69 research outputs found

    Drivers of ecosystem vulnerability to Corbicula invasions in southeastern North America

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGInvasive species introduction is one of the major ongoing ecological global crises. Identifying factors responsible for the success of invasive species is key for the implementation of effective management actions. The invasive filter-feeding bivalve, Corbicula, is of particular interest because it has become ubiquitous in many river basins across North America and elsewhere. Here we sampled bivalve assemblages, environmental indicators, and land cover parameters in the Ouachita highlands in southeastern Oklahoma and southwestern Arkansas, and in the Gulf Coastal Plain of Alabama to test three working models (using structural equation modeling, SEM) based on a priori scientific knowledge regarding Corbicula invasions. Our models tested three competing hypotheses: (1) Native mussel declines are related to land use changes at the watershed level and subsequent Corbicula colonization is a result of an empty niche; (2) Corbicula abundance is one of the factors responsible for native mussel declines and has an interactive effect with land use change at the watershed level; (3) Native mussel declines and Corbicula success are both related to land use changes at the watershed level. We found no evidence for the first two hypotheses. However, we found that environmental indicators and land cover parameters at the watershed scale were robust predictors of Corbicula abundance. In particular, agricultural land cover was positively related with Corbicula density. These results suggest that further improvement of conventional agricultural practices including the optimization of fertilizer delivery systems may represent an opportunity to manage this species by limiting nutrient inputs to stream ecosystems. Preservation of extensive floodplain habitats may help buffer these inputs by providing key ecosystem services including sediment and nutrient retention.National Science Foundation | Ref. DEB-1831512Xunta de Galicia | Ref. I2C 2017-202

    Preventing and Reversing Vacuum-Induced Optical Losses in High-Finesse Tantalum (V) Oxide Mirror Coatings

    Get PDF
    We study the vacuum-induced degradation of high-finesse optical cavities with mirror coatings composed of SiO2_2-Ta2_{2}O5_{5} dielectric stacks, and present methods to protect these coatings and to recover their initial quality factor. For separate coatings with reflectivities centered at 370 nm and 422 nm, a vacuum-induced continuous increase in optical loss occurs if the surface-layer coating is made of Ta2_{2}O5_{5}, while it does not occur if it is made of SiO2_2. The incurred optical loss can be reversed by filling the vacuum chamber with oxygen at atmospheric pressure, and the recovery rate can be strongly accelerated by continuous laser illumination at 422 nm. Both the degradation and the recovery processes depend strongly on temperature. We find that a 1 nm-thick layer of SiO2_2 passivating the Ta2_{2}O5_{5} surface layer is sufficient to reduce the degradation rate by more than a factor of 10, strongly supporting surface oxygen depletion as the primary degradation mechanism.Comment: 14 pages, 7 figure

    Reproductive Modes in Onion Thrips (Thysanoptera: Thripidae) Populations from New York Onion Fields

    Get PDF
    Thrips exhibit different reproductive modes including thelytoky (females produced from unfertilized eggs), arrhenotoky (males produced from unfertilized eggs and females produced from fertilized eggs) and deuterotoky (females and males produced from unfertilized eggs). We investigated patterns of reproductive modes in onion thrips, Thrips tabaci Lindeman, populations and potential effects of the bacterium Wolbachia and temperature on these modes. We also examined the possibility that male-producing T. tabaci populations were resistant to the frequently used insecticides, lambda-cyhalothrin and methomyl. In New York during 2002-2004, T. tabaci populations were sampled from 20 onion fields and reproductive mode was determined by identifying sex of progeny from virgins. Half of the populations were thelytokous and half were a mix of thelytokous, arrhenotokous and deuterotokous individuals, which we refer to as a male-producing population. In two of four cases, the reproductive mode of a population from the same onion field changed across years, suggesting that populations either mix or an external factor caused the change. To address the latter, we speculated that Wolbachia or high temperature mediated reproductive modes. Samples of T. tabaci representing each reproductive mode were examined for Wolbachia using diagnostic polymerase chain reaction (PCR), but it was not detected. Cytological examination of ovaries from two additional thelytokous lines also showed no evidence of Wolbachia. Similarly, high temperature did not affect sex allocation ratios in either thelytokous or male-producing populations. Male-producing T. tabaci populations were not positively correlated with resistance to lambda-cyhalothrin, or tolerance to methomyl. The role of the different reproductive modes in T. tabaci populations in onion fields remains unclea

    New Crayfish Species Records from the Sipsey Fork Drainage, Including Lewis Smith Reservoir (Alabama, USA): Native or Introduced Species?

    Get PDF
    As part of a study of aquatic faunal community changes along riverine-lacustrine transition zones upstream of Lewis Smith Reservoir in northwest Alabama, USA, we collected crayfish from 60 sites in the Sipsey Fork, Brushy Creek, and selected tributaries (Black Warrior River system). After finding two unexpected and possibly-introduced crayfish species, we expanded our investigation of crayfish distributions to include crayfish obtained from stomachs of black bass ( Micropterus spp.) caught at seven sites in the reservoir. To explore what crayfish species were in the drainage historically, we examined museum databases as well as stomach and intestinal contents of a variety of preserved fishes that were caught in the Sipsey Fork and Brushy Creek drainages upstream of the reservoir in the early 1990’s. Of the seven crayfish species collected, one, Orconectes ( Procericambarus ) sp. nr ronaldi , was not previously reported from Alabama, and another, O. lancifer , was not reported from the Black Warrior River system prior to the study. Three are known or possibly introduced species. Upstream of the reservoir, the native species Cambarus obstipus, C. striatus , and O. validus were common. The same three species were found in fish collected in the 1990’s. Orconectes perfectus was found only in the reservoir but may be native to the drainage. Orconectes lancifer was in the reservoir and in stream reaches influenced by the reservoir. Evidence points to O. lancifer being introduced in the drainage, but this is uncertain. Orconectes sp. nr ronaldi was found in a relatively small portion of Brushy Creek and its tributaries, in both flowing and impounded habitats, and may be introduced. Orconectes virilis is introduced in Alabama and was found only in stomachs of fish collected in the reservoir

    Persistence of apoptotic cells without autoimmune disease or inflammation in CD14−/− mice

    Get PDF
    Interaction of macrophages with apoptotic cells involves multiple steps including recognition, tethering, phagocytosis, and anti-inflammatory macrophage responses. Defective apoptotic cell clearance is associated with pathogenesis of autoimmune disease. CD14 is a surface receptor that functions in vitro in the removal of apoptotic cells by human and murine macrophages, but its mechanism of action has not been defined. Here, we demonstrate that CD14 functions as a macrophage tethering receptor for apoptotic cells. Significantly, CD14−/− macrophages in vivo are defective in clearing apoptotic cells in multiple tissues, suggesting a broad role for CD14 in the clearance process. However, the resultant persistence of apoptotic cells does not lead to inflammation or increased autoantibody production, most likely because, as we show, CD14−/− macrophages retain the ability to generate anti-inflammatory signals in response to apoptotic cells. We conclude that CD14 plays a broad tethering role in apoptotic cell clearance in vivo and that apoptotic cells can persist in the absence of proinflammatory consequences

    Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

    Get PDF
    The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway

    Drosophila Neurotrophins Reveal a Common Mechanism for Nervous System Formation

    Get PDF
    Neurotrophic interactions occur in Drosophila, but to date, no neurotrophic factor had been found. Neurotrophins are the main vertebrate secreted signalling molecules that link nervous system structure and function: they regulate neuronal survival, targeting, synaptic plasticity, memory and cognition. We have identified a neurotrophic factor in flies, Drosophila Neurotrophin (DNT1), structurally related to all known neurotrophins and highly conserved in insects.By investigating with genetics the consequences of removing DNT1 or adding it in excess, we show that DNT1 maintains neuronal survival, as more neurons die in DNT1 mutants and expression of DNT1 rescues naturally occurring cell death, and it enables targeting by motor neurons. We show that Spa¨ tzle and a further fly neurotrophin superfamily member, DNT2, also have neurotrophic functions in flies. Our findings imply that most likely a neurotrophin was present in the common ancestor of all bilateral organisms, giving rise to invertebrate and vertebrate neurotrophins through gene or whole-genome duplications. This work provides a missing link between aspects of neuronal function in flies and vertebrates, and it opens the opportunity to use Drosophila to investigate further aspects of neurotrophin function and to model related diseases

    Transform-limited photons from a coherent tin-vacancy spin in diamond

    Get PDF
    Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phononlimited with an exponential temperature scaling leading to T1T_1 >> 10 ms, and the coherence time, T2T_2 reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications

    The Arabidopsis BLAP75/Rmi1 Homologue Plays Crucial Roles in Meiotic Double-Strand Break Repair

    Get PDF
    In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIα/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair—that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent

    Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo

    Get PDF
    Homologous recombination (HR), although an important DNA repair mechanism, is dangerous to the cell if improperly regulated. The Srs2 “anti-recombinase” restricts HR by disassembling the Rad51 nucleoprotein filament, an intermediate preceding the exchange of homologous DNA strands. Here, we cytologically characterize Srs2 function in vivo and describe a novel mechanism for regulating the initiation of HR. We find that Srs2 is recruited separately to replication and repair centers and identify the genetic requirements for recruitment. In the absence of Srs2 activity, Rad51 foci accumulate, and surprisingly, can form in the absence of Rad52 mediation. However, these Rad51 foci do not represent repair-proficient filaments, as determined by recombination assays. Antagonistic roles for Rad52 and Srs2 in Rad51 filament formation are also observed in vitro. Furthermore, we provide evidence that Srs2 removes Rad51 indiscriminately from DNA, while the Rad52 protein coordinates appropriate filament reformation. This constant breakdown and rebuilding of filaments may act as a stringent quality control mechanism during HR
    corecore