44 research outputs found
Automatable downstream purification of the benzohydroxamic acid D-DIBOA from a biocatalytic synthesis
Herbicides play a vital role in agriculture, contributing to increased crop productivity by minimizing weed growth, but their low degradability presents a threat to the environment and human health. Allelochemicals, such as DIBOA (2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4 H)-one), are secondary metabolites released by certain plants that affect the survival or growth of other organisms. Although these metabolites have an attractive po-tential for use as herbicides, their low natural production is a critical hurdle. Previously, the synthesis of the biologically active analog D-DIBOA (4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one) was achieved, using an engi-neered E. coli strain as a whole-cell biocatalyst, capable of transforming a precursor compound into D-DIBOA and exporting it into the culture medium, although it cannot be directly applied to crops. Here a chromatographic method to purify D-DIBOA from this cell culture medium without producing organic solvent wastes is described. The purification of D-DIBOA from a filtered culture medium to the pure compound could also be automated. Biological tests with the purified compound on weed models showed that it has virtually the same activity than the chemically synthesized D-DIBOA
Force spectroscopy-based simultaneous topographical and mechanical characterization to study polymer-to-polymer interactions in coated alginate microspheres
Cell-laden hydrogel microspheres have shown encouraging outcomes in the fields of drug delivery, tissue engineering or regenerative medicine. Beyond the classical single coating with polycations, many other different coating designs have been reported with the aim of improving mechanical properties and in vivo performance of the microspheres. Among the most common strategies are the inclusion of additional polycation coatings and the covalent bonding of the semi-permeable membranes with biocompatible crosslinkers such as genipin. However, it remains challenging to characterize the effects of the interactions between the polycations and the hydrogel microspheres over time in vitro. Here we use a force spectroscopy-based simultaneous topographical and mechanical characterization to study polymer-to-polymer interactions in alginate microspheres with different coating designs, maintaining the hydrogels in liquid. In addition to classical topography parameters, we explored, for the first time, the evolution of peak/valley features along the z axis via thresholding analysis and the cross-correlation between topography and stiffness profiles with resolution down to tens of nanometers. Thus, we demonstrated the importance of genipin crosslinking to avoid membrane detachment in alginate microspheres with double polycation coatings. Overall, this methodology could improve hydrogel design rationale and expedite in vitro characterization, therefore facilitating clinical translation of hydrogel-based technologies
A novel orally available inhibitor of focal adhesion signaling increases survival in a xenograft model of diffuse large B-cell lymphoma with central nervous system involvement
Central nervous system dissemination is a relatively uncommon but almost always fatal complication in diffuse large B-cell lymphoma patients. Optimal therapy for central nervous involvement in this malignancy has not been established. In this paper, we aimed to evaluate the therapeutic effect of E7123, a celecoxib derivative that inhibits focal adhesion signaling, in a novel xenograft model of diffuse large B-cell lymphoma with central nervous system involvement. Cells obtained after disaggregation of HT subcutaneous tumors (HT-SC cells) were intravenously injected in NOD/SCID mice. These mice received oral vehicle or 75 mg/kg of E7123 daily until they were euthanized for weight loss or signs of sickness. The antitumor effect of E7123 was validated in an independent experiment using a bioluminescent mouse model. Intravenously injected HT-SC cells showed higher take rate and higher central nervous system tropism (associated with increased expression of beta 1-integrin and p130Cas proteins) than HT cells. The oral administration of E7123 significantly increased survival time in 2 independent experiments using mice injected with unmodified or bioluminescent HT-SC cells. We have developed a new xenograft model of diffuse large B-cell lymphoma with central nervous system involvement that can be used in the pre-clinical evaluation of new drugs for this malignancy. E7123 is a new, well-tolerated and orally available therapeutic agent that merits further investigation since it may improve current management of diffuse large B-cell lymphoma patients with central nervous system involvement
Bioremediation of Olive Mill Wastewater sediments in evaporation ponds through in situ composting assisted by bioaugmentation
The common method for the disposal of olive oil mill wastewater (OMW) has been its accumulation in evaporation ponds where OMW sediments concentrate. Due to the phytotoxic and antimicrobial effect of OMW, leaks
from ponds can pollute soils and water bodies. This work focuses on the search for microorganisms that can be
used as inocula for bioremediation of polluted matrices in OMW ponds by means of in situ composting. Two
fungi isolated from OMW sediments, Aspergillus ochraceus H2 and Scedosporium apiospermum H16, presented
suitable capabilities for this use as a consortium. Composting eliminated the phyto- and ecotoxicity of OMW sediments by depleting their main toxic components. Inoculation with the fungal consortium improved the bioremediation efficacy of the technique by hastening the decrease of phytotoxicity and ecotoxicity and enhancing
phytostimulant property of compost produced. This procedure constitutes a promising strategy for bioremediation of OMW polluted sites
Microbial communities of the olive mill wastewater sludge stored in evaporation ponds: The resource for sustainable bioremediation
Olive Mill Wastewater (OMW) is a polluting residue from the olive oil industry. It is usually stored in open-air
unprotected evaporation ponds where their sediments accumulate. This study compares the characteristics of
OMW sludges stored for long-time in evaporation ponds and assesses their impact on the underlying soil layer.
Physicochemical parameters, toxicity bioassays, and full characterization of the microbial community were
analyzed. The extension of the polluting effects was assessed by analysis of toxicity, microbial biomass carbon,
and respiration. Geostatistics was used to predict their spatial distribution. Organic matter and polyphenol
content besides toxicity levels determine variations between OMW sludges and have a high impact on the
microbiota they contain. The microbial community was abundant, diverse, and functionally active. However, the
biodegradability of the sludges was hindered by the toxicity levels. Toxicity and biomass carbon were higher on
the surface of the ponds than in the soil layer revealing a reduced leach flow and depletion of contaminants. The
natural microbiota might be biostimulated by means of applying sustainable and feasible biological treatments in
order to favor the OMW sludges bioremediation. These results open up the possibility of solving the environmental concern caused by its storage in similar scenarios, which are common in olive oil-producing countries
Myc-Related Mitochondrial Activity as a Novel Target for Multiple Myeloma
Mitochondria are involved in the development and acquisition of a malignant phenotype in hematological cancers. Recently, their role in the pathogenesis of multiple myeloma (MM) has been suggested to be therapeutically explored. MYC is a master regulator of b-cell malignancies such as multiple myeloma, and its activation is known to deregulate mitochondrial function. We investigated the impact of mitochondrial activity on the distinct entities of the disease and tested the efficacy of the mitochondrial inhibitor, tigecycline, to overcome MM proliferation. COXII expression, COX activity, mitochondrial mass, and mitochondrial membrane potential demonstrated a progressive increase of mitochondrial features as the disease progresses. In vitro and in vivo therapeutic targeting using the mitochondrial inhibitor tigecycline showed promising efficacy and cytotoxicity in monotherapy and combination with the MM frontline treatment bortezomib. Overall, our findings demonstrate how mitochondrial activity emerges in MM transformation and disease progression and the efficacy of therapies targeting these novel vulnerabilities
Connected Insulin Pens and Caps : An Expert's Recommendation from the Area of Diabetes of the Spanish Endocrinology and Nutrition Society (SEEN)
Undoubtedly, technological advances have revolutionised diabetes management in recent years. The development of advanced closed hybrid loop insulin pumps or continuous glucose monitoring (CGM) systems, among others, have increased the quality of life and improved glycaemic control of people with diabetes. However, only some patients have access to such technology, and only some want to use it. CGM has become much more widespread, but in terms of insulin delivery, most people with type 1 diabetes (T1D) and almost all people with type 2 diabetes (T2D) on insulin therapy are treated with multiple-dose insulin injections (MDI) rather than an insulin pump. For these patients, using connected insulin pens or caps has shown benefits in reducing missed insulin injections and promoting correct administration over time. In addition, using these devices improves the quality of life and user satisfaction. The integration of insulin injection and CGM data facilitates both users and the healthcare team to analyse glucose control and implement appropriate therapeutic changes, reducing therapeutic inertia. This expert's recommendation reviews the characteristics of the devices marketed or in the process of being marketed and their available scientific evidence. Finally, it suggests the profile of users and professionals who would benefit most, the barriers to its generalisation and the changes in the care model that implementing these devices can bring with it
Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)
Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters.
Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs).
Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001).
Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio
Symptom cluster analysis of long COVID-19 in patients discharged from the Temporary COVID-19 Hospital in Mexico City.
INTRODUCTION: Several reports have emerged describing the long-term consequences of COVID-19 and its effects on multiple systems. METHODS: As further research is needed, we conducted a longitudinal observational study to report the prevalence and associated risk factors of the long-term health consequences of COVID-19 by symptom clusters in patients discharged from the Temporary COVID-19 Hospital (TCH) in Mexico City. Self-reported clinical symptom data were collected via telephone calls over 90 days post-discharge. Among 4670 patients, we identified 45 symptoms across eight symptom clusters (neurological; mood disorders; systemic; respiratory; musculoskeletal; ear, nose, and throat; dermatological; and gastrointestinal). RESULTS: We observed that the neurological, dermatological, and mood disorder symptom clusters persisted in >30% of patients at 90 days post-discharge. Although most symptoms decreased in frequency between day 30 and 90, alopecia and the dermatological symptom cluster significantly increased (p < 0.00001). Women were more prone than men to develop long-term symptoms, and invasive mechanical ventilation also increased the frequency of symptoms at 30 days post-discharge. CONCLUSION: Overall, we observed that symptoms often persisted regardless of disease severity. We hope these findings will help promote public health strategies that ensure equity in the access to solutions focused on the long-term consequences of COVID-19
Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality