161 research outputs found

    On the Crystallization of Terbium Aluminium Garnet

    Full text link
    Attempts to grow terbium aluminium garnet (Tb3Al5O12, TAG) by the Czochralski method lead to crystals of millimeter scale. Larger crystals could not be obtained. DTA measurements within the binary system showed that TAG melts incongruently at 1840 deg. C. The perovskite (TbAlO3, TAP) with a congruent melting point of 1930 deg. C is the most stable phase in this system. The region for primary crystallization of TAP covers the chemical composition of TAG and suppresses the primary crystallization of the terbium aluminium garnet.Comment: 6 pages, 2 figure

    Impact of titanium doping on Al self-diffusion in alumina

    Get PDF
    α-Al2O3 is an important refractory material which has numerous technical applications: as an in situ growing self-healing oxide scale, as a massive material and as reinforcement fibres in composites. For modelling diffusion controlled processes (creep, sintering, alpha-alumina scale growth on aluminium bearing Fe or Ni base alloys) it is necessary to study self-diffusion of the constituent elements

    Growth of Oxide Compounds under Dynamic Atmosphere Composition

    Full text link
    Commercially available gases contain residual impurities leading to a background oxygen partial pressure of typically several 10^{-6} bar, independent of temperature. This oxygen partial pressure is inappropriate for the growth of some single crystals where the desired oxidation state possesses a narrow stability field. Equilibrium thermodynamic calculations allow the determination of dynamic atmosphere compositions yielding such self adjusting and temperature dependent oxygen partial pressures, that crystals like ZnO, Ga2O3, or Fe{1-x}O can be grown from the melt.Comment: 4 pages, 3 figures, talk on CGCT-4 Sendai, May 21-24, 200

    Mechanisms of Metastasis in Colorectal Cancer and Metastatic Organotropism: Hematogenous versus Peritoneal Spread

    Get PDF
    Metastasis is the major cause of death in patients with colorectal carcinoma (CRC). The most common sites of metastasis are the liver and the peritoneum. Peritoneal carcinomatosis is often considered the end stage of the disease after the tumor has spread to the liver. However, almost half of CRC patients with peritoneal carcinomatosis do not present with liver metastasis. This brings up the question of whether peritoneal spread can still be considered as the end stage of a metastasized CRC or whether it should just be interpreted as a site of metastasis alternative to the liver. This review tries to discuss this question and summarize the current status of literature on potential characteristics in tumor biology in the primary tumor, i.e., factors (transcription factors and direct and indirect E-cadherin repressors) and pathways (WNT, TGF-beta, and RAS) modulating EMT, regulation of EMT on a posttranscriptional and posttranslational level (miRNAs), and angiogenesis. In addition to tumor-specific characteristics, factors in the tumor microenvironment, immunological markers, ways of transport of tumor cells, and adhesion molecules appear to differ between hematogenous and peritoneal spread. Factors such as integrins and exosomal integrins, cancer stem cell phenotype, and miRNA expression appear to contribute in determining the metastatic route. We went through each step of the metastasis process comparing hematogenous to peritoneal spread. We identified differences with respect to organotropism, epithelial-mesenchymal transition, angiogenesis and inflammation, and tumor microenvironment which will be further elucidated in this review. A better understanding of the underlying mechanisms and contributing factors of metastasis development in CRC has huge relevance as it is the foundation to help find specific targets for treatment of CRC

    Huge impact of compressive strain on phase transition temperatures in epitaxial ferroelectric KxNa1-xNbO3 thin films

    Get PDF
    We present a study in which ferroelectric phase transition temperatures in epitaxial KxNa1-xNbO3 films are altered systematically by choosing different (110)-oriented rare-earth scandate substrates and by variation of the potassium to sodium ratio. Our results prove the capability to continuously shift the ferroelectric-to-ferroelectric transition from the monoclinic MC to orthorhombic c-phase by about 400 °C via the application of anisotropic compressive strain. The phase transition was investigated in detail by monitoring the temperature dependence of ferroelectric domain patterns using piezoresponse force microscopy and upon analyzing structural changes by means of high resolution X-ray diffraction including X-ray reciprocal space mapping. Moreover, the temperature evolution of the effective piezoelectric coefficient d33,f was determined using double beam laser interferometry, which exhibits a significant dependence on the particular ferroelectric phase. © 2019 Author(s)

    Strain-Engineered Ferroelastic Structures in PbTiO3 Films and Their Control by Electric Fields

    Get PDF
    We study the interplay between epitaxial strain, film thickness, and electric field in the creation, modification, and design of distinct ferroelastic structures in PbTiO thin films. Strain and thickness greatly affect the structures formed, providing a two-variable parameterization of the resulting self-assembly. Under applied electric fields, these strain-engineered ferroelastic structures are highly malleable, especially when a/c and a/a superdomains coexist. To reconfigure the ferroelastic structures and achieve self-assembled nanoscale-ordered morphologies, pure ferroelectric switching of individual c-domains within the a/c superdomains is essential. The stability, however, of the electrically written ferroelastic structures is in most cases ephemeral; the speed of the relaxation process depends sensitively on strain and thickness. Only under low tensile strain - as is the case for PbTiO on GdScO - and below a critical thickness do the electrically created a/c superdomain structures become stable for days or longer, making them relevant for reconfigurable nanoscale electronics or nonvolatile electromechanical applications

    Dose ratio proton radiography using the proximal side of the Bragg peak

    Get PDF
    Purpose: In recent years there has been a movement towards single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method, in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp fall-off. We investigate the limits and applicability of the dose ratio method on the proximal side of the lower energy Bragg peak, which has the potential to allow a much wider range of water-equivalent thicknesses (WET) to be imaged. Comparisons are made with the use of the distal side of the Bragg peak. Methods: Using the analytical approximation for the Bragg peak we generated theoretical dose ratio curves for a range of energy pairs, and then determined how an uncertainty in the dose ratio would translate to a spread in the WET estimate. By defining this spread as the accuracy one could achieve in the WET estimate, we were able to generate look-up graphs of the range on the proximal side of the Bragg peak that one could reliably use. These were dependent on the energy pair, noise level in the dose ratio image and the required accuracy in the WET. Using these look-up graphs we investigated the applicability of the technique for a range of patient treatment sites. We validated the theoretical approach with experimental measurements using a complementary metal oxide semiconductor active pixel sensor (CMOS APS), by imaging a small sapphire sphere in a high energy proton beam. Results: Provided the noise level in the dose ratio image was 1% or less, a larger spread of WETs could be imaged using the proximal side of the Bragg peak (max 5.31 cm) compared to the distal side (max 2.42 cm). In simulation it was found that, for a pediatric brain, it is possible to use the technique to image a region with a square field equivalent size of 7.6 cm2, for a required accuracy in the WET of 3 mm and a 1% noise level in the dose ratio image. The technique showed limited applicability for other patient sites. The CMOS APS demonstrated a good accuracy, with a root-mean-square-error of 1.6 mm WET. The noise in the measured images was found to be σ =1.2% (standard deviation) and theoretical predictions with a 1.96σ noise level showed good agreement with the measured errors. Conclusions: After validating the theoretical approach with measurements, we have shown that the use of the proximal side of the Bragg peak when performing dose ratio imaging is feasible, and allows for a wider dynamic range than when using the distal side. The dynamic range available increases as the demand on the accuracy of the WET decreases. The technique can only be applied to clinical sites with small maximum WETs such as for pediatric brains

    Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries

    Get PDF
    Understanding the cause of lithium dendrites formation and propagation is essential for developing practical all-solid-state batteries. Li dendrites are associated with mechanical stress accumulation and can cause cell failure at current densities below the threshold suggested by industry research (i.e., >5 mA/cm2). Here, we apply a MHz-pulse-current protocol to circumvent low-current cell failure for developing all-solid-state Li metal cells operating up to a current density of 6.5 mA/cm2. Additionally, we propose a mechanistic analysis of the experimental results to prove that lithium activity near solid-state electrolyte defect tips is critical for reliable cell cycling. It is demonstrated that when lithium is geometrically constrained and local current plating rates exceed the exchange current density, the electrolyte region close to the defect releases the accumulated elastic energy favouring fracturing. As the build-up of this critical activity requires a certain period, applying current pulses of shorter duration can thus improve the cycling performance of all-solid-solid-state lithium batteries.publishedVersio

    Heidelberg standard examination and "Heidelberg standard procedures" - Development of faculty-wide standards for physical examination techniques and clinical procedures in undergraduate medical education

    Get PDF
    The competent physical examination of patients and the safe and professional implementation of clinical procedures constitute essential components of medical practice in nearly all areas of medicine. The central objective of the projects "Heidelberg standard examination" and "Heidelberg standard procedures", which were initiated by students, was to establish uniform interdisciplinary standards for physical examination and clinical procedures, and to distribute them in coordination with all clinical disciplines at the Heidelberg University Hospital. The presented project report illuminates the background of the initiative and its methodological implementation. Moreover, it describes the multimedia documentation in the form of pocketbooks and a multimedia internet-based platform, as well as the integration into the curriculum. The project presentation aims to provide orientation and action guidelines to facilitate similar processes in other faculties

    Acquiring reading and vocabulary in Dutch and English: the effect of concurrent instruction

    Get PDF
    To investigate the effect of concurrent instruction in Dutch and English on reading acquisition in both languages, 23 pupils were selected from a school with bilingual education, and 23 from a school with education in Dutch only. The pupils had a Dutch majority language background and were comparable with regard to social-economic status (SES). Reading and vocabulary were measured twice within an interval of 1 year in Grade 2 and 3. The bilingual group performed better on most English and some of the Dutch tests. Controlling for general variables and related skills, instruction in English contributed significantly to the prediction of L2 vocabulary and orthographic awareness at the second measurement. As expected, word reading fluency was easier to acquire in Dutch with its relatively transparent orthography in comparison to English with its deep orthography, but the skills intercorrelated highly. With regard to cross-linguistic transfer, orthographic knowledge and reading comprehension in Dutch were positively influenced by bilingual instruction, but there was no indication of generalization to orthographic awareness or knowledge of a language in which no instruction had been given (German). The results of the present study support the assumption that concurrent instruction in Dutch and English has positive effects on the acquisition of L2 English and L1 Dutch
    corecore