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This paper investigates the inner structure of the thin reactive layer of hydrogen-air fuel-
lean deflagrations close to the flammability limit. The analysis, which employs seven 
elementary reactions for the chemistry description, uses the ratio of the characteristic 
radical and fuel concentrations as a small asymptotic parameter, enabling an accurate 
analytic expression for the resulting burning rate to be derived. The analysis reveals that 
the steady-state assumption for chemical intermediaries, applicable on the hot side of 
the reactive layer, fails, however, as the crossover temperature is approached, providing 
a nonnegligible higher-order correction to the burning rate. The results can be useful, 
for instance, in future investigations of hydrogen deflagration instabilities near the lean 
flammability limit. 
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1. Introduction 

Theoretical investigations of flame dynamics often take into account that the structure of 
planar steady deflagrations typically involves two layers, a frozen upstream preheat region 
and a much thinner diffusive-reactive layer with negligible effects of convection. In the 
presence of flame perturbations, unsteady effects, as well as curvature and strain effects, 
enter first to modify the thicker preheat region, while the reactive-diffusive layer behaves as 
planar in the first approximation and reacts to the external perturbations in a quasi-steady 
manner, giving a burning rate (fuel burnt per unit flame surface per unit time) that is 
mainly a function of the perturbed burnt temperature. This paper is intended to facilitate 
perturbation analyses by providing a simplified description for the resulting burning rate 
for hydrogen-air flames near the lean flammability limit, to be used, for instance, in the 
investigation of diffusive-thermal instabilities leading to cellular structures in such flames 
and in the study of the dynamics of these flames under perturbations. 

The present work builds on our previous investigation [1], which identified a detailed 
mechanism of seven elementary reactions, shown below in Table 1, that describes accurately 
the propagation of atmospheric and sub-atmospheric lean hydrogen-air flames. The result­
ing chemistry description predicts, in particular, a kinetically controlled flammability limit 
at which the planar deflagration velocity vanishes, when the adiabatic flame temperature 
equals the crossover temperature, Tc, the latter denned such that the rate of reaction H + O2 



Table 1. The seven-step mechanism with rate coefficients in the Arrhenius 
form k = AT" exp(—Ta/T) as given in [3]. 

Reaction 

l . H + 0 2 ^ O H + O b 

2. H 2 + O ^ O H + H b 

3. H 2 + O H ^ H 2 0 + H b 

4f. H + 0 2 + M ^ H 0 2 + M c 

5f. H 0 2 + H ^ O H + O H 
6f. H 0 2 + H ^ H 2 + 0 2 

7f. H 0 2 + O H ^ H 2 0 + 0 2 

kf 
h 
kf 
kb 

kf 
h 
k0 

kco 

Aa 

3.52xl0 1 6 

7.04xl0 1 3 

5.06xl0 4 

3.03xl0 4 

1.17xl09 

1.29xl01 0 

5.75xl0 1 9 

4.65xl0 1 2 

7.08xl0 1 3 

1.66xl01 3 

2.89xl0 1 3 

n 

- 0 . 7 
-0 .264 

2.67 
2.633 

1.3 
1.196 
- 1 . 4 
0.44 

0 
0 
0 

Ta\K] 

8590 
72 

3166 
2433 
1829 
9412 

0 
0 

148 
414 

- 2 5 0 

aUnits are mol, s, cm3, and K. 
bThe backward rate parameters are approximate fits obtained from the forward rate 
parameters by use of the thermodynamic data. 
cChaperon efficiencies are 2.5 for H2, 16.0 for H20, and 1.0 for all other species; Troe 
falloff with Fc = 0.5 [5]. 

1/ 4 / 
-> OH+O equals that of reaction H + O2 + M -> HO2 + M. It is found that for the tempera­
ture conditions typically encountered the reaction constants are such that the concentrations 
of O, OH and HO2 are much smaller than that of H2 and consequently can be treated in the 
steady-state approximation at leading order. On the other hand, the ratio of the H and H2 

concentrations in the reaction layer will be found to be of the order of the ratio of the H2 and 
O2 concentrations there, and therefore is proportional to (Tb - Tc)/(Tb - Tu), with Tu and 
Tb representing the initial temperature of the unburnt mixture and the burnt temperature, 
respectively. When, for lean flames close to the flammability limit, the burnt temperature 
Tb is close to the crossover value Tc, the resulting H-atom concentration is much smaller 
than the H2 concentration in the reaction layer, thereby ensuring the applicability of the 
steady-state approximation at leading order also for H atoms. With all radicals maintaining 
chemical-kinetic steady states in the first approximation, the development leads to a one-
step reduced mechanism in which the main species react according to the single overall 
reaction 2H2 + 0 2 ^ 2H20 with a non-Arrhenius global rate. The resulting steady-state ex­
pressions for H, O and OH predict radicals to exist only in a small intermediate temperature 
range that extends from crossover to the burnt temperature Tb. Radicals disappear abruptly 
at crossover where the resulting radical profiles exhibit an unrealistic discontinuous slope 
and the steady-state assumptions fail. 

The analysis below will use the ratio, e, of the characteristic values of the H-atom and 
H2 concentrations in the reaction layer as a small asymptotic parameter for the description 
of the reaction zone in lean hydrogen-air deflagrations. For the temperatures typically 
encountered, this small parameter satisfies e ~ (Tb - Tc)/(Tb - Tu), and therefore is also 
proportional to the ratio of the reaction-layer thickness to the flame thickness. Small values 
of e, associated with values of the burnt temperature Tb close to Tc, therefore also imply 
that convection can be neglected in the first approximation in the reaction zone. The 
analysis of the resulting diffusive-reactive layer, including the region where steady-state 
approximations hold for all radicals and the layer of steady-state failure, located around 
the crossover temperature, will provide, in particular, the burning rate as a function of the 



burnt temperature and the pressure, which will be tested by comparisons of predictions of 
propagation velocities of steady planar flames, employing the seven-step mechanism along 
with our previous [1] assumptions concerning transport, in order to be able to evaluate 
better how accurate the results of the present development may be. 

2. Specific objectives and problem formulation 

As shown recently [1], for hydrogen-air mixtures that are very fuel lean, the seven steps 
shown in Table 1 suffice to describe accurately flame propagation velocity. The table shows 
the rate constants for all reactions, taken from the so-called San Diego mechanism [2], 
which has been tested to give excellent results when applied to the description of hydrogen 
combustion [3]. 

A sample computation of a steady planar deflagration obtained with the COSILAB code 
[4] with this seven-step mechanism is shown in Figure 1 for pressure p = 1 atm, initial 
temperature Tu = 300 K and equivalence ratio 0 = 0.28. As can be seen, for these very 
lean conditions radicals only exist in a relatively thin reactive layer that is preceded by a 
chemically frozen preheat region. The main effect of curvature and unsteadiness, together 
with preferential diffusion effects, is to change the structure of the preheat region from 
that shown in the figure for a steady planar flame, modifying the burnt temperature and, 
therefore, the resulting burning rate. 

We shall investigate below the structure of the thin reactive layer where radicals are 
present to determine the fuel mass burning rate as a function of the burnt temperature, giving 
results that may be used not only for computations of steady planar deflagration velocities 
but also in studies of flame dynamics and stability. Because of its small thickness, convection 
can be neglected in the first approximation in this reactive layer, along with changes of 
density p and thermal diffusivity DT from their downstream values at equilibrium. If n is 
defined as the coordinate normal to the reaction layer, then the resulting species conservation 
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Figure 1. The temperature and mole fractions across a premixed hydrogen-air mixture for p = 1 atm, 
Tu = 300 K and 0 = 0.28 as calculated with the seven-step short mechanism; the inset compares the 
H-atom mole fraction computed numerically with that predicted by the steady-state expression (29). 



equations become 

DT d2CH2 

LH, An2 

DT A2Q °2 

L0l An2 

DT d2CH20 

^H2O An2 

DT A2C0 

L0 An2 

DT d2C0H 

L0H d«2 

£>r d2CH 

LH dw2 

D r d2CH02 

^HO2 An2 

CH2 = - « 2 - «3 + C06f (1) 

C02 = - & > ] - &>4/ + 0)6f + 0>]f (2) 

CH2O = «3 + « 7 / (3) 

Co = co\ - OJ2 (4) 

C0H = &>1 + &>2 - (&i + 2a>5 f ~ 0*1 f (5) 

CH = -&>] + OJ2 + OJ3 - oj4f - oj5f - oj6f (6) 

CHo2 = (04 f — 0)5 f — 0)6f — (&]f (7) 

where Q and Li are the concentration and Lewis number of species i, and Q denotes 
its corresponding chemical production rate (moles per unit volume per unit time), to be 
computed from the rates ojj of the elementary reactions shown in Table 1. At the same level 
of approximation, the energy conservation equation becomes 

PCPDT^2=J2h"^ oo 

where cp is the specific heat at constant pressure, assumed to be constant, T is the tempera­
ture, and h° is the enthalpy of formation per mol of species i at Tb. The above equations are 
to be integrated with boundary conditions corresponding to matching with the upstream 
chemically frozen preheat region as n -> — oo 

mH2 1 dCH2 2 dCp2 _ 1 dCH2p _ pcp AT 

WU2DT LH2 An L02 An LH20 An h^0 An 
(9) 

and 

C0 = C0H = CH = CH02 = 0, (10) 

where mH2 is the mass fuel burning rate and WH2 is the molecular mass of H2. The accom­
panying boundary conditions as n -> +oo correspond to the downstream state reached as 
the gradients of concentrations and temperature vanish 

^ H 2
 = ^ 0 2 ^02b

 = ^ H 2 0 H2°b = ° = ^"OH = ^ H = ^ H 0 2
 = -* *b = ", V ^ V 

where the subscript b denotes conditions in the burnt gas. 



Note that in a planar steady deflagration, the burnt conditions can be computed as the 
chemical equilibrium state for the fresh gas mixture upstream from the preheat region, so 
that in particular the burnt temperature Tb would be equal to the adiabatic flame temperature 
Too. In the presence of flame perturbations, however, unsteady effects, as well as curvature 
and strain effects, enter to modify the flame structure in the thick preheat region that precedes 
the reaction zone, causing the value of Tb to differ from the adiabatic flame temperature. 
In particular, lean hydrogen flames are known to be strongly prone to diffusive-thermal 
instabilities that induce departures from presumed steady, planar structures. In the resulting 
curved flames, because of differential diffusion effects the burnt temperature Tb is larger 
than the adiabatic flame temperature T^ in the convex parts of the flame, and smaller 
in the concave parts. When the departures are sufficiently small for Tb to remain above 
the crossover value everywhere, hydrogen is depleted behind the reaction sheet, which is 
followed by a postflame region in chemical equilibrium, of thickness comparable to or larger 
than that of the preheat region. Across this region transverse heat conduction causes the 
solution to evolve slowly from the burnt state with T = Tb found immediately downstream 
from the reaction zone towards the final equilibrium state with T = T^. When the flame 
perturbations are such that T^ - Tb - c T^ the gradients found in this postflame region 
are much smaller than those found in the reaction zone and can be therefore neglected 
in the first approximation when computing the burning rate, which can be determined 
with consideration of vanishing gradients downstream from the reaction zone, a condition 
employed above when writing the boundary conditions (11). 

On the other hand, for conditions near the lean flammability limit, relatively small 
temperature excursions T^ - Tb in curved flames may lead to values of the burnt tem­
perature below crossover in the concave parts of the flame, leading to local extinction of 
the chemical reaction and to the appearance of cellular flames, seen in recent numeri­
cal simulations [6]. These cellular flames, which could be investigated with the one-step 
chemistry recently derived [1], exist even for equivalence ratios well below the kinet-
ically controlled flammability limit of planar flames. Because of their relatively large 
curvature, peak temperatures above crossover are found behind the reaction layer in each 
individual flame cell, whose hot products mix downstream with the cold reactant mix­
ture that flows between cells, leading to a relatively cold postflame region where chem­
ical reaction proceeds at a negligibly slow rate. These cellular flames fall outside the 
scope of the present analysis, which considers weakly perturbed flames with burned tem­
peratures above crossover such that the downstream zone does not influence the pre­
heat or reaction zones, its properties departing negligibly from those of the equilibrium 
state. 

The solution of the above problem for given values of Tb, C0u, Cill0b and pres­
sure determines the fuel burning rate m H r To facilitate the development, it is con­
venient to combine linearly (1), (2) and (3) with (4)-(7) to obtain the alternative 
equations 

2&>4/ (12) 

oMf (13) 

d2 

An1 

A2 

An1 

\ ^ H 2 '-•0 

\12L _I_ _ 
V ^ o 2 -^0 

D d ' 
An2 

1 ^ O H 

1 ^ O H 

7 1 

/ C H J O _ 

L Ln L -LHo2 

\ c \ c 
1 O H 1 ^ H 0 2 

7 1 7 1 
Z. J^H -^ ^ H 0 2 

L-0 L-H L-H02 

1 ~ 1 1 
^0 -^H -^H02 

-2ft)4/, (14) 



where 

&>4/ = k4fCMC02CH (15) 

is the rate of the three-body recombination reaction, with 

CM = p/(R°T) + 15CH20 + 1.5CH2 (16) 

representing the effective third-body concentration, which accounts for the non-unity third-
body chaperon efficiencies of water vapor and molecular hydrogen. Integrating once (12) 
with the boundary conditions given above provides 

/

+O0 

k4fCMCo2CHdn, (17) 

-oo 

indicating that the burning rate is linearly proportional to rate of the recombination reaction 
4 / integrated across the flame. An accurate description of the H-atom concentration is 
therefore needed to compute mH2. We shall see below that such a description requires 
consideration of two different regions: a relatively thick layer where all radicals follow a 
steady-state approximation to leading order and a thinner upstream layer where the steady-
state approximations for O, OH and H break down. Both regions will be analyzed separately 
below and their corresponding contributions to the burning rate will be determined. 

3. Fuel burning rate based on analysis of the steady-state region 

As seen in Figure 1 for the radical H, taken as representative of the radical pool, near the 
lean flammability limit radicals appear in concentrations that are much smaller than those of 
H2. Neglecting radical concentrations on the left-hand side of (12), (13) and (14) provides 

DT d2C02 _ DT d2CH20 _ DT d2CH2 _ 

L02 d«2 2LH20 d»2 2LH2 d»2 'W4/ ' ( j 

indicating that, in the first approximation, the fuel burns as dictated by the irreversible 
overall reaction 2H2 + O2 ^ 2H2O with a rate equal to that of reaction 4f. At the same 
level of approximation, the energy conservation equation becomes 

d2T 
PCPDT~A~T

 = ~21°^f- (19) 

and diffusive transport of radicals can be neglected in (4)-(7) to give 

(20) 

(21) 

-&>i + an, + &>3 - a>4f - co5f - co(,f = 0 (22) 

(23) 

In (19), q = -/z°2o denotes the amount of heat released per mole of H2 consumed. The 
new set of equations (18)—(23), including the steady-state approximations (20)-(23) for the 

&>1 + G>2 ~ 

OJ2+OJ3 -

oMf-

&>1 - &>2 : 

- an, + 2co5f - a>Tf -

- a>4f — a>sf — a>(,f • 

- &>5/ — &>6/ — &>7/ : 

= 0 

= 0 

= 0 

= 0. 



radicals, apply at leading order provided the radicals concentrations are much smaller than 
CH2. 

Using the boundary conditions as n -> oo in integrating the first two equations in (18) 
yields 

2L„ 
Co2 = C02b + —^CH2 (24) 

t-H20 — (-HjO,, , (-H2 ( 2 5 ) 
^ H 2 

while a similar integration of d2(pcpT + qC^/L^/dn2 = 0, obtained from a linear com­
bination of the last equation in (18) and (19), gives 

Tb-T = qCnJ(pcpLU2). (26) 

Equations (24)-(26) can be used to relate the concentrations of oxygen and water vapor 
and the temperature to the local H2 concentration. In the computations below, the values 
LQ2 = 1.11,LH2 =0 .3 ,LH 2 O = 0.83 are employed for the different Lewis numbers, and the 
constant values of the density and specific heat are evaluated at equilibrium. 

To proceed with the analysis, (20)-(23) must be solved to give expressions for the radical 
concentrations [1]. If the reverse reaction lb is neglected, an excellent approximation under 
these fuel-lean conditions, the resulting explicit expressions become 

C0 = <*&*(^!—x\ (27) 
Gkw \ak4fCM } 

CoBs = k-M^ (J^_ _ A (28) 
k\b \akAfCM J 

c = 1 k2fk3fC
2
2 / kif l 

G k\bk4fCMC02 \ak/\fCM 
(29) 

where 

CH0, = — CH„ (30) 
H°2- (f + G)klf

 H2' V ' 

rk5f+ k6f hf CH2 

kjf k4fCM CQ 2 

+ Ksfc / 
2 2 

G = ^ ^ + f- {[1 + 2(3 + Yib)/f + (1 + Y3b)2/f2lV2 ~ 1} (32) 

and 

_ k6ff/(k5f + k6f) + G 

f+G ' l ' 



with 

K3fct-H o 
Y3b = 2 • (34) 

Substituting the H-atom concentration (29) into the expression for &>4/ given in (15) provides 
an explicit non-Arrhenius expression for the overall rate of the global reaction 2H2 + O2 
-* 2H20. 

It is of interest that, according to (27), (28) and (29), in the steady-state approximation 
adopted here the concentrations of O, OH and H vanish as the temperature approaches the 
crossover value Tc, defined by the condition 

k\f = ak4fCM, (35) 

giving a value that depends on the composition through the function a and the effective 
third-body concentration CM. At temperatures below Tc the steady-state approximation 
predicts C0 = C0H = CH = 0, while the concentration of the hydroperoxyl radical, given 
in (30), reaches a nonzero value at the crossover temperature and is positive also for 
T < Tc. In fact HO2 continues to react for T < Tc by steps not included in the seven-step 
mechanism; it is eventually consumed completely when T = Tu, but this chemistry exerts 
very small influences on burning rates, entirely negligible at the orders addressed here. 
Because of the linear dependence of co4f on the H-atom concentration, the overall oxidation 
reaction 2H2 + 0 2 -> 2H20 is restricted to a high-temperature reaction layer adjacent to 
the flame hot boundary where the temperature lies in the range Tc < T < Tb. This layer is 
thin compared with the flame provided Tb — Tc « r t — Tu, where the subscript u denotes 
unburnt conditions in the fresh mixture upstream from the deflagration. This requirement 
justifies the neglect of convective effects in the reaction layer. 

Because of the relatively strong temperature sensitivity of the rate of the branching re­
action If, the cutoff factor k\f/(ak4fCM) - 1 readily takes on values of order unity across 
the thin reaction layer for relatively small values of the temperature increment Tb — Tc 

of order PiJTc « r t — Tu ,where ji\f = Taif/Tc + n\f — n4f + 1 ~ 10 is an appropri­
ately defined dimensionless activation temperature that accounts for the different algebraic 
temperature dependences present in k\f/(ak4fCM). Under these conditions, Equation (29) 
indicates that 

CH2 k\bk\f k4fCM C02 

which can also be written in the form 

CH kifk^f k\f LUlCUlu Tb — Tc 

CH2 k\bk\f k4fCM C0lu Tb — Tu 

(37) 

where the value of the hydrogen-oxygen ratio CH2/C02 in the reaction zone has been eval­
uated approximately using (26) with qCUlJ(pcp) ~ (Tb - Tu). Since the shuffle-reaction 
rate-constant factor (fe/^3/)/(^i6^i/) is a quantity of order unity, e.g., (fe/^3/)/(^i6^i/) = 
0.59 at T = 1000 K, it is clear from (37) that the small value of(Tb - Tc)/(Tb - Tu) « 1 
associated with the existence of a thin reaction layer is sufficient to guarantee the va­
lidity of the steady-state approximation for H atoms, which requires that C^/C^ <C 1 



in the reaction zone. It is also of interest that, according to (27) and (28), for values of 
the cutoff factor k\f/(akAfCM) — 1 of order unity the O and OH concentrations satisfy 
C 0 /CH 2 ~ hf/hb and C0U/CUl ~ k2f/k\b. The steady-state approximations for these two 
radicals are therefore directly related to the large value of k\b relative to those of £3/ and k2f 
(e.g.,k?,f/kib = 0.14and£2/Ai6 = 0.02atT = 1000 K), which causes the concentrations 
ofOand OH to remain small compared to thatofH2. Similarly, with / + G being typically 
of order unity, it follows from (30) that CUOl/CUl ~ k^f/k-jf, again a very small quantity 
at the temperatures typically encountered in the reaction zone, e.g., k^f/k-jf = 0.04 at 
T = 1000 K, thereby ensuring the accuracy of the HO2 steady state. 

Observation of (36) reveals that as the temperature difference Tb - Tc increases, the 
ratio Cn/C^ also increases, partly because of the dependence on Cil2/C0l and partly 
because of the exponential temperature dependence of &i//(&4/CM), which would also 
enter through the cutoff factor appearing in (29), eventually leading to failure of the steady-
state assumption for H atoms for sufficiently large values of Tb - Tc such that CH ~ CH2 

in the reaction zone. Under these conditions, the one-step approximation must be replaced 
with a two-step description, as done in previous analyses of stoichiometric and moderately 
lean flames [7, 8]. It can be anticipated that, because of the temperature dependence of 
k\f, the flame structure that replaces the steady-state regime analyzed here will show a 
relatively thin branching layer of radical production surrounded by thicker layers of radical 
recombination. The analysis of this multi-layer structure, not further considered here, should 
be addressed in future work. 

To obtain the burning rate associated with the steady-state description the last equation 
in (18) multiplied by dCH2/d« may be integrated once with the boundary conditions as 
n -> ±00 to give 

(mH2)ss = 2WHlj^ I co4fdCH\ . (38) 

Because of the reaction-rate cutoff at the crossover point, this expression becomes 

when the steady-state expression (29) is used to evaluate CH. In the integration, use must be 
made of (26) to compute the temperature (and therefore evaluate the reaction-rate constants) 
in terms of CH2. Similarly, the concentrations C0l and CH20, which enter in the computation 
of G, a and CM, are to be evaluated from (24) and (25). The integration is extended until 
the H2 concentration reaches its limiting value at crossover 

CH2c = pcpLH2(Tb - Tc)/q, (40) 

at which (35) is satisfied. 

4. Sample leading-order results and useful simplifications 

The burning rate given in (39) depends mainly on the burnt temperature Tb, which appears 
in (26), and on the pressure, which determines CM, whereas the dependence on the burnt-
gas composition through the values C0lb and Cill0b that enter in (24) and (25) is somewhat 
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Figure 2. The variation with the burnt temperature Th of the fuel burning rate mH2 for p = 0.1 atm 
and p = 1 atm as obtained from the evaluating the steady-state expression (39) (dashed curves) and 
from adding to this result the correction (73) due to steady-state failure in the crossover layer (solid 
curves); in the computation, for each Tb the values of C0lb and CH2ofc are taken as the equilibrium 
values for a hydrogen-air planar deflagration with Tu =300 K. 

weaker, with the value of CH2Qfc affecting mainly the flammability limit, as discussed below. 
The variation of (mU2)ss with the burnt temperature for p = 0.1 atm and p = 1 atm is shown 
in Figure 2. In the computation, for each value of 7^, the accompanying values of C0lb and 
CU20b are selected as the downstream equilibrium values of a planar deflagration with 
Tu = 300 K and equivalence ratio 0 such that the associated adiabatic flame temperature 
equals 7&. In the evaluation, the approximate expression pDT = 2.58 x 1 0 _ 5 ( r / 2 9 8 ) 0 7 

kg/(m s) [9] is used, and the NASA polynomial fits are employed in the evaluation of cp. 
The expression (39) predicts a burning rate (mU2)ss that is positive provided the burnt 

temperature is sufficiently high for the cutoff factor kif/(ak4fCM) — 1 to be positive across 
the reactive layer. Correspondingly, the steady-state approximation provides a prediction 
for the lean flammability limit, associated with conditions such that the burnt temper­
ature equals the critical crossover value Tb = (Tc)i below which kif/(ak4fCM) — 1 < 0 
everywhere across the flame. As implied by (40), the hydrogen concentration in the re­
action layer is very small near the flammability limit, so that in the first approxima­
tion one may take a = 1 in (35) to compute the critical crossover value (Tc)i [1]. The 
resulting value depends through CM on the pressure and also on the water vapor con­
centration CU2ob, as can be seen in (16). When the equilibrium composition is com­
puted as that of a planar deflagration, differences in (Tc)i appear for different values of 
Tu and of the initial composition. For instance, at p = 1 atm the resulting values are 
(Tc)i = (1072, 1064, 1054) K when CH2o, = (1.3, 1.15, 0.99) mol/m3 is used in computing 
k\f = k4fCM, as corresponds to a planar H2-air deflagration with Tu = (200, 300, 400) 
K, while (Tc)i = (1075, 1067, 1057) for the values C^b = (1.35, 1.2, 1.04) mol/m3 corre­
sponding to a planar H2-O2 deflagration, also with Tu = (200, 300, 400) K. These variations 
of the flammability limit can be readily incorporated when representing the temperature 
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Figure 3. The variation with the temperature increment Th — (Tc)i of the fuel burning rate (mU2)ss of 
the steady-state region calculated from (39) for p = 1 atm (upper plot) and p = 0.1 atm (lower plot); 
in the computation, for each Th the values of C0lb and CH2Qfc are taken as the equilibrium values for 
a H2-air (solid curves) and H2-02 (dashed curves) planar deflagration with Tu = (200, 300, 400) K. 
The dot-dashed lines correspond to results of evaluations of (42) (thin curve) and of (44) (thick curve) 
with the constant factor in square brackets evaluated with G = 1, T = (Tc)i and with the equilibrium 
composition at the flammability limit of a H2-air deflagration with Tu =300 K; they are essentially 
the same for H2-air and H2-02 systems. 

variation of the burning rate by employing the temperature increment Tb — (Tc)i. When this 
is done only relatively small differences in (mU2)ss are found between the results obtained 
with different values of C0lb and CH2Qfc, as may be seen in Figure 3 for p = 1 atm and 
p = 0.1 atm. 



Perturbations of (39) about the flammability conditions enable simplified expressions 
for (»2H2)SS in terms of Tb - (Tc)i to be derived. For instance, using 

kXf 

ak4fCM 
Pif-

(Jc)l 
(Tc)i 

(41) 

where P\f = Taif/(Tc)i + n\f — n4f + 1 is the value of the dimensionless activation tem­
perature introduced above (36) evaluated at the crossover temperature, and neglecting 
variations of all other reaction-rate constants along with departures of a from unity, it is 
found that (39) reduces to 

(»ZH2)SS = 2WH, 
DT k2fhf (pcpLn\ Pif 

12LH2 Gk\i (Tc)i 

1/2 

(Tb - (TM2 (42) 

where G = 1 + yib as corresponds to CH2 = 0. The factor in square brackets is to be eval­
uated at the flammability limit, yielding therefore a quadratic dependence of (mH2)ss on 
the temperature increment Tb — (Tc)i. Since y^b is typically small at the flammability limit, 
the approximate value G ~ 1 can be assumed for simplicity in the evaluations, as done 
for the corresponding curves that are shown in Figure 3. As can be seen, the approximate 
solution (42) tends to underpredict the increase of (mH2)ss with Tb - (Tc)i, although it 
becomes a reasonable approximation as the flammability limit is approached. Better agree­
ment away from the limit is obtained when the exponential temperature variation of the 
different reaction-rate constants is retained by expressing (39) in terms of the dimensionless 
rescaled temperature increments 

Pif-
(Tc)i 

(Tc)i 
and 0b = P\f-

(Tc)i 

(Tc)i 
(43) 

with (26) used to relate the variations of CH2 and temperature, yielding 

1/2 

(mH2)ss =2W, H 2 

DT k2fkif /pcpLii2\
i / ( r c ) / x 3 

LH. Gk \b P\f 
x [H(pby\ 1/2 (44) 

The integral 

I H(6b) = / e^ie9 - l)(6b - 6)2d6 (45) 

can be integrated explicitly to give 

H(9b) = 2e^b 1 

el 
Os + i)3 P\ 

_ 20b{\ + 2P) 2(3P2 +3/3 + 1) 

1) + P2(P + l)2 + P^P + l)3 (46) 



which takes on the limiting values H = 2exp[(/3 + l)6b]/(P + l)3 for 6b y>> 1 and H = 
6*/l2for0b <3C 1, the latter limit indicating that (44) reduces naturally to (42) as the flamma-
bility limit is approached. Note thatthe temperature variation of the factor k2fkif/k\b enters 
in (45) through the term epe, where ft = [(Ta2f + Taif - Taib)/(Tc)i + nlf + nif - nw -
2]/Pif. The expression (44) is seen to approximate reasonably well the burning rate (39), 
as can be seen in Figure 3, which shows results for two different pressures. 

The approximate burning-rate laws (42) and (44) can be useful for theoretical analysis 
of flame stability near the lean flammability limit. In particular, these expressions predict 
an effective activation energy that becomes singular according to 

Tb d(mH2)ss = 2Tb 

(mH2)ss ATb Tb - (Tc)i 

as the flammability limit is approached, i.e., as Tb -> (Tc)i, thereby promoting flame 
instability. 

Although the burning-rate results that have been discussed here provide reasonable 
accuracy for most purposes, there is interest in seeking better accuracy. Before considering 
other aspects of the reaction-layer structure that can significantly improve accuracies of 
burning-rate predictions, it is worth commenting further on the determination of the kinet-
ically controlled flammability limit arising with the seven elementary reactions of Table 1. 
We have used above the equation k\f = k4fCM to determine the critical temperature (Tc)i, 
and assume that no flame may exist when the burnt temperature Tb lies below that temper­
ature. For a hydrogen-air mixture with p = 1 atm and Tu = 300 K, this simple criterion 
gives (Tc)i = 1064 K and (pi = 0.251. The numerical computations with the COSILAB 
code for the seven-step mechanism yield however a small but finite flame propagation ve­
locity vi ~ 2 mm/s at these conditions, and they also predict flames to exist for equivalence 
ratios in the range 0.249 < <f> < 0.251. This very small difference is associated with com­
plexities that arise from the steady-state approximation very near the flammability limit and 
that increase in importance with decreasing pressure but still produce only small effects. 
The complexity is related to the variation of a near the hot boundary under conditions close 
to the flammability limit. 

Normally the cutoff factor k\f/(akAfCM) — 1 in (39) increases monotonically with 
temperature because of the increase of k\f. For conditions near the flammability limit, 
however, very near the hot boundary it is found that the factor a increases with temperature 
more rapidly, causing the cutoff factor to decrease with temperature. This occurs because 
of the decrease of / with decreasing CH2, according to (31), which is seen from (33) to 
produce an increase in a. Under conditions that are extremely close to the flammability 
limit this effect in fact causes the cutoff factor to reach zero again just upstream from the 
hot boundary, leading to fuel leakage according to the steady-state approximations that 
have been employed over an extremely small range of conditions near the flammability 
limit. This effect increases with decreasing pressure and with increasing dilution, as may 
be inferred from (31), and it does not occur for H2-O2 systems at the pressures for which 
results are shown below. 

A more formal analysis, to be formulated in the following section as an asymptotic 
expansion in the small parameter e of Equation (52), shows that as the downstream boundary 
is approached and the cutoff factor as well as the properly scaled radical concentrations 
y0, y0n and yu become of order e, the steady-state approximation must be replaced by a 
diffusion-reaction balance. This will be evident from Equation (64) in the following section. 
Although there is a consequent correction to the burning rate, this correction is of order e 



and therefore is small compared with the correction to be derived in the following section. 
Even when the cutoff factor does not become small at the hot boundary, a diffusive-reactive 
character arises where y0 and you decrease to order e, but under conditions very near the 
limit, when this factor does become sufficiently small, there may well be fuel leakage that 
results in a downstream convective-reactive zone not described by the starting equations 
of the present paper. Since these intricacies affect neither burning rates nor flammability 
limits significantly, they are not addressed in the present paper. 

5. The crossover layer 

The accuracy of the explicit steady-state expression (29) is demonstrated in the inset of 
Figure 1, which includes the comparison of the H-atom profile determined numerically on 
the basis of the seven-step mechanism with that determined from evaluating (29). In the 
evaluation, use has been made of the profiles of reactant and water-vapor mol fractions and 
of temperature obtained numerically with the seven-step mechanism. It can be seen that 
the accuracy of the steady-state expression is excellent across the reaction layer, except at 
crossover, where the steady state predicts H atoms to disappear abruptly, thereby giving a 
profile with a discontinuous slope. Diffusive transport enters to remove this discontinuity, so 
that a smooth corner-layer profile replaces the abrupt change of the steady-state prediction 
when the seven-step mechanism is employed in the computations. Because of the direct 
proportionality of the burning rate and the H-atom content displayed in (17), the increased 
H-atom concentration in the layer of steady-state failure provides a nonnegligible additional 
contribution to the burning rate, which needs to be computed for increased accuracy. 

Failure of the steady states for the radicals O, OH and H at a given upstream location 
is somewhat unexpected. To better clarify the problem it is of interest to write the radical 
conservation equations in dimensionless form, an effort that serves to identify the small 
parameter underlying the validity of the steady-state assumptions and the magmtude of 
the errors expected from the present analytical development. For that purpose, the fuel 
concentration is scaled with its crossover value CH2c according to yUl = CH2/CH2C, whereas 
the radical concentrations y0 = C0/C0o, you = C0U/C0Uo and yu = Cu/C^ are scaled with 
their characteristic values implied by (27)-(29) 

C°° = a~Fi (4 8) 
LrK\b 

Co. = ^ (49) 

CHO = - f f H2° , (50) 
G k\bknfCMC0lc 

where the different reaction-rate constants are evaluated at the crossover temperature, which 
is also used in evaluating the effective third-body concentration CM and the functions / and 
G from (16), (31), and (32), respectively, with the oxygen and water vapor concentrations 
evaluated from (24) and (25) with the H2 concentration reached at crossover, that is from 
(40). 

The characteristic thickness of the reaction region 

5 = [DT/(k4fCMC02ce)]V2, (51) 



arising from an order-of-magnitude analysis of the last equation in (18), is employed to 
scale the dimensionless coordinate x = n/S, with 

Cue l k2fkifcH2c 

CH2c G k\i?k4fCMCl °2c 

representing the characteristic H-to-H2 concentration ratio, the small parameter for our 
steady-state analysis. Introducing these variables reduces (4)-(6) to the dimensionless form 

A0(Py0 _ kif 

d. 

iAOHd23'oH _ hf 

-£-r-ry = 1—7^H ~ a(y0Hy0 + yHy0) (53) 
L0 dxz

 M / C M 

yu - a(y0ily0 - yHly0) - (2 + K36)(3'H23'OH - yH) - 20% (54) 

yu + a(y0ily0 + yHy0) + (2 + K36)(3'H23'OH - yu) (55) 

1 d2yu kif 

LH dx2 k/\fCM 

where we have neglected the reverse of reaction 2, along with the variation of C0l and CH20 

from their crossover values C0lc and CH2oc and the temperature dependence of the different 
reaction-rate constants, except that of reaction 1 / , whose sensitivity near crossover must 
be taken into account. To achieve a more compact form, we have used the steady-state 
Equation (7) to write -&>5/ - &>6/ = - « 4 / + «7/ in (6), and neglect the H2 variation when 
writing co5f in (5). The constant radical-radical ratios A0 = CQJC^ and A0H = Co^/C^ 
appear as factors of order unity. Since the hydroperoxyl steady-state approximation does 
not fail, one may use in the first approximation 

C^ = {f + G)klf
C^ ^ 

for the present purposes. The radical Lewis numbers LH = 0.18, L0 = 0.7 and L0H = 0.73 
are used below in the numerical evaluations. 

Equations (53)-(55) are the dimensionless form of (4)-(6). Although they are simplified 
by evaluating at crossover the O2 and H20 concentrations as well as all of the reaction-rate 
constants but k\f, they still retain the essential nonlinearities of the problem, associated with 
consumption of fuel and with the temperature variation of the chain-branching controlling 
reaction If. One could in principle write similar conservation equations for yUl and T/Tc 

to provide the dimensionless formulation of the burning-rate problem, to be solved by 
appropriately matching expansions of the different variables in powers of the asymptotically 
small parameter e, but these additional equations are unnecessary for computing the H-atom 
concentration near crossover and are therefore omitted here. 

Observation of (53)-(55) reveals that radical diffusion is negligible at leading order 
when the H-to-H2 characteristic ratio e is small, and the steady-state expressions 

yoss = yon,, = y^Jyn, = ( ak
u
c - l ) y ^ (5 7) 

are recovered, as corresponds to the dimensionless form of (27)-(29) under the simplifying 
assumptions listed before Equation (56). These expressions apply, with relative errors of 



order e, for x > 0, with the arbitrary origin of x assumed to be at the crossover point, where 
k\f = ak4fCM, whereas y0 = y o u = yu = 0 for x < 0. The steady-state approximations 
therefore hold provided e - c 1, so that evaluation of (52) serves to test the validity of the 
above development leading to (27)-(30). Note also that the steady-state description in the 
region x ~ 0 ( 1 ) can be in principle improved by introducing expansions for the different 
dimensionless radical concentrations in ascending powers of e. The analysis is not further 
pursued here because the associated relative corrections to the burning rate (mH2)ss would be 
of order e, smaller than the corrections, of order e 2 / 3 , arising from failure of the steady-state 
assumption at crossover, to be investigated below. 

Due to their discontinuous gradients, the steady-state radical profiles do not constitute 
an acceptable solution at x = 0, because they would be associated with infinite values 
of the diffusive rates appearing on the left-hand sides of (53)-(55). In the solution that 
appears, radical diffusion becomes comparable to the chemical rates, yielding smooth 
profiles centered around x = 0 for the radicals, as seen for H in the seven-step computation 
shown in Figure 1. Failure of the steady-state approximation occurs at distances x ~ e 1 / 3 , 
where y0 ~ y0H ~ yH ~ 1 - yH2 ~ e1/3 and kif/(ak4fCM) = 1 + Ax, where 

dx \ak4fCM) Tc
2 \dn J 

as implied by a Taylor expansion near x = 0 with account taken of the temperature sensi­
tivity of k\f. The resulting factor A is of order T\f(Tb — Tc)/T^. Note that the temperature 
gradient in (58) can be related to the burning rate of the steady-state region through (9), 
giving 

d T \ = q (mH2)ss 

dn)c pcpWUlDT' 

Introducing into (53)-(55) expansions for the radicals of the form y0 = el/3((p® + 
e V V o • • •)» ^OH = e1/3(<PoH + £ 1 / V O H ' ' •)» and yH = el/3(cp° + e 1 / 3 ^ • • •) yields at leading 
order the linear homogeneous problem 

0 = a(cpl - cpl) (60) 

0 = -a(cpl - cp°0) - (2 + y^icpl - cp°H) (61) 

0 = -a(cpl - cp°0) + (2 + y^icpl - cp°H). (62) 

This problem has a nontrivial solution with 

<P°0 = vL = vl (63) 

because the determinant of the coefficient matrix is zero, as can be seen by noticing that 
the sum 2 x (60) + (61) + (62) is identically zero. The solution can be found by writing 
the accompanying linear combination 2 x (53) + (54) + (55) of the radical conservation 
equations, leading to 

s d2 / 2 A 0 A0H 1 \ ( klf \ 

2a dxz \ L0 L0H LH J \ak4fCM J 



From this result it is seen that near crossover the evolution of the radical pool depends 
on the balance between radical loss by diffusion (the terms on the left-hand side), radical 
production (the first term on the right-hand side), arising from departures from the crossover 
temperature, and radical consumption through reaction lb (the second term on the right-
hand side). Introducing the expansions for yt together with (63) provides the reduced 
problem 

d ^ 

d§2 = <p(<p - £), (p(-oo) = <K+oo) - § = o, (65) 

where the radical pool concentration 

<P 
vl 

[BA2/(2a)]1/3 

has been introduced, along with the rescaled coordinate 

(66) 

* = 
[Be/{2a A)] 1/3' 

(67) 

where 

B^2K Ac, _L 
T T T 

(68) 

The problem defined by (65) was first encountered by Lihan in analyzing the inner structure 
of diffusion flames for large Damkohler numbers [10]. It is equivalent to a problem often 
attributed to Friedlander and Keller [11] whose solution in the combustion context was 

Figure 4. The rescaled radical concentration in the crossover layer as determined from numerical 
integration of (65); the dashed line represents the asymptote (p = i- corresponding to § —• oo. 



first published by Fendell [12]; see Williams [13]. The resulting solution is plotted for 
completeness in Figure 4. 

According to (17), the departures of the H-atom concentration from its steady-state 
value (29) result in corrections to the burning rate 

/

+oo 
k4fCMC02(Cu - CuJdn, 

-OQ 

(69) 

0.45 

Figure 5. The variation with equivalence ratio of the planar propagation velocity of a premixed 
hydrogen-air flame for p = 1 arm (upper plot) and p = 0.1 arm (lower plot) as obtained for Tu = 
300 K from the steady-state burning-rate prediction vi = ^H 2 / (W H 2 C H 2 M ) (dashed curves), from the 
burning-rate prediction including the contribution of the crossover layer v\ — rhU2/(WU2CU2u) (solid 
curves), and from numerical integrations with the seven-step short mechanism listed in Table 1 
(dot-dashed curves). 



which can be alternatively written in the simplified form 

/

+O0 

k4fCMCo2(yH - yHss)dx-
-oo 

mH2 - (mH2)ss = 2WH2CH,S / k4fCMC02(yH - y^dx. (70) 
J—oo 

Regarding this last equation it is clear that the errors of the steady-state approximation in the 
region x ~ 0(1), where yu — yUss ~ e, produces small relative errors (mH2 - mUlss)/mUl ~ 
e, whereas the departures yu — y^s ~ e1/3 seen in the crossover layer x ~ e1/3 gives a 
much larger contribution to the burning rate, of order (mH2 - mUlss)/mUl ~ e2/3. This last 
correction can be evaluated explicitly by introducing in (70) the inner variables <p and f to 
give 

/ B \ 2 / 3 

< - (mH2)ss = 2IWH2(k4fCMC02)cC^Ss2'3 l — \ Ax'\ (71) 

where the integral factor 

[ <P<% + f 
J-oo JO 

1=1 cpAH+ J (cP- £)d| = 0.95. (72) 

accounts for the increase in radical concentration from the steady-state prediction. Substi­
tutions from (48)-(52), (58), (59) and (68) enable (71) to be written explicitly as 

,H2 - (mH2)ss = 2/ I - ^ ) [DTWlk2fCljmH2)ss]^ ' ? H 2 « U 

GklbJc
L ' H2 Z7 H^- H2^lc V pcprc

2 

1 Gk2f fe/CH2, 

/ j 0 ^ ^ ^ 3 / - ^ O H ^ ^ ^ ' 4 / ^ M ^ 0 2 - ^ J H 

2/3 

(73) 

where a and G can be determined from (31)—(34). 
The corrected burning rate, including the increase (73) due to the additional contri­

bution of the crossover layer, is plotted in Figure 2 for p = 1 atm and p = 0.1 atm. The 
extent of the resulting correction is tested in Figure 5, which compares laminar flame prop­
agation velocities obtained from seven-step chemistry with the burning-rate predictions 
vi = mU2/(WU2CUlu). As can be seen, incorporating the correction due to steady-state fail­
ure improves considerably the prediction of vi near the flammability limit, its effect being 
quantitatively more significant at atmospheric conditions. 

6. Conclusions and future work 
Near the lean flammability limit hydrogen-air and hydrogen-oxygen flames exhibit an 
extended preheat zone followed by a reaction zone, the structure of which is analyzed here 
as an asymptotic expansion in a small parameter e representing the order of magnitude of 
the ratio of the H-atom concentration to the H2 concentration in that zone. The analysis 
demonstrated that throughout most of the reaction zone the reaction intermediates closely 
maintain chemical-kinetic steady states, resulting in a one-step approximation for the com­
bustion chemistry. In this approximation the reaction rate is zero below a cutoff temperature 
at which the rate of the branching step H + O2 —>- OH + O equals the rate of the termination 
step H + O2 + M —>- HO2 + M for this chain reaction. The resulting non-Arrhenius rate 



formula was employed to derive an expression for the burning rate in terms of an integral 
that can be evaluated numerically, and the lean flammability limit was obtained as the 
condition that this burning rate is zero, a kinetically controlled limit associated with the 
burnt-gas temperature becoming equal to a crossover temperature at which the branching 
and termination rates become equal. Simplified explicit formulas for the burning rate also 
were derived which produce values of burning rates that agree reasonably well with burning 
rates calculated by evaluating the integral numerically or by employing detailed chemistry. 
It was found, in particular, that similar to earlier results [8], as the lean flammability limit is 
approached, the burning rate becomes proportional to the square of the difference between 
the adiabatic flame temperature and the crossover temperature, leading to an effective over­
all activation temperature of four times the square of the flame temperature divided by this 
temperature difference, thus approaching infinity at the lean limit. 

The steady-state approximation was found to fail in a region where the temperature is 
near the crossover temperature, having thickness of order e1/3 times the total reaction-zone 
thickness. The approximation also fails near the hot boundary. In these failure regions a one-
step approximation to the chemistry no longer exists. Burning-rate corrections associated 
with failure near the hot boundary are of order e and turn out to be negligible. However, 
those associated with failure near crossover, of order e2/3, are more significant. Analysis of 
the layer near crossover revealed its character to be that of a corner layer, the structure of 
which can be expressed in terms of a universal solution previously obtained for diffusion 
flames at large DamkOhler numbers. Use of this solution provides an explicit correction to 
the burning rate that improves agreement with results obtained from numerical integrations 
with detailed chemistry, especially near normal atmospheric pressure. Above atmospheric 
pressure, HO2 increasingly contributes to the burning rate, so that the chemistry on which 
the present analysis is based becomes increasingly inaccurate. 

Future research could extend this type of analysis to higher pressures, addressing more 
complex chemistry. The results that have been obtained here can, however, be employed 
directly to study deflagration problems of interest at normal atmospheric pressure, or at 
somewhat reduced pressures. It is well known that lean hydrogen flames exhibit strong 
diffusive-thermal instabilities [14], and nonplanar models for deflagration structures under 
such conditions have been investigated [15]. Burning-rate and flammability-limit descrip­
tions are needed for analyzing the stability and dynamics of the deflagrations that occur 
in these lean mixtures. The studies must take into account effects of curvature and strain. 
The forms of the results developed here can be readily employed in such studies, enabling 
the future investigations to focus on the transport and flow aspects of the problem, with the 
chemistry restricted to the interiors of surfaces whose properties have been obtained here. 
The present results can be employed directly in this future work, whether it is analytical or 
computational, so long as gradients downstream from the reaction zones investigated here 
are not steep enough to affect their structures. 

For instance, effects of strain could be addressed by consideration of premixed flames 
in a counterflow configuration in which a fresh mixture flows against a nonreacting stream 
or a stream of combustion products. For weak values of the strain rate smaller than the 
reciprocal of the residence time across the flame, the flame lies on the fresh side outside 
the mixing layer, so that the structure of the reaction layer becomes independent of the 
product-side temperature. In obtaining the solution, the reaction zone could be treated as a 
discontinuity, with vanishing downstream gradients and with upstream gradients towards 
the fresh side given in (9) in terms of the burning rate. In this case, the burning-rate 
computations presented above could be employed directly to close the problem. Note that 
for these weakly strained flames, differential diffusion of hydrogen enters in the preheat 



region, resulting in a value of the burnt temperature above the adiabatic flame temperature 
of the fresh mixture. As a result, stretched flames may be anticipated to exist for equivalence 
ratios below the kinetically controlled lean flammability limit of freely propagating planar 
flames. As the strain rate increases, the reaction zone moves into the mixing layer; in 
nonadiabatic configurations with reduced product-side temperatures, downstream heat loss 
from the reaction zone may then become important, reducing the burnt temperature, which 
may approach the crossover value, thereby leading to strain-induced extinction. 

Future investigations of the type outlined above for stretched flames, as well as inves­
tigations of curved flames, can therefore benefit from the present results. The associated 
research efforts would be relevant to safety issues associated with increased utilization of 
hydrogen as well as to the operation and performance of devices that employ the combustion 
of hydrogen. 
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