243 research outputs found

    Optical amplification enhancement in photonic crystals

    Get PDF
    Improving and controlling the efficiency of a gain medium is one of the most challenging problems of laser research. By measuring the gain length in an opal based photonic crystal doped with laser dye, we demonstrate that optical amplification is more than twenty-fold enhanced along the Gamma-K symmetry directions of the face centered cubic photonic crystal. These results are theoretically explained by directional variations of the density of states, providing a quantitative connection between density of the states and light amplification

    Aproximación bibliográfica a Alonso Cano y su escuela

    Get PDF
    AA. VV. Escultura religiosa granadina: desde la reconquista hasta Alonso Cano: exposicion celebrada en Granada en las fiestas del Santísimo Corpus Christi, mayo-junio 1940: catálogo de la exposición. Granada: Imp. Urania, 1940.AA. VV. Catálogo de la exposición de Siete obras maestras del arte español del s. XVIl.· Velázquez, Zurbarán, Alonso Cano, Pedro de Mena, de colecciones barcelonesas: celebrada en la Sala París-Barcelona, diciembre-enero 1949-1950. Barcelona: Edimar, 1949.AA. VV. Pintores granadinos del siglo XVIl. Actos conmemorativos del Tricentenario de Bartolomé E. Murillo. Sevilla: Ministerio de Cultura-Dirección de Bellas Artes y Archivos, 1982

    Optical response with threefold symmetry axis on oriented microdomains of opal photonic crystals

    Get PDF
    The paper deals with three-dimensional photonic crystals known as artificial opals, namely, fcc lattices of dielectric spheres: such systems have been the subject of numerous investigations. Opal photonic crystals viewed along the [111] direction of the fcc structure have a threefold symmetry axis; however this microscopic symmetry is difficult to observe in optical measurements performed on macroscopic areas containing microdomains with different orientations. In this work polarized transmittance measurements on [111]-stacked silica opals with single oriented microdomains, identified by field-emission scanning electron microscopy and laser-scanning confocal microscopy, demonstrate different optical response of twin structures with the two possible vertical stacking sequences. A detailed comparison with theory shows that microtransmittance experiments probe the photonic band structure along the Gamma-L-K and Gamma-L-U orientations of the Brillouin zone, respectively, thus giving conclusive evidence for macroscopic optical response related to the presence of a threefold (instead of a sixfold) symmetry axis in the photonic microstructure. The paper arises from a collaboration between the University of Pavia and the Politecnico di Torino

    The hydrogen–air burning rate near the lean flammability limit

    Get PDF
    This paper investigates the inner structure of the thin reactive layer of hydrogen–air fuellean deflagrations close to the flammability limit. The analysis, which employs seven elementary reactions for the chemistry description, uses the ratio of the characteristic radical and fuel concentrations as a small asymptotic parameter, enabling an accurate analytic expression for the resulting burning rate to be derived. The analysis reveals that the steady-state assumption for chemical intermediaries, applicable on the hot side of the reactive layer, fails, however, as the crossover temperature is approached, providing a nonnegligible higher-order correction to the burning rate. The results can be useful, for instance, in future investigations of hydrogen deflagration instabilities near the lean flammability limit

    Angular redistribution of near-infrared emission from quantum dots in 3D photonic crystals

    Get PDF
    We study the angle-resolved spontaneous emission of near-infrared light sources in 3D photonic crystals over a wavelength range from 1200 to 1550 nm. To this end PbSe quantum dots are used as light sources inside titania inverse opal photonic crystals. Strong deviations from the Lambertian emission profile are observed. An attenuation of 60 % is observed in the angle dependent radiant flux emitted from the samples due to photonic stop bands. At angles that correspond to the edges of the stop band the emitted flux is increased by up to 34 %. This increase is explained by the redistribution of Bragg-diffracted light over the available escape angles. The results are quantitatively explained by an expanded escape-function model. This model is based on diffusion theory and adapted to photonic crystals using band structure calculations. Our results are the first angular redistributions and escape functions measured at near-infrared, including telecom, wavelengths. In addition, this is the first time for this model to be applied to describe emission from samples that are optically thick for the excitation light and relatively thin for the photoluminesence light.Comment: 24 pages, 8 figures (current format = single column, double spaced

    Tunable anisotropy in inverse opals and emerging optical properties

    Get PDF
    Using self-assembly, nanoscale materials can be fabricated from the bottom up. Opals and inverse opals are examples of self-assembled nanomaterials made from crystallizing colloidal particles. As self-assembly requires a high level of control, it is challenging to use building blocks with anisotropic geometry to form complex opals, which limits the realizable structures. Typically, spherical colloids are employed as building blocks, leading to symmetric, isotropic superstructures. However, a significantly richer palette of directionally dependent properties are expected if less symmetric, anisotropic structures can be created, especially originating from the assembly of regular, spherical particles. Here we show a simple method to introduce anisotropy into inverse opals by subjecting them to a post-assembly thermal treatment that results in directional shrinkage of the silica matrix caused by condensation of partially hydrated sol-gel silica structures. In this way, we can tailor the shape of the pores, and the anisotropy of the final inverse opal preserves the order and uniformity of the self-assembled structure, while completely avoiding the need to synthesize complex oval-shaped particles and crystallize them into such target geometries. Detailed X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies clearly identify increasing degrees of sol-gel condensation in confinement as a mechanism for the structure change. A computer simulation of structure changes resulting from the condensation-induced shrinkage further confirmed this mechanism. As an example of property changes induced by the introduction of anisotropy, we characterized the optical spectra of the anisotropic inverse opals and found that the optical properties can be controlled in a precise way using calcination temperature

    Case Report: An EGFR-Targeted 4-1BB-agonistic Trimerbody Does Not Induce Hepatotoxicity in Transgenic Mice With Liver Expression of Human EGFR

    Get PDF
    Agonistic monoclonal antibodies (mAbs) targeting the co-stimulatory receptor 4-1BB are among the most effective immunotherapeutic agents across pre-clinical cancer models. However, clinical development of full-length 4-1BB agonistic mAbs, has been hampered by dose-limiting liver toxicity. We have previously developed an EGFR-targeted 4-1BB-agonistic trimerbody (1D8N/CEGa1) that induces potent anti-tumor immunity without systemic toxicity, in immunocompetent mice bearing murine colorectal carcinoma cells expressing human EGFR. Here, we study the impact of human EGFR expression on mouse liver in the toxicity profile of 1D8N/CEGa1. Systemic administration of IgG-based anti-4-1BB agonist resulted in nonspecific immune stimulation and hepatotoxicity in a liver-specific human EGFR-transgenic immunocompetent mouse, whereas in 1D8N/CEGa1-treated mice no such immune-related adverse effects were observed. Collectively, these data support the role of FcγR interactions in the major off-tumor toxicities associated with IgG-based 4-1BB agonists and further validate the safety profile of EGFR-targeted Fc-less 4-1BB-agonistic trimerbodies in systemic cancer immunotherapy protocols

    Analogues of Marine Guanidine Alkaloids Are in Vitro Effective against Trypanosoma cruzi and Selectively Eliminate Leishmania (L.) infantum Intracellular Amastigotes

    Get PDF
    Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism
    corecore