2,271 research outputs found

    Persistent Homology of Attractors For Action Recognition

    Full text link
    In this paper, we propose a novel framework for dynamical analysis of human actions from 3D motion capture data using topological data analysis. We model human actions using the topological features of the attractor of the dynamical system. We reconstruct the phase-space of time series corresponding to actions using time-delay embedding, and compute the persistent homology of the phase-space reconstruction. In order to better represent the topological properties of the phase-space, we incorporate the temporal adjacency information when computing the homology groups. The persistence of these homology groups encoded using persistence diagrams are used as features for the actions. Our experiments with action recognition using these features demonstrate that the proposed approach outperforms other baseline methods.Comment: 5 pages, Under review in International Conference on Image Processin

    Shape Parameter Estimation

    Get PDF
    Performance of machine learning approaches depends strongly on the choice of misfit penalty, and correct choice of penalty parameters, such as the threshold of the Huber function. These parameters are typically chosen using expert knowledge, cross-validation, or black-box optimization, which are time consuming for large-scale applications. We present a principled, data-driven approach to simultaneously learn the model pa- rameters and the misfit penalty parameters. We discuss theoretical properties of these joint inference problems, and develop algorithms for their solution. We show synthetic examples of automatic parameter tuning for piecewise linear-quadratic (PLQ) penalties, and use the approach to develop a self-tuning robust PCA formulation for background separation.Comment: 20 pages, 10 figure

    Crowd Counting with Decomposed Uncertainty

    Full text link
    Research in neural networks in the field of computer vision has achieved remarkable accuracy for point estimation. However, the uncertainty in the estimation is rarely addressed. Uncertainty quantification accompanied by point estimation can lead to a more informed decision, and even improve the prediction quality. In this work, we focus on uncertainty estimation in the domain of crowd counting. With increasing occurrences of heavily crowded events such as political rallies, protests, concerts, etc., automated crowd analysis is becoming an increasingly crucial task. The stakes can be very high in many of these real-world applications. We propose a scalable neural network framework with quantification of decomposed uncertainty using a bootstrap ensemble. We demonstrate that the proposed uncertainty quantification method provides additional insight to the crowd counting problem and is simple to implement. We also show that our proposed method exhibits the state of the art performances in many benchmark crowd counting datasets.Comment: Accepted in AAAI 2020 (Main Technical Track
    • …
    corecore