106 research outputs found

    Inhibition of Intestinal Bile Acid Transporter Slc10a2 Improves Triglyceride Metabolism and Normalizes Elevated Plasma Glucose Levels in Mice

    Get PDF
    Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2) and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c). Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF) 15 mRNA and normalized bile acid synthesis in Slc10a2−/− mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2 - Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes

    Paradoxical Regulation of Human FGF21 by Both Fasting and Feeding Signals: Is FGF21 a Nutritional Adaptation Factor?

    Get PDF
    Fibroblast growth factor 21 (FGF21) has recently emerged as a metabolic hormone involved in regulating glucose and lipid metabolism in mouse, but the regulatory mechanisms and actions of FGF21 in humans remain unclear. Here we have investigated the regulatory mechanisms of the human FGF21 gene at the transcriptional level. A deletion study of the human FGF21 promoter (−1672 to +230 bp) revealed two fasting signals, including peroxisome proliferator-activated receptor α (PPARα) and glucagon signals, that independently induced human FGF21 gene transcription in mouse primary hepatocytes. In addition, two feeding signals, glucose and xylitol, also dose-dependently induced human FGF21 gene transcription and mRNA expression in both human HepG2 cells and mouse primary hepatocytes. FGF21 protein expression and secretion were also induced by high glucose stimulation. The human FGF21 promoter (−1672 to +230 bp) was found to have a carbohydrate-responsive element at −380 to −366 bp, which is distinct from the PPAR response element (PPRE). Knock-down of the carbohydrate response element binding protein by RNAi diminished glucose-induced human FGF21 transcription. Moreover, we found that a region from −555 to −443 bp of the human FGF21 promoter region exerts an important role in the activation of basic transcription. In conclusion, human FGF21 gene expression is paradoxically and independently regulated by both fasting and feeding signals. These regulatory mechanisms suggest that human FGF21 is increased with nutritional crisis, including starvation and overfeeding

    Fibroblast Growth Factor 21 Reverses Hepatic Steatosis, Increases Energy Expenditure, and Improves Insulin Sensitivity in Diet-Induced Obese Mice

    Get PDF
    OBJECTIVE—Fibroblast growth factor 21 (FGF21) has emerged as an important metabolic regulator of glucose and lipid metabolism. The aims of the current study are to evaluate the role of FGF21 in energy metabolism and to provide mechanistic insights into its glucose and lipid-lowering effects in a high-fat diet–induced obesity (DIO) model

    Herbivory on the pedunculate oak along an urbanization gradient in Europe : Effects of impervious surface, local tree cover, and insect feeding guild

    Get PDF
    Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.Peer reviewe

    Differential Specificity of Endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in Complex with KLB

    Get PDF
    Background: Recent studies suggest that betaKlotho (KLB) and endocrine FGF19 and FGF21 redirect FGFR signaling to regulation of metabolic homeostasis and suppression of obesity and diabetes. However, the identity of the predominant metabolic tissue in which a major FGFR-KLB resides that critically mediates the differential actions and metabolism effects of FGF19 and FGF21 remain unclear. Methodology/Principal Findings: We determined the receptor and tissue specificity of FGF21 in comparison to FGF19 by using direct, sensitive and quantitative binding kinetics, and downstream signal transduction and expression of early response gene upon administration of FGF19 and FGF21 in mice. We found that FGF21 binds FGFR1 with much higher affinity than FGFR4 in presence of KLB; while FGF19 binds both FGFR1 and FGFR4 in presence of KLB with comparable affinity. The interaction of FGF21 with FGFR4-KLB is very weak even at high concentration and could be negligible at physiological concentration. Both FGF19 and FGF21 but not FGF1 exhibit binding affinity to KLB. The binding of FGF1 is dependent on where FGFRs are present. Both FGF19 and FGF21 are unable to displace the FGF1 binding, and conversely FGF1 cannot displace FGF19 and FGF21 binding. These results indicate that KLB is an indispensable mediator for the binding of FGF19 and FGF21 to FGFRs that is not required for FGF1. Although FGF19 can predominantly activate the responses of the liver and to a less extent the adipose tissue, FGF21 can do so significantly only in the adipose tissue an

    20th Century Atmospheric Deposition and Acidification Trends in Lakes of the Sierra Nevada, California, USA

    Full text link
    We investigated multiple lines of evidence to determine if observed and paleo-reconstructed changes in acid neutralizing capacity (ANC) in Sierra Nevada lakes were the result of changes in 20th century atmospheric deposition. Spheroidal carbonaceous particles (SCPs) (indicator of anthropogenic atmospheric deposition) and biogenic silica and δ(13)C (productivity proxies) in lake sediments, nitrogen and sulfur emission inventories, climate variables, and long-term hydrochemistry records were compared to reconstructed ANC trends in Moat Lake. The initial decline in ANC at Moat Lake occurred between 1920 and 1930, when hydrogen ion deposition was approximately 74 eq ha(-1) yr(-1), and ANC recovered between 1970 and 2005. Reconstructed ANC in Moat Lake was negatively correlated with SCPs and sulfur dioxide emissions (p = 0.031 and p = 0.009). Reconstructed ANC patterns were not correlated with climate, productivity, or nitrogen oxide emissions. Late 20th century recovery of ANC at Moat Lake is supported by increasing ANC and decreasing sulfate in Emerald Lake between 1983 and 2011 (p < 0.0001). We conclude that ANC depletion at Moat and Emerald lakes was principally caused by acid deposition, and recovery in ANC after 1970 can be attributed to the United States Clean Air Act
    corecore