to increase productivity, while not affecting the biochemical composition of egg. However, further studies on the effects of allium extract as feed supplement are necessary.DOMCA S.A.University of Granada FQM-302University of Murcia R-1418/201

    Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Sapin, with description of Cylindrodendrum alicantinum sp. nov

    Full text link
    [EN] Thirty-one loquat orchards (Eriobotrya japonica 'Algerie') with plants exhibiting decline symptoms were surveyed between 2004 and 2007 in the province of Alicante, Spain. Twenty-eight representative isolates with Cylindrocarpon-like asexual morphs recovered from affected roots were included in this study, with the objective to characterize them by means of phenotypical characterization, DNA analysis and pathogenicity tests. Dactylonectria alcacerensis, D. torresensis and Ilyonectria robusta were identified based on morphological and cultural characteristics as well as DNA sequence data for part of histone H3, with D. torresensis the most frequent species. All of them are reported for the first time on loquat, and I. robusta is reported for the first time in Spain. In addition, one species is newly described, Cylindrodendrum alicantinum. Pathogenicity tests with representative isolates showed that these species were able to induce typical root rot disease symptoms, affecting plant development or even leading to plant death. This research demonstrates the association of species belonging to the genera Cylindrodendrum, Dactylonectria and Ilyonectria with root rot of loquat and loquat decline in the province of Alicante (eastern Spain). This information should be considered for the improvement of the current management strategies against these soil-borne pathogens when establishing new loquat plantations or introducing new susceptible fruit crops in the region.We acknowledge Dr. L. Lombard and Prof. Dr. P.W. Crous (CBS-KNAW Fungal Biodiversity Centre, The Netherlands) for valuable discussions and data sharing. This work was funded by the Cooperativa Agricola de Callosa d'En Sarria (Alicante, Spain). We would like to thank E. Soler for their technical assistance.Agustí Brisach, C.; Cabral, A.; González Domínguez, E.; Perez Y Sierra, AM.; León Santana, M.; Abad Campos, MP.; García Jiménez, J.... (2016). Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Sapin, with description of Cylindrodendrum alicantinum sp. nov. EUROPEAN JOURNAL OF PLANT PATHOLOGY. 145(1):103-118. doi:10.1007/s10658-015-0820-7S1031181451Agustí-Brisach, C., & Armengol, J. (2013). Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea, 52, 245–261.Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013a). Detection of Ilyonectria spp. in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137, 103–112.Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013b). Detection of black-foot and Petri disease pathogens in natural soils of grapevine nurseries and vineyards using bait plants. Plant and Soil, 364, 5–13.Aiello, D., Guarnaccia, V., Vitale, A., Cirvilleri, G., Granata, G., Epifani, F., Perrone, G., Polizzi, G., Groenewald, J. Z., & Crous, P. W. (2014). Ilyonectria palmarum sp. nov. causing dry basal stem rot of Arecaceae. European Journal of Plant Pathology, 138, 347–359.Booth, C. D. (1966). The genus Cylindrocarpon. Mycological Papers (CMI), 104, 1–56.Brayford, D. (1993). Cylindrocarpon. In L. L. Singleton, J. D. Mihail, & C. M. Rush (Eds.), Methods for research on soilborne phytopathogenic fungi (pp. 103–106). St. Paul: APS Press.Cabral, A., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2012a). Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress, 11, 655–688.Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012b). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116, 62–80.Calabrese, F. (2006). Origen de la especie. In M. Agustí, C. Reig, & P. Undurraga (Eds.), El cultivo del níspero japonés. España: Pontificia Universidad Católica de Valparaíso, Chile and Universidad Politécnica de Valencia.Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y., & Samuels, G. J. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57–78.Crous, P. W., Gams, W., Stalpers, J. A., Robert, V., & Stegehuis, G. (2004a). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology, 50, 19–22.Crous, P. W., Groenewald, J. Z., Risede, J. M., & Hywel-Jones, N. L. (2004b). Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology, 50, 415–429.Crous, P.W., Verkleij, G.J.M., Groenewald, J.Z., Samson, R.A. (Eds.) (2009). Fungal biodiversity. CBS laboratory manual series 1. Centraalbureau voor Schimmelcultures, Utrecht.Dhingra, O. D., & Sinclair, J. B. (1995). Basic plant pathology methods (2nd ed.). Boca Raton: CRC Press.Erper, I., Agustí-Brisach, C., Tunali, B., & Armengol, J. (2013). Characterization of root rot disease of kiwifruit in the Black Sea region of Turkey. European Journal of Plant Pathology, 136, 291–300.Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basiodiomycetes-applications to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.González-Domínguez, E., Pérez-Sierra, A., Álvarez, L. A., Abad-Campos, P., Armengol, J., & García-Jiménez, J. (2008). Ethiology of decline of loquat (Eriobotrya japonica) in eastern Spain. Journal of Plant Pathology, 90(2, supplement), 179.González-Domínguez, E., Pérez-Sierra, A., Álvarez, L. A., León, M., Abad-Campos, P., Armengol, J., & García-Jiménez, J. (2009). Agentes fúngicos presentes en plantaciones de nísperos (Eriobotrya japonica Lindl.) con síntomas de decaimiento en la provincia de Alicante. Boletín Sanidad Vegetal Plagas, 35, 453–467.González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of environmental factors on mycelial growth and conidial germination of Fusicladium eriobotryae, and the infection of loquat leaves. Plant Disease, 97, 1331–1338.González-Domínguez, E., Armengol, J., & Rossi, V. (2014). Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae. Plos One, 9, e107547.Halleen, F., Schroers, H. J., Groenewald, J. Z., & Crous, P. W. (2004). Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black-foot disease of grapevines (Vitis spp). Studies in Mycology, 50, 431–455.Halleen, F., Fourie, P. H., & Crous, P. W. (2006). A review of black-foot disease of grapevine. Phytopathologia Mediterranea, 45, S55–S67.Janick, J. (2011). Predictions for loquat improvement in the next decade. Acta Horticulturae, 887, 25–30.Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.Lin, S. Q. (2007). World loquat production and research with special reference to China. Acta Horticulturae, 750, 37–44.Lombard, L., Van der Merwe, N. A., Groenewald, J. Z., & Crous, P. W. (2014). Lineages in Nectriaceae: Re-evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea, 53, 515–532.Nirenberg, H. (1976). Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, 169, 1–117.O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.Petit, E., & Gubler, W. D. (2005). Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Disease, 89, 1051–1059.Rayner, R. W. (1970). A mycological colour chart. Kew: British Mycological Society and CAB International Mycological Institute.Read, N. D., Lichius, A., Shoji, J. Y., & Goryachev, A. B. (2009). Self-signalling and self-fusion in filamentous fungi. Current Opinion in Microbiology, 12, 608–615.Reig, C., Farina, V., Volpe, G., Mesejo, C., Martínez-Fuentes, A., Barone, F., Calabrese, F., & Agustí, M. (2012). Giberellic acid and flower bud development in loquat (Eriobotrya japonica Lindl.). Scientia Horticulturae, 129, 27–31.Samuels, G. J., & Brayford, D. (1990). Variation in Nectria radicicola and its anamorph, Cylindrocarpon destructans. Mycological Research, 94, 433–442.Sánchez-Hernández, M. E., Ruiz-Dávila, A., Pérez de Algaba, A., Blanco-López, M. A., & Trapero-Casas, A. (1998). Occurrence and etiology of death of young olive tres in southern Spain. European Journal of Plant Pathology, 104, 347–357.Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Disease, 93, 1151–1157.Schroers, H. J., Zerjav, M., Munda, A., Halleen, F., & Crous, P. W. (2008). Cylindrocarpon pauciseptatum sp. nov., with notes on Cylindrocarpon species with wide, predominantly 3-septate macroconidia. Mycological Research, 112, 82–92.Soler, E., Martínez-Calvo, J., Llácer, G., & Badenes, M. L. (2007). Loquat in Spain: production and marketing. Acta Horticulturae, 750, 45–47.Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary 16 genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.Tewoldemedhin, Y. T., Mazzola, M., Mostert, L., & McLeod, A. (2011). Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. European Journal of Plant Pathology, 129, 637–651.Vitale, A., Aiello, D., Guarnaccia, V., Perrone, G., Stea, G., & Polizzi, G. (2012). First report of root rot caused by Ilyonectria (=Neonectria) macrodidyma on avocado (Persea americana) in Italy. Journal of Phytopathology, 160, 156–159.Zhuang, W. Y., Nong, Y., & Luo, J. (2007). New species and new Chinese records of Bionectriaceae and Nectriaceae (Hypocreales, Ascomycetes) from Hubei, China. Fungal Diversity, 24, 347–357

    Combination of Tocilizumab and Steroids to Improve Mortality in Patients with Severe COVID-19 Infection : A Spanish, Multicenter, Cohort Study

    Get PDF
    We aimed to determine the impact of tocilizumab use on severe COVID-19 (coronavirus disease 19) pneumonia mortality. We performed a multicentre retrospective cohort study in 18 tertiary hospitals in Spain from March to April 2020. Consecutive patients admitted with severe COVID-19 treated with tocilizumab were compared to patients not treated with tocilizumab, adjusting by inverse probability of the treatment weights (IPTW). Tocilizumab's effect in patients receiving steroids during the 48 h following inclusion was analysed. During the study period, 506 patients with severe COVID-19 fulfilled the inclusion criteria. Among them, 268 were treated with tocilizumab and 238 patients were not. Median time to tocilizumab treatment from onset of symptoms was 11 days [interquartile range (IQR) 8-14]. Global mortality was 23.7%. Mortality was lower in patients treated with tocilizumab than in controls: 16.8% versus 31.5%, hazard ratio (HR) 0.514 [95% confidence interval (95% CI) 0.355-0.744], p < 0.001; weighted HR 0.741 (95% CI 0.619-0.887), p = 0.001. Tocilizumab treatment reduced mortality by 14.7% relative to no tocilizumab treatment [relative risk reduction (RRR) 46.7%]. We calculated a number necessary to treat of 7. Among patients treated with steroids, mortality was lower in those treated with tocilizumab than in those treated with steroids alone [10.9% versus 40.2%, HR 0.511 (95% CI 0.352-0.741), p = 0.036; weighted HR 0.6 (95% CI 0.449-0.804), p < 0.001] (interaction p = 0.094). These results show that survival of patients with severe COVID-19 is higher in those treated with tocilizumab than in those not treated and that tocilizumab's effect adds to that of steroids administered to non-intubated patients with COVID-19 during the first 48 h of presenting with respiratory failure despite oxygen therapy. Randomised controlled studies are needed to confirm these results. European Union electronic Register of Post-Authorization Studies (EU PAS Register) identifier, EUPAS34415 The online version of this article (10.1007/s40121-020-00373-8) contains supplementary material, which is available to authorized users

    Fungal trunk pathogens associated with table grape decline in Northeastern Brazil

    Get PDF
    [EN] During the last five years a decline of table grape plants has been noticed in nurseries, young plantations and vineyards of the Northeastern region of Brazil, where the management systems for grapevine production are adapted to the specific environmental conditions of a tropical viticulture. Samples of table grape plants showing decline symptoms were obtained from grapevine nurseries, young plantations and vineyards located in the São Francisco, Assú and Siriji Valleys in 2010, and were subjected to fungal isolation. Grapevine trunk pathogens were identified using morphological and molecular methods. Species recovered included Botryosphaeria mamane, Campylocarpon fasciculare, C. pseudofasciculare, Lasiodiplodia crassipora, L. parva, L. pseudotheobromae, L. theobromae, Neofusicoccum parvum, Phaeoacremonium aleophilum, Pm. parasiticum and Phaeomoniella chlamydospora. They are all reported for the first time on grapevine in Brazil, with the exception of L. theobromae. Moreover, Botryosphaeria mamane, Lasiodiplodia parva and L. pseudotheobromae are reported for the first time on grapevine, and C. fasciculare is reported for the first time on the American continent.This research has been performed within the Programme VLC/Campus, Microcluster IViSoCa (Innovation for a Sustainable Viticulture and Quality), and was financially supported by the Project RTA2010- 00009-C03-03 (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Spain), the European Regional Development Fund (ERDF) and by CAPES (Project 203/2009 - International Cooperation CAPES-Brazil/DGU-Spain). We are thankful to CAPES (Brazil) for the research fellowships granted to K. C. Correia and S. J. Michereff.Correia, KC.; Saraiva Camara, MP.; Guimaraes Barbosa, MA.; Sales, RJ.; Agustí Brisach, C.; Gramaje, D.; León Santana, M.... (2013). Fungal trunk pathogens associated with table grape decline in Northeastern Brazil. Phytopathologia Mediterranea. 52(2):380-387. https://doi.org/10.14601/Phytopathol_Mediterr-11377S38038752

    Integrando escalas y métodos LTER para comprender la dinámica global de un espacio protegido de montaña: el Parque Nacional de Ordesa y Monte Perdido

    Get PDF
    Los espacios protegidos, por el hecho de albergar una gran geo-biodiversidad y asegurar una baja intervención humana, constituyen lugares muy adecuados para el seguimiento de organismos y procesos a escala ecológica, así como para la obtención de series temporales largas a escala geológica. En el marco de la red LTER-España, el Parque Nacional de Ordesa y Monte Perdido (PNOMP) y el Instituto Pirenaico de Ecología-CSIC están impulsando estudios para la detección de cambios a distintas escalas mediante variados métodos y aproximaciones. Destacamos aquí los más consolidados, entre los que se encuentran los análisis de registros de sedimentos en lagos, espeleotemas en cuevas, la dinámica de uno de los pocos glaciares activos de la Península ibérica, el análisis físico-químico de aguas corrientes e ibones de alta montaña, el registro del cambio climático actual en árboles longevos, la afección que éste ejerce sobre masas actuales de pinos en el límite superior del bosque y de abetales en zonas húmedas, la matorralización de algunos pastos y los procesos mecanicistas que subyacen, la reorganización de la diversidad florística en pastos tras el abandono paulatino o drástico de la ganadería, la biodiversidad de las comunidades alpinas y la dinámica poblacional de especies amenazadas o indicadoras de hábitats o de motores de cambio global. Los seguimientos ecológicos actuales muestran que tanto el cambio climático como el de usos del suelo están teniendo una considerable trascendencia en la fisionomía y la estructura de algunos de los ambientes más icónicos y frecuentes del parque (deterioro del glaciar, termofilización de la flora en cumbres alpinas, densificación del bosque en su límite superior, pérdida de productividad en algunos pastos supraforestales, etc.). También sugieren una importante variabilidad espacial en los procesos (por ej. en el PNOMP conviven pastos matorralizados y pastos muy estables), y evidencian que los cambios observados no siempre siguen los paradigmas establecidos (por ej., las especies amenazadas mantienen dinámicas poblacionales estables). La integración de resultados parciales proporcionados por cada aproximación relativiza la importancia de las percepciones que cada estudio destaca por separado, y permite medir los cambios actuales en el marco de referencia de los cambios a escala geológica. Predecir la resistencia y resiliencia de los ecosistemas o las poblaciones de seres vivos para enfrentarse a los futuros cambios ambientales es complicado, no sólo por la falta de conocimientos disponibles sino también porque las respuestas que observamos no siempre son tan rápidas o lineales como se espera. La modelización constituye una herramienta cada vez más utilizada, pero requiere de evidencias reales para validar sus pronósticos, por lo que la observación de los procesos que actúan en el PNOMP ha de incluir un esfuerzo continuado de monitorización multiescalar y multidisciplinar de los distintos componentes de la geo, hidro-, crio- y biosfera, sin olvidar el componente humano. Entender la complejidad supone conectar las interacciones que existen entre todos los sistemas y ponderar sus efectos según las escalas de trabajo.Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, EspañaEmpresa pública SARGA, EspañaJOLUBE Consultor Botánico, Editor y Fotógrafo, EspañaDepartament d’Ecologia, Universitat de Barcelona, EspañaUnidad de Tres Cantos, Instituto Geológico y Minero de España, EspañaInstitut de Recerca de Biodiversitat, Universitat de Barcelona, EspañaParque Nacional de Ordesa y Monte Perdido, Españ

    Response of Quercus ilex seedlings to Phytophthora spp. root infection in a soil infestation test

    Full text link
    [EN] Phytophthora species are the main agents associated with oak (Quercus spp.) decline, together with the changing environmental conditions and the intensive land use. The aim of this study was to evaluate the susceptibility of Quercus ilex to the inoculation with eight Phytophthora species. Seven to eight month old Q. ilex seedlings grown from acorns, obtained from two Spanish origins, were inoculated with P. cinnamomi, P. cryptogea, P. gonapodyides, P. megasperma, P. nicotianae, P. plurivora, P. psychrophila and P. quercina. All Phytophthora inoculated seedlings showed decline and symptoms including small dark necrotic root lesions, root cankers, and loss of fine roots and tap root. The most aggressive species were P. cinnamomi, P. cryptogea, P. gonapodyides, P. plurivora and P. psychrophila followed by P. megasperma., while Phytophthora quercina and P. nicotianae were the less aggressive species. Results obtained confirm that these Phytophthora species could constituted a threat to Q. ilex ecosystems and the implications are further discussed.The authors are grateful to A. Solla and his team from the Centro Universitario de Plasencia-Universidad de Extremadura (Spain) for helping in the acorns collection and to the CIEF (Centro para la Investigación y Experimentación Forestal, Generalitat Valenciana, Valencia, Spain) for providing the acorns. This research was supported by funding from the project AGL2011- 30438-C02-01 (Ministerio de Economía y Competitividad, Spain).Mora-Sala, B.; Abad Campos, P.; Berbegal Martinez, M. (2018). Response of Quercus ilex seedlings to Phytophthora spp. root infection in a soil infestation test. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-018-01650-6SÁlvarez, L. A., Pérez-Sierra, A., Armengol, J., & García-Jiménez, J. (2007). Characterization of Phytophthora nicotianae isolates causing collar and root rot of lavender and rosemary in Spain. Journal of Plant Pathology, 89, 261–264.Balci, Y., & Halmschlager, E. (2003a). Incidence of Phytophthora species in oak forests in Austria and their possible involvement in oak decline. Forest Pathology, 33, 157–174.Balci, Y., & Halmschlager, E. (2003b). Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathology, 52, 694–702.Brasier, C. M. (1992a). Oak tree mortality in Iberia. Nature, 360, 539.Brasier, C. M. ((1992b)). Phytophthora cinnamomi as a contributory factor on European oak declines. In N. by Luisi, P. Lerario, & A. B. Vannini (Eds.), Recent Advances in Studies on Oak Decline. Proc. Int. Congress, Brindisi, Italy, September 13-18, 1992 (pp. 49–58). Italy: Università degli Studi.Brasier, C. M. (1996). Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annales des Sciences Forestieres, 53, 347–358.Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57, 792–808.Brasier, C. M., Hamm, P. B., & Hansen, E. M. (1993a). Cultural characters, protein patterns and unusual mating behaviour of P. gonapodyides isolates from Britain and North America. Mycological Research, 97, 1287–1298.Brasier, C. M., Robredo, F., & Ferraz, J. F. P. (1993b). Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42, 140–145.Camilo-Alves, C. S. P., Clara, M. I. E., & Ribeiro, N. M. C. A. (2013). Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research, 132, 411–432.Català, S., Berbegal, M., Pérez-Sierra, A., & Abad-Campos, P. (2017). Metabarcoding and development of new real-time specific assays reveal Phytophthora species diversity in holm oak forests in eastern Spain. Plant Pathology, 66, 115–123.Collett, D. (2003). Modelling survival data in medical research (2nd ed.). Boca Raton: Chapman & Hall/CRC, 410 pp.Corcobado, T., Cubera, E., Pérez-Sierra, A., Jung, T., & Solla, A. (2010). First report of Phytophthora gonapodyides involved in the decline of Quercus ilex in xeric conditions in Spain. New Disease Reports, 22, 33.Corcobado, T., Cubera, E., Moreno, G., & Solla, A. (2013). Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agricultural and Forest Meteorology, 169, 92–99.Corcobado, T., Vivas, M., Moreno, G., & Solla, A. (2014). Ectomycorrhizal symbiosis in declining and non-declining Quercus ilex trees infected with or free of Phytophthora cinnamomi. Forest Ecology and Management, 324, 72–80.Corcobado, T., Miranda-Torres, J. J., Martín-García, J., Jung, T., & Solla, A. (2017). Early survival of Quercus ilex subspecies from different populations after infections and co-infections by multiple Phytophthora species. Plant Pathology, 66, 792–804.Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul, Minnesota,USA: APS Press, American Phytopathological. Society 562pp.Gallego, F. J., Perez de Algaba, A., & Fernandez-Escobar, R. (1999). Etiology of oak decline in Spain. European Journal of Forest Pathology, 29, 17–27.Hansen, E., & Delatour, C. (1999). Phytophthora species in oak forests of north-east France. Annals of Forest Science, 56, 539–547.Hardham, A. R., & Blackman, L. M. (2010). Molecular cytology of Phytophthora plant interactions. Australasian Plant Pathology, 39, 29.Hernández-Lambraño, R. E., González-Moreno, P., & Sánchez-Agudo, J. Á. (2018). Environmental factors associated with the spatial distribution of invasive plant pathogens in the Iberian Peninsula: The case of Phytophthora cinnamomi Rands. Forest Ecology and Management, 419, 101–109.Jankowiak, R., Stępniewska, H., Bilański, P., & Kolařík, M. (2014). Occurrence of Phytophthora plurivora and other Phytophthora species in oak forests of southern Poland and their association with site conditions and the health status of trees. Folia Microbiologica, 59, 531–542.Jeffers, S. N., & Aldwinckle, H. S. (1987). Enhancing detection of Phytophthora cactorum in naturally infested soil. Phytopathology, 77, 1475–1482.Jiménez, A. J., Sánchez, E. J., Romero, M. A., Belbahri, L., Trapero, A., Lefort, F., & Sánchez, M. E. (2008). Pathogenicity of Pythium spiculum and P. sterilum on feeder roots of Quercus rotundifolia. Plant Pathology, 57, 369.Jönsson, U. (2006). A conceptual model for the development of Phytophthora disease in Quercus robur. New Phytologist, 171, 55–68.Jönsson, U., Jung, T., Rosengren, U., Nihlgard, B., & Sonesson, K. (2003). Pathogenicity of Swedish isolates of Phytophthora quercina to Quercus robur in two different soils. New Phytologist, 158, 355–364.Jung, T., & Burgess, T. I. (2009). Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia, 22, 95–110.Jung, T., Blaschke, H., & Neumann, P. (1996). Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. European Journal of Forest Pathology, 26, 253–272.Jung, T., Cooke, D. E. L., Blaschke, H., Duncan, J. M., & Oßwald, W. (1999). Phytophthora quercina sp. nov., causing root rot of European oaks. Mycological Research, 103, 785–798.Jung, T., Blaschke, H., & Oßwald, W. (2000). Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology, 49, 706–718.Jung, T., Hansen, E. M., Winton, L., Oßwald, W., & Delatour, C. (2002). Three new species of Phytophthora from European oak forests. Mycological Research, 106, 397–411.Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A. G., Aguín Casal, O., Bakonyi, J., Cacciola, S. O., Cech, T., Chavarriaga, D., Corcobado, T., Cravador, A., Decourcelle, T., Denton, G., Diamandis, S., Dogmus-Lehtijärvi, H. T., Franceschini, A., Ginetti, B., Glavendekic, M., Hantula, J., Hartmann, G., Herrero, M., Ivic, D., Horta Jung, M., Lilja, A., Keca, N., Kramarets, V., Lyubenova, A., Machado, H., Magnano di San Lio, G., Mansilla Vázquez, P. J., Marçais, B., Matsiakh, I., Milenkovic, I., Moricca, S., Nagy, Z. Á., Nechwatal, J., Olsson, C., Oszako, T., Pane, A., Paplomatas, E. J., Pintos Varela, C., Prospero, S., Rial Martínez, C., Rigling, D., Robin, C., Rytkönen, A., Sánchez, M. E., Scanu, B., Schlenzig, A., Schumacher, J., Slavov, S., Solla, A., Sousa, E., Stenlid, J., Talgø, V., Tomic, Z., Tsopelas, P., Vannini, A., Vettraino, A. M., Wenneker, M., Woodward, S., & Peréz-Sierra, A. (2016). Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology, 46, 134–163.Kroon, L. P., Brouwer, H., de Cock, A. W., & Govers, F. (2012). The genus Phytophthora anno 2012. Phytopathology, 102, 348–364.Linaldeddu, B. T., Scanu, B., Maddau, L., & Franceschini, A. (2014). Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). Forest Pathology, 44, 191–200.Luque, J., Parladé, J., & Pera, J. (2000). Pathogenicity of fungi isolated from Quercus suber in Catalonia (NE Spain). Forest Pathology, 30, 247–263.Luque, J., Parladé, J., & Pera, J. (2002). Seasonal changes in susceptibility of Quercus suber to Botryosphaeria stevensii and Phytophthora cinnamomi. Plant Pathology, 51, 338–345.MAGRAMA. (2014). Diagnóstico del Sector Forestal Español. Análisis y Prospectiva - Serie Agrinfo/Medioambiente n° 8. Ed. Ministerio de Agricultura, Alimentación y Medio Ambiente. In NIPO: 280-14-081-9.Martín-García, J., Solla, A., Corcobado, T., Siasou, E., & Woodward, S. (2015). Influence of temperature on germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils. Forest Pathology, 45, 215–223.Maurel, M., Robin, C., Capron, G., & Desprez-Loustau, M. L. (2001). Effects of root damage associated with Phytophthora cinnamomi on water elations, biomass accumulation, mineral nutrition and vulnerability to water deficit of five oak and chestnut species. Forest Pathology, 31, 353–369.McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.Moralejo, E., Pérez-Sierra, A., Álvarez, L. A., Belbahri, L., Lefort, F., & Descals, E. (2009). Multiple alien Phytophthora taxa discovered on diseased ornamental plants in Spain. Plant Pathology, 58, 100–110.Mora-Sala, B., Berbegal, M., & Abad-Campos, P. (2018). The use of qPCR reveals a high frequency of Phytophthora quercina in two Spanish holm oak areas. Forests, 9(11):697. https://doi.org/10.3390/f9110697 .Moreira, A. C., & Martins, J. M. S. (2005). Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. Forest Pathology, 35, 145–162.Mrázková, M., Černý, K., Tomosovsky, M., Strnadová, V., Gregorová, B., Holub, V., Panek, M., Havrdová, L., & Hejná, M. (2013). Occurrence of Phytophthora multivora and Phytophthora plurivora in the Czech Republic. Plant Protection Science, 49, 155–164.Navarro, R. M., Gallo, L., Sánchez, M. E., Fernández, P., & Trapero, A. (2004). Efecto de distintas fertilizaciones de fósforo en la resistencia de brinzales de encina y alcornoque a Phytophthora cinnamomi Rands. Investigación Agraria. Sistemas y Recursos Forestales, 13, 550–558.Panabières, F., Ali, G., Allagui, M., Dalio, R., Gudmestad, N., Kuhn, M., Guha Roy, S., Schena, L., & Zampounis, A. (2016). Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen. Phytopathologia Mediterranea, 55, 20–40.Pérez-Sierra, A., & Jung, T. (2013). Phytophthora in woody ornamental nurseries. In: Phytophthora: A global perspective (pp. 166-177). Ed. by Lamour, K. Wallingford: CABI.Pérez-Sierra, A., Mora-Sala, B., León, M., García-Jiménez, J., & Abad-Campos, P. (2012). Enfermedades causadas por Phytophthora en viveros de plantas ornamentales. Boletín de Sanidad Vegetal-Plagas, 38, 143–156.Pérez-Sierra, A., López-García, C., León, M., García-Jiménez, J., Abad-Campos, P., & Jung, T. (2013). Previously unrecorded low-temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in eastern Spain. Forest Pathology, 43, 331–339.Redondo, M. A., Pérez-Sierra, A., & Abad-Campos, P. (2015). Histology of Quercus ilex roots during infection by Phytophthora cinnamomi. Trees - Structure and Function, 29, 1943–5197.Ríos, P., Obregón, S., de Haro, A., Fernández-Rebollo, P., Serrano, M. S., & Sánchez, M. E. (2016). Effect of Brassica Biofumigant Amendments on Different Stages of the Life Cycle of Phytophthora cinnamomi. Journal of Phytopathology, 164, 582–594.Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., & Koike, S. T. (2002). Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Disease, 86, 205–214.Robin, C., Desprez-Loustau, M. L., Capron, G., & Delatour, C. (1998). First record of Phytophthora cinnamomi on cork and holm oaks in France and evidence of pathogenicity. Annales Des Sciences Forestieres, 55, 869–883.Robin, C., Capron, G., & Desprez-Loustau, M. L. (2001). Root infection by Phytophthora cinnamomi in seedlings of three oak species. Plant Pathology, 50, 708–716.Rodríguez-Molina, M. C., Torres-Vila, L. M., Blanco-Santos, A., Núñez, E. J. P., & Torres-Álvarez, E. (2002). Viability of holm and cork oak seedlings from acorns sown in soils naturally infected with Phytophthora cinnamomi. Forest Pathology, 32, 365–372.Romero, M. A., Sánchez, J. E., Jiménez, J. J., Belbahri, L., Trapero, A., Lefort, F., & Sánchez, M. E. (2007). New Pythium taxa causing root rot in Mediterranean Quercus species in southwest Spain and Portugal. Journal of Phytopathology, 115, 289–295.Sánchez de Lorenzo-Cáceres J. M. (2001). Guía de las plantas ornamentales. S.A. Mundi-Prensa Libros. ISBN 9788471149374. 688 pp.Sánchez, M. E., Caetano, P., Ferraz, J., & Trapero, A. (2002). Phytophtora disease of Quercus ilex in south-western Spain. Forest Pathology, 32, 5–18.Sánchez, M. E., Sánchez, J. E., Navarro, R. M., Fernández, P., & Trapero, A. (2003). Incidencia de la podredumbre radical causada por Phytophthora cinnamomi en masas de Quercus en Andalucía. Boletín de Sanidad Vegetal-Plagas, 29, 87–108.Sánchez, M. E., Andicoberry, S., & Trapero, A. (2005). Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. Forest Pathology, 35, 115–125.Sánchez, M. E., Caetano, P., Romero, M. A., Navarro, R. M., & Trapero, A. (2006). Phytophthora root rot as the main factor of oak decline in southern Spain. In: Progress in Research on Phytophthora Diseases of Forest Trees. Proceedings of the Third International IUFRO Working Party S07.02.09. Meeting at Freising. Germany 11-18 September 2004. Brasier C. M., Jung T., Oßwald W. (Eds). Forest Research. Farnham, UK. pp. 149-154.Scanu, B., Linaldeddu, B. T., Deidda, A., & Jung, T. (2015). Diversity of Phytophthora species from declining Mediterranean maquis vegetation, including two new species, Phytophthora crassamura and P. ornamentata sp. nov. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0143234 .Schmitthenner, A. F., & Canaday, C. H. (1983). Role of chemical factors in the development of Phytophthora diseases. In: Phytophthora. Its biology, taxonomy, ecology, and pathology (pp.189-196). Ed. by Erwin D. C., Bartnicki-Garcia S., Tsao P. H. St. Paul, : The American Phytopathological Society.Scibetta, S., Schena, L., Chimento, A., Cacciola, S. A., & Cooke, D. E. L. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88, 356–368.Sena, K., Crocker, E., Vincelli, P., & Barton, C. (2018). Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. Forest Ecology and Management, 409, 799–807.Thines, M. (2013). Taxonomy and phylogeny of Phytophthora and related oomycetes In: Phytophthora: A global perspective (pp. 11-18). Ed. by Lamour, K. Wallingford: CABI.Tsao, P. H. (1990). Why many Phytophthora root rots and crown rots of tree and horticultural crops remain undetected. EPPO Bulletin, 20, 11–17.Tuset, J. J., Hinarejos, C., Mira, J. L., & Cobos, M. (1996). Implicación de Phytophthora cinnamomi Rands en la enfermedad de la seca de encinas y alcornoques. Boletín de Sanidad Vegetal-Plagas, 22, 491–499.Vettraino, A. M., Barzanti, G. P., Bianco, M. C., Ragazzi, A., Capretti, P., Paoletti, E., & Vannini, A. (2002). Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology, 32, 19–28.Xia, K., Hill, L. M., Li, D. Z., & Walters, C. (2014). Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. Annals of Botany, 114, 1747–1759

    Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe
    corecore