515 research outputs found

    The Stability of Magnetized Rotating Plasmas with Superthermal Fields

    Full text link
    During the last decade it has become evident that the magnetorotational instability is at the heart of the enhanced angular momentum transport in weakly magnetized accretion disks around neutron stars and black holes. In this paper, we investigate the local linear stability of differentially rotating, magnetized flows and the evolution of the magnetorotational instability beyond the weak-field limit. We show that, when superthermal toroidal fields are considered, the effects of both compressibility and magnetic tension forces, which are related to the curvature of toroidal field lines, should be taken fully into account. We demonstrate that the presence of a strong toroidal component in the magnetic field plays a non-trivial role. When strong fields are considered, the strength of the toroidal magnetic field not only modifies the growth rates of the unstable modes but also determines which modes are subject to instabilities. We find that, for rotating configurations with Keplerian laws, the magnetorotational instability is stabilized at low wavenumbers for toroidal Alfven speeds exceeding the geometric mean of the sound speed and the rotational speed. We discuss the significance of our findings for the stability of cold, magnetically dominated, rotating fluids and argue that, for these systems, the curvature of toroidal field lines cannot be neglected even when short wavelength perturbations are considered. We also comment on the implications of our results for the validity of shearing box simulations in which superthermal toroidal fields are generated.Comment: 24 pages, 12 figures. Accepted for publication in ApJ. Sections 2 and 5 substantially expanded, added Appendix A and 3 figures with respect to previous version. Animations are available at http://www.physics.arizona.edu/~mpessah/research

    Conformally flat black hole initial data, with one cylindrical end

    Full text link
    We give a complete analytical proof of existence and uniqueness of extreme-like black hole initial data for Einstein equations, which possess a cilindrical end, analogous to extreme Kerr, extreme Reissner Nordstrom, and extreme Bowen-York's initial data. This extends and refines a previous result \cite{dain-gabach09} to a general case of conformally flat, maximal initial data with angular momentum, linear momentum and matter.Comment: Minor changes and formula (21) revised according to the published version in Class. Quantum Grav. (2010). Results unchange

    Rich Counter-Examples for Temporal-Epistemic Logic Model Checking

    Full text link
    Model checking verifies that a model of a system satisfies a given property, and otherwise produces a counter-example explaining the violation. The verified properties are formally expressed in temporal logics. Some temporal logics, such as CTL, are branching: they allow to express facts about the whole computation tree of the model, rather than on each single linear computation. This branching aspect is even more critical when dealing with multi-modal logics, i.e. logics expressing facts about systems with several transition relations. A prominent example is CTLK, a logic that reasons about temporal and epistemic properties of multi-agent systems. In general, model checkers produce linear counter-examples for failed properties, composed of a single computation path of the model. But some branching properties are only poorly and partially explained by a linear counter-example. This paper proposes richer counter-example structures called tree-like annotated counter-examples (TLACEs), for properties in Action-Restricted CTL (ARCTL), an extension of CTL quantifying paths restricted in terms of actions labeling transitions of the model. These counter-examples have a branching structure that supports more complete description of property violations. Elements of these counter-examples are annotated with parts of the property to give a better understanding of their structure. Visualization and browsing of these richer counter-examples become a critical issue, as the number of branches and states can grow exponentially for deeply-nested properties. This paper formally defines the structure of TLACEs, characterizes adequate counter-examples w.r.t. models and failed properties, and gives a generation algorithm for ARCTL properties. It also illustrates the approach with examples in CTLK, using a reduction of CTLK to ARCTL. The proposed approach has been implemented, first by extending the NuSMV model checker to generate and export branching counter-examples, secondly by providing an interactive graphical interface to visualize and browse them.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    Instability of hyper-compact Kerr-like objects

    Full text link
    Viable alternatives to astrophysical black holes include hyper-compact objects without horizon, such as gravastars, boson stars, wormholes and superspinars. The authors have recently shown that typical rapidly-spinning gravastars and boson stars develop a strong instability. That analysis is extended in this paper to a wide class of horizonless objects with approximate Kerr-like geometry. A detailed investigation of wormholes and superspinars is presented, using plausible models and mirror boundary conditions at the surface. Like gravastars and boson stars, these objects are unstable with very short instability timescales. This result strengthens previous conclusions that observed hyper-compact astrophysical objects with large rotation are likely to be black holes.Comment: 15 pages, 3 figures. To be published in CQ

    Turbulent magnetic field amplification from spiral SASI modes in core-collapse supernovae

    Full text link
    We describe the initial implementation of magnetohydrodynamics (MHD) in our astrophysical simulation code \genasis. Then, we present MHD simulations exploring the capacity of the stationary accretion shock instability (SASI) to generate magnetic fields by adding a weak magnetic field to an initially spherically symmetric fluid configuration that models a stalled shock in the post-bounce supernova environment. Upon perturbation and nonlinear SASI development, shear flows associated with the spiral SASI mode contributes to a widespread and turbulent field amplification mechanism. While the SASI may contribute to neutron star magnetization, these simulations do not show qualitatively new features in the global evolution of the shock as a result of SASI-induced magnetic field amplification.Comment: 15 pages, 7 figures, To appear in the Journal of Physics: Conference Series. Proceedings of the IUPAP Conference on Computational Physics (CCP2011

    Altered maternal profiles in corticotropin-releasing factor receptor 1 deficient mice

    Get PDF
    BACKGROUND: During lactation, the CNS is less responsive to the anxiogenic neuropeptide, corticotropin-releasing factor (CRF). Further, central injections of CRF inhibit maternal aggression and some maternal behaviors, suggesting decreased CRF neurotransmission during lactation supports maternal behaviors. In this study, we examined the maternal profile of mice missing the CRF receptor 1 (CRFR1). Offspring of knockout (CRFR1-/-) mice were heterozygote to offset possible deleterious effects of low maternal glucocorticoids on pup survival and all mice contained a mixed 50:50 inbred/outbred background to improve overall maternal profiles and fecundity. RESULTS: Relative to littermate wild-type (WT) controls, CRFR1-/- mice exhibited significant deficits in total time nursing, including high arched-back, on each test day. Consistent with decreased nursing, pups of CRFR1-deficient dams weighed significantly less than WT offspring. Licking and grooming of pups was significantly higher in WT mice on postpartum Day 2 and when both test days were averaged, but not on Day 3. Time off nest was higher for CRFR1-/- mice on Day 2, but not on Day 3 or when test days were averaged. Licking and grooming of pups did not differ on Day 2 when this measure was examined as a proportion of time on nest. CRFR1-/- mice showed significantly higher nest building on Day 3 and when tests were averaged. Mean pup number was almost identical between groups and no pup mortality occurred. Maternal aggression was consistently lower in CRFR1-/- mice and in some measures these differences approached, but did not reach significance. Because of high variance, general aggression results are viewed as preliminary. In terms of sites of attacks on intruders, CRFR1-/- mice exhibited significantly fewer attacks to the belly of the intruder on Day 5 and when tests were averaged. Performance on the elevated plus maze was similar between genotypes. Egr-1 expression differences in medial preoptic nucleus and c-Fos expression differences in bed nucleus of stria terminalis between genotype suggest possible sites where loss of gene alters behavioral output. CONCLUSION: Taken together, the results suggest that the presence of an intact CRFR1 receptor supports some aspects of nurturing behavior

    Extending the Shakura-Sunyaev approach to a strongly magnetized accretion disc model

    Full text link
    We develop a model of thin turbulent accretion discs supported by magnetic pressure of turbulent magnetic fields. This applies when the turbulent kinetic and magnetic energy densities are greater than the thermal energy density in the disc. Whether such discs survive in nature or not remains to be determined, but here we simply demonstrate that self-consistent solutions exist when the alpha-prescription for the viscous stress, similar to that of the original Shakura-Sunyaev model, is used. We show that \alpha \sim 1 for the strongly magnetized case and we calculate the radial structure and emission spectra from the disc in the regime when it is optically thick. Strongly magnetized optically thick discs can apply to the full range of disc radii for objects < 10^{-2} of the Eddington luminosity or for the outer parts of discs in higher luminosity sources. In the limit that the magnetic pressure is equal to the thermal or radiation pressure, our strongly magnetized disc model transforms into the Shakura-Sunyaev model with \alpha=1. Our model produces spectra quite similar to those of standard Shakura-Sunyaev models. In our comparative study, we also discovered a small discrepancy in the spectral calculations of Shakura and Sunyaev (1973).Comment: 27 pages, 11 figures, Astron. Astroph. in press; shortened version accepted by A&A, all calculations and conclusions are unchange

    Black hole mergers: the first light

    Full text link
    The coalescence of supermassive black hole binaries occurs via the emission of gravitational waves, that can impart a substantial recoil to the merged black hole. We consider the energy dissipation, that results if the recoiling black hole is surrounded by a thin circumbinary disc. Our results differ significantly from those of previous investigations. We show analytically that the dominant source of energy is often potential energy, released as gas in the outer disc attempts to circularize at smaller radii. Thus, dimensional estimates, that include only the kinetic energy gained by the disc gas, underestimate the real energy loss. This underestimate can exceed an order of magnitude, if the recoil is directed close to the disc plane. We use three dimensional Smooth Particle Hydrodynamics (SPH) simulations and two dimensional finite difference simulations to verify our analytic estimates. We also compute the bolometric light curve, which is found to vary strongly depending upon the kick angle. A prompt emission signature due to this mechanism may be observable for low mass (10^6 Solar mass) black holes whose recoil velocities exceed about 1000 km/s. Emission at earlier times can mainly result from the response of the disc to the loss of mass, as the black holes merge. We derive analytically the condition for this to happen.Comment: 16 pages, accepted by MNRAS. Animations of the simulations are available at http://jilawww.colorado.edu/~pja/recoil.htm
    • …
    corecore