44 research outputs found

    Peroxisome proliferator-activated receptor γ agonism attenuates endotoxaemia-induced muscle protein loss and lactate accumulation in rats

    Get PDF
    The peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (Rosi) appears to provide protection against organ dysfunction during endotoxaemia. We examined the potential benefits of Rosi on skeletal muscle protein maintenance and carbohydrate metabolism during lipopolysaccharide (LPS)-induced endotoxaemia. Sprague-Dawley rats were fed either standard chow (control) or standard chow containing Rosi (8.5±0.1 mg.kg-1.day-1) for two weeks before and during 24 h continuous intravenous infusion of LPS (15 μg.kg-1.h-1) or saline. Rosi blunted LPS-induced increases in muscle tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA by 70% (P<0.05) and 64% (P<0.01), respectively. Furthermore, Rosi suppressed the LPS-induced reduction in phosphorylated AKT and phosphorylated Forkhead box O (FOXO) 1 protein, as well as the upregulation of muscle RING finger 1 (MuRF1; P<0.01) mRNA, and the LPS-induced increase in 20S proteasome activity (P<0.05). Accordingly, LPS reduced the muscle protein:DNA ratio (~30%, P<0.001), which Rosi offset. Increased muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA (P<0.001) and muscle lactate accumulation (P<0.001) during endotoxaemia were suppressed by Rosi. Thus, pre-treatment with Rosi reduced muscle cytokine accumulation and blunted muscle protein loss and lactate accumulation during endotoxaemia, and at least in part by reducing activation of molecular events known to increase muscle protein breakdown and mitochondrial pyruvate use

    Glutamine supplementation

    Get PDF
    Intravenous glutamine supplementation is standard care when parenteral nutrition is given for critical illness. There are data of a reduced mortality when glutamine supplementation is given. In addition, standard commercial products for parenteral nutrition do not contain any glutamine due to glutamine instability in aqueous solutions. For the majority of critical ill patients who are fed enterally, the available evidence is insufficient to recommend glutamine supplementation. Standard formulation of enteral nutrition contains some glutamine: 2-4 g/L. However, this dose is insufficient to normalize glutamine plasma concentration

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    understanding the mechanisms of glutamine action in critically ill patients

    Get PDF
    Glutamine (Gln) is an important energy source and has been used as a supplementary energy substrate. Furthermore, Gln is an essential component for numerous metabolic functions, including acid-base homeostasis, gluconeogenesis, nitrogen transport and synthesis of proteins and nucleic acids. Therefore, glutamine plays a significant role in cell homeostasis and organ metabolism. This article aims to review the mechanisms of glutamine action during severe illnesses. In critically ill patients, the increase in mortality was associated with a decreased plasma Gln concentration. During catabolic stress, Gln consumption rate exceeds the supply, and both plasma and skeletal muscle pools of free Gln are severely reduced. The dose and route of Gln administration clearly influence its effectiveness: high-dose parenteral appears to be more beneficial than low-dose enteral administration. Experimental studies reported that Gln may protect cells, tissues, and whole organisms from stress and injury through the following mechanisms: attenuation of NF (nuclear factor)-kB activation, a balance between pro- and anti-inflammatory cytokines, reduction in neutrophil accumulation, improvement in intestinal integrity and immune cell function, and enhanced of heat shock protein expression. In conclusion, high-doses of parenteral Gln (>0.50 g/kg/day) demonstrate a greater potential to benefit in critically ill patients, although Gln pathophysiological mechanisms requires elucidation

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access
    corecore