50 research outputs found

    Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure

    Get PDF
    In this paper we study the cold atmospheric pressure plasma jet, called kinpen, operating in Ar with different admixture fractions up to 1% pure N2{{{\rm N}}_{2}}, O2{{{\rm O}}_{2}} and N2{{{\rm N}}_{2}} + O2{{{\rm O}}_{2}}. Moreover, the device is operating with a gas curtain of dry air. The absolute net production rates of the biologically active ozone (O3{{{\rm O}}_{3}}) and nitrogen dioxide (NO2{\rm N}{{{\rm O}}_{2}}) species are measured in the far effluent by quantum cascade laser absorption spectroscopy in the mid-infrared. Additionally, a zero-dimensional semi-empirical reaction kinetics model is used to calculate the net production rates of these reactive molecules, which are compared to the experimental data. The latter model is applied throughout the entire plasma jet, starting already within the device itself. Very good qualitative and even quantitative agreement between the calculated and measured data is demonstrated. The numerical model thus yields very useful information about the chemical pathways of both the O3{{{\rm O}}_{3}} and the NO2{\rm N}{{{\rm O}}_{2}} generation. It is shown that the production of these species can be manipulated by up to one order of magnitude by varying the amount of admixture or the admixture type, since this affects the electron kinetics significantly at these low concentration levels

    The spatial distribution of HO2in an atmospheric pressure plasma jet investigated by cavity ring-down spectroscopy

    Get PDF
    Cold atmospheric pressure plasma jets make important contributions to a range of fields, such as materials processing and plasma medicine. In order to optimise the effect of those plasma sources, a detailed understanding of the chemical reaction networks is pivotal. However, the small diameter of plasma jets makes diagnostics challenging. A promising approach to obtain absolute number densities is the utilisation of cavity-enhanced absorption spectroscopy methods, by which line-of-sight averaged densities are determined. Here, we present first measurements on how the spatial distribution of HO2 in the effluent of a cold atmospheric pressure plasma jet can be obtained by cavity ring-down spectroscopy in an efficient way. Instead of recording fully wavelength resolved spectra, we will demonstrate that it is sufficient to measure the absorption coefficient at two wavelengths, corresponding to the laser being on and off the molecular resonance. By sampling the effluent from the 1.6 mm diameter nozzle in the radial direction at various axial positions, we determined that the distances over which the HO2 density was distributed were (3.9 ± 0.5) mm and (6.7 ± 0.1) mm at a distance of 2 mm and 10 mm below the nozzle of the plasma jet, respectively. We performed an Abel inversion in order to obtain the spatial distribution of HO2 that is presented along the symmetry axis of the effluent. Based on that localised density, which was (4.8 ± 0.6) ⋅ 1014 cm-3 at the maximum, we will discuss the importance of the plasma zone for the production of HO2

    Gas mixing enhanced by power modulations in atmospheric pressure microwave plasma jet

    Get PDF
    Microwave plasma jet operating in atmospheric pressure argon was power modulated by audio frequency sine envelope in the 10^2 W power range. Its effluent was imaged using interference filters and ICCD camera for several different phases of the modulating signal. The combination of this fast imaging with spatially resolved optical emission spectroscopy provides useful insights into the plasmachemical processes involved. Phase-resolved schlieren photography was performed to visualize the gas dynamics. The results show that for higher modulation frequencies the plasma chemistry is strongly influenced by formation of transient flow perturbation resembling a vortex during each period. The perturbation formation and speed are strongly influenced by the frequency and power variations while they depend only weakly on the working gas flow rate. From application point of view, the perturbation presence significantly broadened lateral distribution of active species, effectively increasing cross-sectional area suitable for applications

    Plasma–liquid interactions: a review and roadmap

    Get PDF
    Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas

    Imaging atherosclerosis in rheumatoid arthritis: evidence for increased prevalence, altered phenotype and a link between systemic and localised plaque inflammation.

    Get PDF
    In rheumatoid arthritis (RA), chronic inflammation is thought to drive increased cardiovascular risk through accelerated atherosclerosis. It may also lead to a more high-risk plaque phenotype. We sought to investigate carotid plaque phenotype in RA patients using Dynamic Contrast-Enhanced MRI (DCE-MRI) and Fludeoxyglucose Positron Emission Tomography(FDG-PET). In this pilot study, RA patients and age/sex-matched controls were evaluated for cardiovascular risk factors and carotid plaque on ultrasound. Subjects with plaque >2 mm thick underwent DCE-MRI, and a subgroup of patients had FDG-PET. Comparison of MRI findings between groups and correlation between clinical, serological markers and imaging findings was undertaken. 130 patients and 62 controls were recruited. Plaque was more prevalent in the RA group (53.1% vs 37.0%, p = 0.038) and was independently associated with IL6 levels (HR[95%CI]: 2.03 [1.26, 3.26] per quartile). DCE-MRI data were available in 15 patients and 5 controls. Higher prevalence of plaque calcification was noted in RA, despite similar plaque size (73.3% vs 20%, p = 0.04). FDG-PET detected plaque inflammation in 12/13 patients scanned and degree of inflammation correlated with hs-CRP (r = 0.58, p = 0.04). This study confirms increased prevalence of atherosclerosis in RA and provides data to support the hypothesis that patients have a high-risk plaque phenotype

    QDB: A new database of plasma chemistries and reactions

    Get PDF
    One of the most challenging and recurring problems when modeling plasmas is the lack of data on the key atomic and molecular reactions that drive plasma processes. Even when there are data for some reactions, complete and validated datasets of chemistries are rarely available. This hinders research on plasma processes and curbs development of industrial applications. The QDB project aims to address this problem by providing a platform for provision, exchange, and validation of chemistry datasets. A new data model developed for QDB is presented. QDB collates published data on both electron scattering and heavy-particle reactions. These data are formed into reaction sets, which are then validated against experimental data where possible. This process produces both complete chemistry sets and identifies key reactions that are currently unreported in the literature. Gaps in the datasets can be filled using established theoretical methods. Initial validated chemistry sets for SF 6 /CF 4 /O 2 and SF 6 /CF 4 /N 2 /H 2 are presented as examples

    Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet : an analysis of the production and destruction mechanisms

    No full text
    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O2, operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O3 in the core of the plasma is mainly caused by an enhanced destruction of O3 due to a large atomic oxygen densit
    corecore