1,782 research outputs found

    ATLAS sensitivity range for the x_s measurement

    Get PDF
    Previous results for the prospects of B_s mixing measurement in the ATLAS experiment at LHC are updated. The improved analysis method of the studied decay channels B_s -> D_s pi and B_s -> D_s a_1, combined with most recent values for the branching ratios and the B_s lifetime, leads to the new ATLAS sensitivity range for the x_s measurement: x_s^{max} = 42. An extensive study is done in order to estimate how x_s^{max} is influenced by the B-decay proper-time resolution of the vertex detector, as well as by the number of events and by the signal-to-background ratio.Comment: 17 pages, incl. 12 figure

    Nonequilibrium thermodynamics versus model grain growth: derivation and some physical implications

    Full text link
    Nonequilibrium thermodynamics formalism is proposed to derive the flux of grainy (bubbles-containing) matter, emerging in a nucleation growth process. Some power and non-power limits, due to the applied potential as well as owing to basic correlations in such systems, have been discussed. Some encouragement for such a discussion comes from the fact that the nucleation and growth processes studied, and their kinetics, are frequently reported in literature as self-similar (characteristic of algebraic correlations and laws) both in basic entity (grain; bubble) size as well as time scales.Comment: 8 pages, 1 figur

    Thermo-kinetic approach of single-particles and clusters involving anomalous diffusion under viscoelastic response

    Full text link
    We present a thermo-kinetic description of anomalous diffusion of single-particles and clusters in a viscoelastic medium in terms of a non-Markovian diffusion equation involving memory functions. The scaling behaviour of these functions is analyzed by considering hydrodynamics and cluster-size space random walk arguments. We explain experimental results on diffusion of Brownian particles in the cytoskeleton, in cluster-cluster aggregation and in a suspension of micelles.Comment: To be published in the Journal of Physical Chemistry

    Finite-size effects in intracellular microrheology

    Full text link
    We propose a model to explain finite-size effects in intracellular microrheology observed in experiments. The constrained dynamics of the particles in the intracellular medium, treated as a viscoelastic medium, is described by means of a diffusion equation in which interactions of the particles with the cytoskeleton are modelled by a harmonic force. The model reproduces the observed power-law behavior of the mean-square displacement in which the exponent depends on the ratio between particle-to-cytoskeleton-network sizes.Comment: 6 pages 2 figures. To appear in the Journal of Chemical Physic

    On temperature- and space-dimension dependent matter agglomeration in a mature growing stage

    Full text link
    Model matter agglomerations, with temperature as leading control parameter, have been considered, and some of their characteristics have been studied. The primary interest has been focused on the grain volume fluctuations, the magnitude of which readily differentiates between two commonly encountered types of matter agglomeration/aggregation processes, observed roughly for high- and low-density matter organizations. The two distinguished types of matter arrangements have been described through the (entropic) potential driving system. The impact of the potential type on the character of matter agglomeration has been studied, preferentially for (low density) matter agglomeration for which a logarithmic measure of its speed has been proposed. A common diffusion as well as mechanical relaxation picture, emerging during the mature growing stage, has been drawn using a phenomenological line of argumentation. Applications, mostly towards obtaining soft agglomerates of so-called jammed materials, have been mentioned

    Evaluation of Muscle Imbalances and the Presence of Upper- and Lower-Crossed Syndromes among Powerlifters

    Get PDF
    Please view abstract in the attached PDF fil

    AC-coupled GaAs microstrip detectors with a new type of integrated bias resistors

    Get PDF
    Full size single-sided GaAs microstrip detectors with integrated coupling capacitors and bias resistors have been fabricated on 3'' substrate wafers. PECVD deposited SiO_2 and SiO_2/Si_3N_4 layers were used to provide coupling capacitaces of 32.5 pF/cm and 61.6 pF/cm, respectively. The resistors are made of sputtered CERMET using simple lift of technique. The sheet resistivity of 78 kOhm/sq. and the thermal coefficient of resistance of less than 4x10^-3 / degree C satisfy the demands of small area biasing resistors, working on a wide temperature range.Comment: 20 pages, 9 figures, to be published in NIM
    corecore