119 research outputs found
A Generalized Robust Minimization Framework for Low-Rank Matrix Recovery
This paper considers the problem of recovering low-rank matrices which are heavily corrupted by outliers or large errors. To improve the robustness of existing recovery methods, the problem is solved by formulating it as a generalized nonsmooth nonconvex minimization functional via exploiting the Schatten p-norm (0 < p ≤1) and Lq(0 < q ≤1) seminorm. Two numerical algorithms are provided based on the augmented Lagrange multiplier (ALM) and accelerated proximal gradient (APG) methods as well as efficient root-finder strategies. Experimental results demonstrate that the proposed generalized approach is more inclusive and effective compared with state-of-the-art methods, either convex or nonconvex
Plastome Sequences Help to Resolve Deep-Level Relationships of Populus in the Family Salicaceae
Populus, a core genus of Salicaceae, plays a significant ecological role as a source of pioneer species in boreal forests. However, interspecific hybridization and high levels of morphological variation among poplars have resulted in great difficulty in classifying species for systematic and comparative evolutionary studies. Here, we present phylogenetic analyses of 24 newly sequenced Populus plastomes and 36 plastomes from GenBank, which represent seven genera of Salicaceae, in combination with a matrix of eighteen morphological characters of 40 Populus taxa to reconstruct highly supported relationships of genus Populus. Relationships among the 60 taxa of Salicaceae strongly supported two monophyletic genera: Populus and Salix. Chosenia was nested within the genus Salix, and five clades within Populus were divided. Clade I included the three taxa P. euphratica, P. pruinosa, and P. ilicifolia. Clade II contained thirteen taxa [P. adenopoda, P. alba, P. bolleana, P. davidiana, P. hopeiensis, P. nigra, P. qiongdaoensis, P. rotundifolia, P. rotundifolia var. duclouxiana, P. tremula, P. tremula × alba, P. tomentosa, and P. tomentosa (NC)]. Clade III included the ten taxa P. haoana, P. kangdingensis, P. lasiocarpa, P. pseudoglauca, P. qamdoensis, P. schneideri, P. simonii, P. szechuanica, P. szechuanica var. tibetica, and P. yunnanensis. Clade IV included P. cathayana, P. gonggaensis, P. koreana, P. laurifolia, P. trinervis, P. wilsonii, and P. xiangchengensis. The last clade comprised P. angustifolia, P. balsamifera, P. deltoides, P. deltoides × nigra, P. fremontii, P. mexicana, and P. trichocarpa. This phylogeny is also supported by morphological traits, including bark smoothness, bud size, petiole shape, leaf inflorescence, male anther length and male anther tip
Tunable multi-bands in twisted double bilayer graphene
The bandstructure of a material, playing an important role in its electron transport property, is usually governed by the lattice configuration. Materials with a field-effect tunable band, such as bilayer [1] and rhombohedral trilayer graphene [2, 3], are more flexible for electronic applications. Here, on dual-gated twisted double bilayer graphene (TDBG) samples with small twist angle around 1∘, we observe vertical electric-field-tunable bandstructures at multiple moiré fillings with bandgap values continuously varying from zero to tens of mili-electron volts. Moreover, within the first moiré filling on both electron and hole sides, the carrier transport deviates from Fermi liquid behavior, with measured resistivity exhibiting linear temperature dependence between 1.5 K and 50 K. Furthermore, under a vertical magnetic field, the coupling between the two bilayer graphene layers can also be turned on and off by a displacement field. Our results suggest TDBG with small twist angle is a platform for studying the evolution of multiple electric field tunable moiré bands and the resulting emergent correlated electronic phases
The Fabrication of Nano-Particles in Aqueous Solution From Oxyfluoride Glass Ceramics by Thermal Induction and Corrosion Treatment
An innovative route is reported to fabricate nano-particles in aqueous solution from oxyfluoride glass by the thermal induction and corrosion treatment in this letter. The investigations of X-ray diffraction and transmission electron microscope based on nano-particles in glass ceramics (GCs) and aqueous solution indicate that the nano-particles formed in glass matrix during the thermal induction process are released to aqueous solution and their structure, shape and luminescent properties in glass host can be kept. Owing to the designable composition of the nano-particles during glass preparation process, the method is a novel way to obtain nano-particles in aqueous solution from GCs
Recommended from our members
Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations
We conducted a joint (pooled) analysis of three genome-wide association studies (GWAS) 1-3 of esophageal squamous cell carcinoma (ESCC) in ethnic Chinese (5,337 ESCC cases and 5,787 controls) with 9,654 ESCC cases and 10,058 controls for follow-up. In a logistic regression model adjusted for age, sex, study, and two eigenvectors, two new loci achieved genome-wide significance, marked by rs7447927 at 5q31.2 (per-allele odds ratio (OR) = 0.85, 95% CI 0.82-0.88; P=7.72x10−20) and rs1642764 at 17p13.1 (per-allele OR= 0.88, 95% CI 0.85-0.91; P=3.10x10−13). rs7447927 is a synonymous single nucleotide polymorphism (SNP) in TMEM173 and rs1642764 is an intronic SNP in ATP1B2, near TP53. Furthermore, a locus in the HLA class II region at 6p21.32 (rs35597309) achieved genome-wide significance in the two populations at highest risk for ESSC (OR=1.33, 95% CI 1.22-1.46; P=1.99x10−10). Our joint analysis identified new ESCC susceptibility loci overall as well as a new locus unique to the ESCC high risk Taihang Mountain region
- …