19 research outputs found
Simultaneous CTEQ-TEA extraction of PDFs and SMEFT parameters from jet and data
Recasting phenomenological Lagrangians in terms of SM effective field theory
(SMEFT) provides a valuable means of connecting potential BSM physics at
momenta well above the electroweak scale to experimental signatures at lower
energies. In this work we jointly fit the Wilson coefficients of SMEFT
operators as well as the PDFs in an extension of the CT18 global analysis
framework, obtaining self-consistent constraints to possible BSM physics
effects. Global fits are boosted with machine-learning techniques in the form
of neural networks to ensure efficient scans of the full PDF+SMEFT parameter
space. We focus on several operators relevant for top-quark pair and jet
production at hadron colliders and obtain constraints on the Wilson
coefficients with Lagrange Multiplier scans. We find mild correlations between
the extracted Wilson coefficients, PDFs, and other QCD parameters, and see
indications that these correlations may become more prominent in future
analyses based on data of higher precision. This work serves as a new platform
for joint analyses of SM and BSM physics based on the CTEQ-TEA framework.Comment: 39 pages, 18 figure
Simultaneous CTEQ-TEA extraction of PDFs and SMEFT parameters from jet and t t ¯ data
Abstract Recasting phenomenological Lagrangians in terms of SM effective field theory (SMEFT) provides a valuable means of connecting potential BSM physics at momenta well above the electroweak scale to experimental signatures at lower energies. In this work we jointly fit the Wilson coefficients of SMEFT operators as well as the PDFs in an extension of the CT18 global analysis framework, obtaining self-consistent constraints to possible BSM physics effects. Global fits are boosted with machine-learning techniques in the form of neural networks to ensure efficient scans of the full PDF+SMEFT parameter space. We focus on several operators relevant for top-quark pair and jet production at hadron colliders and obtain constraints on the Wilson coefficients with Lagrange Multiplier scans. We find mild correlations between the extracted Wilson coefficients, PDFs, and other QCD parameters, and see indications that these correlations may become more prominent in future analyses based on data of higher precision. This work serves as a new platform for joint analyses of SM and BSM physics based on the CTEQ-TEA framework
CEPC Technical Design Report -- Accelerator
International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
CEPC Technical Design Report -- Accelerator
International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s