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1. Introduction

Thermodynamics is a powerful theory that has been succesfully applied to describe the
properties and behavior of macroscopic systems under a very wide range of physical
conditions (Callen, 1985). Thermal and caloric information is obtained by performing
experiments that agree with the constraints imposed (Callen, 1985; Kondepudi & Prigogine,
1999; Ragone, 1995).
However, a considerable number of experimental, practical problems and systems of interest
are often found in nonequilibrium or metastable states in which static thermodynamic
relations are only valid locally, and frequently are insufficient to describe complicated
time dependent situations (Demirel, 2007). Macroscopic systems in flow conditions are
good examples of this peculiar behavior through non-Newtonian rheological effects, phase
transitions and generalized statistics of turbulent motion. In fact, although there is a
large amount of theoretical work proposing generalizations of the thermodynamic theory to
nonequilibrium or quasiequilibrium situations (Beck & Cohen, 2003; Beris & Edwards, 1994;
C. Beck & Swinney, 2005; de Groot & Mazur, 1984; Demirel, 2007; Kondepudi & Prigogine,
1999; Onuki, 2004; Rodríguez & Santamaría Holek, 2007), some of them very succesful
(de Groot & Mazur, 1984; Demirel, 2007; Kondepudi & Prigogine, 1999), they are restricted
due to the assumption and validity of local thermodynamic equilibrium. Recently, some
interesting generalizations of thermodynamics to describe macroscopic systems in the
presence of flow have been systematically developed in Refs. (Beris & Edwards, 1994; Onuki,
2004). Nevertheless, there are still a good deal of open questions, for instance those concerning
the validity of the usual relations for the thermal and caloric equations of state, arising further
research on this subject.
Related to these general questions, there are several particular manifestations of the effects
of flow on the thermodynamic behavior of systems. For example, diffusion of suspended
particles in a heat bath in equilibrium, may strongly differ from that when the particles
diffuse in a heat bath under the presence of shear flow. These effects have been analyzed
along the years in studies ranging from experiments (Breedveld, 1998; Guasto & Gollub, 2007;
Pine, 2005; Taylor & Friedman, 1996) and computer simulations (Sarman, 1992) to kinetic
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theory of gases (Rodríguez, 1983), projector operator techniques (Shea & Oppenheim, 1998),
Langevin and Fokker-Planck dynamics (Drossinos & Reeks, 2005; Mauri & Leporini, 2006;
Ryskin, 1988; Subramanian & Brady, 2004) and mesoscopic thermodynamics (Gadomski,
2008; Santamaría Holek, 2005; 2009; 2001).
The key point in these studies is that the presence of flow introduces non-thermal diffusion
effects that can be related to the hydrodynamic viscosity and to hydrodynamic interactions
between particles in the case of concentrated suspensions. These effects may modify the
fluctuation-dissipation relations and, consequently, the corresponding expressions for the
thermal energy and other state variables like pressure or chemical potential. This may lead to
what is known as nonequilibrium state equations (Onuki, 2004).
In this chapter, we present a discussion of the general context involving thermodynamics
in the presence of flows, emphasizing how the flow may modify the state equations as
well as the transport coefficients. A selected presentation of some experimental results in
which the effect of the flow clearly modifies the thermodynamics of the system is given
and discussed in view of theoretical models attempting to describe them, mainly those
coming from mesoscopic thermodynamics. How non-Newtonian effects (Santamaría Holek,
2005) arise from nonequilibrium state equations, how the transition to irreversibility in
suspensions of non-Brownian particles ocurrs (Breedveld, 1998; Guasto & Gollub, 2007; Pine,
2005; Santamaría Holek, 2009; Taylor & Friedman, 1996) and how the nucleation in the
presence of shearing flows is promoted or supressed (A. Penkova, 2006; Blaak, 2004), are the
three main topics that we will analyze in more detail.
The original contribution of this chapter bears on the discussion of two recent studies on the
problem of nucleation in the presence of flows (Blaak, 2004; Reguera & Rubi, 2003b) and the
formulation of a new model that allows to explain experimental results (A. Penkova, 2006).
These models are excellent illustrations of how the effects of flow affect the equations of
state of fluid systems. Particularly, we will show how control volume thermodynamics in the
presence of flow, a well established analysis of classical thermodynamics (Ragone, 1995), can
be used to formulate a qualitative theoretical explanation of the experimental observations.
This chapter is organized as follows. Section 2 is devoted to analyze the effects of flow
on diffusion from different points of view ranging from kinetic theory of gases, Langevin
equation approach and mesoscopic nonequilibrium thermodynamics. In Section 3 we analyze
how flow modifies the constitutive relations of materials via viscoelastic and non-Newtonian
effects. Thereafter, the existence of nonquilibrium equations of state is discussed in Section 4
and then used to describe nucleation in the presence of flow in Section 5. Finally, we present
our conclusions in Section 6.

2. Effects of flow on diffusion

The effects of flow on the diffusion of particles suspended in a simple liquid is an important
problem which was analyzed many times along the last 30 years. Several approaches have
been followed in order to understand and quantify the effects of the presence of a velocity
gradient on the diffusion coefficient D of the particles. Usually, these are restricted to the
case of shear flow because this case is more manageable from the mathematical point of view,
and because there are several experimental systems that allow the evaluation and validity of
the corresponding results. The approaches followed vary from kinetic theory and projector
operator techniques, to Langevin and Fokker-Planck equations. Here, we summarize some
recent contributions to this subject and their results.
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2.1 Kinetic theory approach.

From a rigorous point of view, the problem of diffusion in the presence of flow should be
analyzed by means of the kinetic theory gases. This has been done in a series of articles (Refs.
(Ferziger & Kaper, 1972; Marchetti &Dufty, 1983; McLennan, 1989; Rodríguez, 1983)) and lead
to a better understanding of the phenomenology presented by these systems. The rigorous
derivations coming from kinetic theory serve to indicate and evaluate the range of validity of
those coming from different approaches, some of them will be discussed later.
Essentially, the problem consists in the coupling of the dynamics of two subsystems, the host
fluid and an ensemble of tagged particles that, in the case of massive and non-concentrated
particles, constitute an ideal Brownian gas. Each susbsystem can be described by means
of their corresponding phase space densities that evolve in time following a set of coupled
Boltzmann equations.
In first approximation (Marchetti &Dufty, 1983), the system considered is a tagged particle
in a low density gas of Maxwell molecules interacting through a r−5 force law. The fluid is
assumed to be in a state of uniform shear flow with a large shear rate and the tagged particle
is considered to be mechanically equivalent but with a larger mass than the fluid particles.
The fluctuations of the tagged particle in the nonequilibrium gas can be described kinetically
using the nonlinear Boltzmann and the Boltzmann-Lorentz equations.

(

∂

∂t
+ v · ∇

)

f = J [ f , f ] (1)

(

∂

∂t
+ v · ∇

)

h = J [ f , h] (2)

where f (x, t) and h(x, t) are the phase space densities for the fluid and tagged particle, and x

denotes the position and velocity of the later. J [ f , f ] is the usual bilinear Boltzmann operator
(Ferziger & Kaper, 1972; McLennan, 1989). The previous pair of equations is completed
considering the evolution equation for the fluctuations of the tagged particle C1,2

(

∂

∂t
+ v1 · ∇1

)

C1,2 = J [ f , C1,2] (3)

where

C1,2(x1, t + τ; x2, τ) = 〈δ [x1 − xT(t + τ)] · {δ [x2 − xT(τ)]− 〈δ [x2 − xT(τ)]〉}〉 (4)

In the special case of Maxwell molecules with uniform shear flow one can obtain an exact set
of kinetic equations for the average position and velocity, as well as their fluctuations, from
Eqs. (1)-(3).
This kinetic description can be extended to the case where the tagged and fluid particles are
assumed to interact via the same force law that holds for fluid particles. The mass m of the
tagged particle is assumed to be large compared to that of a fluid particle (m f ). Therefore,
the mass ratio ǫ = m f /m is a small parameter in terms of which the Boltzmann- Lorentz

collision operator may be expanded. If this expansion is carried out to the leading order, ǫ1/2,
the Boltzmann-Lorentz operator reduces to a differential operator yielding a kinetic Fokker
Planck equation for the tagged particle distribution F

(

∂

∂t
+ v · ∇

)

F =
∂

∂vi

[

Ai(r, v, t) +
1

2

∂

∂vj
Dij(r, t)

]

F, (5)

107Mesoscopic Thermodynamics in the Presence of Flow

www.intechopen.com



4 Thermodynamics Book 3

where the drift vector Ai(r, v, t) and the diffusion tensor Dij(r, t) are given by

Ai(r, v, t) = ν1
n(r, t)

n0
[v − v0(r, t)] , (6)

Dij(r, t) = 2ρ−1
0

[

ν1 p(r, t)δij + (ν1 − ν2)P
∗
ij(r, t)

]

. (7)

Here, ν1 and ν2 are constants proportional to ǫ1/2, and n(r, t), p(r, t) and v0(r, t) are the local
density, pressure and flow velocity of the fluid. The constant n0 is the average number density
and ρ0 = mn0. Finally, P

∗
ij(r, t) is the traceless part of the fluid pressure tensor and represents

the irreversible part of the momentum flux proportional to ∇v0.
Although equation (7) is valid for an arbitrary nonequilibrium state of the fluid, for a fluid
in uniform shear flow v0,i(r) = γ̇ijrj, where γ̇ij is the rate tensor, there are important
simplifications. In this case the drift vector remains the same, but the diffusion tensor becomes
independent of r and v

Dij(r, t) = 2ν1[kBT(t)/m]δij + 2(ν1 − ν2)ρ
−1
0 P

∗
ij(t). (8)

The results obtained from a kinetic description show that the drift vector and the diffusion
tensor can be exactly calculated and that they depend on the nonequilibrium state of the gas
only through the low order moments of the fluid distribution function. Even more, the fluid
state in this case is specified by the nonequilibrium temperature T(t) and the irreversible stress
tensor P

∗
ij(t) which is proportional to the velocity gradient ∇v0.

These results imply that the extension of equilibrium theories to nonequilibrium states is not
always valid in a straightforward way. Particularly, the diffusion tensor is proportional to
the components of the pressure tensor or equivalently to the velocity gradient ∇v0, which
implies that the amplitude of the noise in the dynamics of the tagged particle is not simply
thermal as in equilibrium since the diffusion tensor cannot be characterized entirely by the
thermodynamic temperature. In similar manner, Eq. (5) does not depend on the irreversible
heat flux. This is an anomaly of the Maxwell potential, for other potentials there will be an
additional contribution to the drift vector that would depend on the any temperature gradient
in the fluid.

2.2 Langevin equation approach

Another interesting approach to the effect of flow on diffusion is the one based on Langevin
equations (Drossinos & Reeks, 2005; Swailes, 2009). Related to this approach is the interesting
discussion on the existence and generality of effective nonequilibrium temperatures,
which attracted much attention in recent years (Kurchan, 2005; Mauri & Leporini, 2006;
Pérez-Madrid, 2005; Pérez-Madrid & Santamaría Holek, 2009; Popov & R., 2007). The
possibility of using thermodynamic quantitites like the temperature or the chemical potential
in systems out of equilibrium is attractive because it may strongly simplify the solutions to
many practical problems (Demirel, 2007).
Specifically, the existence of a nonequilibrium temperature in sheared systems lead to a
considerable theoretical (Criado-Sancho, 2005; Mauri & Leporini, 2006), numerical (Kurchan,
2005; O’Hern, 2004; Sarman, 1992) and experimental works with particular emphasis to
the nonequilibrium properties of colloidal suspensions(Abou & Gallet, 2004; Bellon, 2001).
These studies are relevant to us because kinetic nonequilibrium temperatures may not follow
equipartition and are usually related to the breakdown of the fluctuation-dissipation theorem,
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a central relation of Langevin descriptions (Criado-Sancho, 2005; Santamaría Holek, 2001;
Subramanian & Brady, 2004).
Suspended objects diffuse in and are convected by the fluid; their motion may eventually
be influenced by the presence of external fields. In Ref. (Drossinos & Reeks, 2005) the
simultaneous diffusive and inertial motion of particles in simple shear flow is investigated to
determine the effect of particle inertia on diffusive transport. First, a mesoscopic approach is
used to describe the motion of a rigid spherical Brownian particle in a two dimensional simple
shear flow with shear rate tensor γ̇ij, (i, j = x, y), with a Langevin equation in a Lagrangian
reference frame. In this model the fluid velocity is along the x-direction, vi = γ̇ijrj, and the
only nonzero element of γ̇ij is γ̇xy = γ̇. However, since the particle density (ρp) is much
larger than the fluid density, (ρ f ), modifications to Stokes drag such as Basset history integral
or Faxen’s corrections, are neglected. Furthermore, only small-diameter, low-inertia particles
(a ≥ 50μm), are considered so that the gravitational settling and the Saffman lift force may be
also neglected. The particle equation of motion is

d

dt
u = β

(

γ̇ · r − u
)

+ f(t), (9)

where the random force per unit particle mass, f(t), is taken to be white in time,

〈

fi(t) f j(t
′)
〉

= qδijδ
(

t − t′
)

, (10)

The friction coefficient β is the inverse particle’s relaxation time, β = 9μ f /(2ρpa2), where
μ f is the fluid’s dynamic viscosity. Since the Langevin equations are linear, particle velocity
and position may be formally solved as functionals of the random force, and in the diffusive
limit t >> β−1, i. e., for times much larger than the particle relaxation time, they allow
for the analytical evaluation of ensemble averaged products of particle position and velocity
and two-point correlation functions, in terms of the random-force strength q. The authors
carefully justify why they use the classical (equilibrium) form of the fluctuation-dissipation
theorem (FDT): in a Langevin description the time scale of the white noise is considered to be
much shorter than the time scale of the imposed flow. Thus, the non-equilibrium corrections
would be of the order of the ratio of the fluid molecular relaxation time to the time scale of the
imposed shear and may be neglected. In this case both the time scales are clearly separated
and q may be determined solely from the classical form of the FDT,

q

2β
=

kBT

m
. (11)

In the diffusion limit it is found that the combined effects of particle inertia and shear
flow modify the amplitude and the time-dependence of the particle-velocity autocorrelation
functions, a result which is expressed in terms of the Stokes number, St = γ̇/β. The shear
flow breaks macroscopic time reversibility and stationarity: the autocorrelation functions
of the particle velocities are stationary and the velocity correlation along the shear is
symmetric in the time difference τ, but the cross correlation is non-symmetric in τ function
in the streamwise direction is non-stationary. The time decay of the velocity correlation
along the flow is not a pure exponential and the underlying stochastic process is not an
Ornstein-Uhlenbeck process.
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Secondly, the authors give an Eulerian description of the motion of N independent and
identical Brownian particles in terms of the phase space density f (r, u; t) obeying the
Fokker-Planck equation (FPE)

∂ f

∂t
+∇ · (u f ) = β

∂

∂u
· [(u − v) f ] +

kBT

m
β

∂2 f

∂u2
, (12)

where ∇ ≡ ∂/∂r and the classical FDT has also been used. The solution of this equation
defines a Gaussian process which is used to evaluate density-weighted ensemble averages
like particle concentrations, mean particle velocities and particle-velocity covariances. In
particular, by taking velocity moments of the FPE the appropriate coupled mass and
momentum equation for the particle phase are obtained for the case of a general flow and
a white noise random force,

dρ

dt
= −ρ∇ · 〈v〉, (13)

d

dt
〈u〉 = β (v − 〈u〉)− 1

ρ
∇ ·

(

ρ
〈

u′u′〉) . (14)

Here v′ = v − 〈v〉 is the fluctuating component of the velocity and the overbar or angular
brackets denote an average over a normalized velocity probability density. Thirdly, by using
the analytical solution of the FPE, in conjuction with its first two-velocity moment equations
given above, a convective-diffusion equation, or generalized Smoluchowski equation (GSE),
may be derived without the use of non-perturbative approximations in the diffusive limit,

∂ρ

∂t
+∇ · (ρv) = 〈(u − v)〉 r · ∇2ρ ≡ D · ∇2ρ. (15)

This equation incorporates inertial effects on diffusional transport for dilute suspensions and
defines the diffusion tensor, D(St), dependent on both particle inertia and the shear rate
through the Stokes number St.
The GSE is valid in the transition regime between the diffusion limit and the inertia-dominated
limit and incorporates both particle transport mechanisms. The diffusion tensor is not
symmetric reflecting the symmetry-breaking effect of the imposed shear. The total diffusion
coefficients measuring the particle mean square displacement are always positive and depend
on the shear rate and particle inertia. However, the stream-wise diffusion coefficient becomes
negative with increasing Stokes number and one of the cross coefficients is always negative.

2.3 Mesoscopic nonequilibrium thermodynamics approach

A different formalism in which the diffusion of a Brownian gas in a fluid under stationary
and non-stationary flow has been analyzed is mesoscopic nonequilibrium thermodynamics
(MNET) (Pérez-Madrid, 1994; Rubi & Mazur, 1994; Rubi & Pérez-Madrid, 1999). This theory
uses the nonequilibrium thermodynamics rules in the phase space of the system, and allows to
derive Fokker-Planck equations that are coupled with the thermodynamic forces associated to
the interaction between the system and the heat bath. The effects of this coupling on system’s
dynamics are not obvious. This is the case of Brownian motion in the presence of flow where,
as we have discussed previously, both the diffusion coefficient and the chemical potential
become modified by the presence of flow (Reguera & Rubi, 2003a;b; Santamaría Holek, 2005;
2009; 2001).
Using the principles of MNET, a thermodynamics for systems in a stationary state induced by
an imposed flow was formulated based on the assumption of the existence of local equilibrium
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in the phase space of the system (Santamaría Holek, 2005). This assumption enables one to
interpret the probability density and its conjugated nonequilibrium chemical potential, as
mesoscopic thermodynamic variables.

2.4 Mesoscopic nonequilibrium thermodynamics in the presence of flows

As in the Langevin description, the dynamic description of noninteracting Brownian particles
moving in a fluid in stationary flow, demands a mesoscopic treatment in terms of the
probability density f (r, u, t). The evolution in time of this quantity is governed by the
continuity equation

∂ f

∂t
+∇ · (u f ) = − ∂

∂u
· ( f Vu) , (16)

where f Vu is a probability current in u-space. The analysis of the dynamics starts from the
entropy production rate σ(t) related to the probability diffusion process. This can be done by
invoking the second principle of thermodynamics that the entropy production rate should be
positive definite σ(t) ≥ 0. To calculate σ(t) it is convenient to use the relative canonical
entropy, or generalized Gibbs entropy postulate (de Groot & Mazur, 1984; Pérez-Madrid,
1994; Rubi & Mazur, 1994),

ρ∆s(t) = −kB

∫

f ln
∣

∣

∣
f / fleq

∣

∣

∣
dΓ, (17)

where kB is Botzmann’s constant, ∆s = s − sleq is the difference of the specific nonequilibrium
entropy s(t) with respect to that characterizing the local equilibrium reference state sleq, and
dΓ = drdu. In addition, the mass density of the system of particles is defined by

ρ(r, t) = m
∫

f (r, u, t)du, (18)

where m is the mass of a Brownian particle. Eq. (17) constitutes an irreversibility criterion
assuring that the obtained equations satisfy an extremal principle in Γ-space.
The local equilibrium distribution function fleq(r, u) can be described by the local Maxwellian
with respect to the non-stationary convective flow v0(r, t), that is

fleq(r, u) = e
− m

kB T [μB+
1
2 (u−v0)2]

, (19)

where μB is the chemical potential at equilibrium. Using these ingredients, the balance
equation for the internal energy and assuming isothermal conditions, the entropy production
rate of the system was obtanied in the form (Santamaría Holek, 2005; 2001)

σ = −m

T

∫

f Vu · ∂μ

∂u
du − m

T

∫

J · ∇
[

1

2
(u − v0)

2

]

du − m

T

∫

J0 · Fdu. (20)

This entropy production rate contains three contributions. The first one is due to diffusion
in u-space and is proportional to the product of the mesoscopic probability current f Vu and
the derivative with respect to particle velocity u of the nonequilibrium chemical potential
μ(r, u, t) per unit mass

μ(r, u, t) =
kBT

m
ln | f (r, u, t)|+ 1

2
(u − v0)

2. (21)
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The second contribution originates from the product between the gradient of the local kinetic
energy of the particles 1

2 (u− v0)
2 (see also (de Groot & Mazur, 1984)), and the relative current

J = (u − v) f , where v represents the average velocity field of the particles,

ρv(r, t) = m
∫

u f (r, u, t)du. (22)

Finally, the third contribution to the entropy production rate involves the product of the
relative current J = (u − v0) f times the force F = dv0/dt arising from the dependence on
time of the external velocity field v0(r, t).
A linear law for the mesoscopic current f Vu in terms of the force was proposed, and when
substituted into Eq. (16), it yields the Fokker-Planck equation

∂ f

∂t
+∇ · (u f ) =

∂

∂u
·
{

β · (u − v0) f − ζ · F f + Dv ·
∂ f

∂u

}

. (23)

The postulation of a linear law scheme necessarily introduces the Onsager coefficients β, ζ and
ǫ. The diffusion coefficient in velocity space Dv, is related to β and ǫ through the expression

Dv =
kBT

m

[

β − ǫ · ∇�v0

]

. (24)

In Eq. (23), β is the friction coefficient that usually appears when describing Brownian
motion in velocity space (Santamaría Holek, 2005; 2001), and corresponds to what is referred
as a direct effect in nonequilibrium thermodynamics (de Groot & Mazur, 1984). The cross
coefficient ζ = ρp/ρ f 1 is related to inertial effects and ρp and ρ f denote the particle and host
fluid densities, and 1 is the unit tensor. The tensor ǫ constitutes an important result of this
analysis. It corresponds to a cross effect term proportional to the gradient of the imposed
velocity flow: ∇v0.
The expressions for ǫ and ζ were obtained by using the generalized Faxén theorem giving
the force experienced by a particle of arbitrary shape into a fluid under non-stationary flow
conditions (Mazur & Bedeaux, 1974; Santamaría Holek, 2005). For spherical particles at low
Reynolds numbers, ǫ = ǫ1, ǫ is given by

ǫ =
1

6

m

kBT
a2β2

0kω , (25)

where kω = (1 + 2aαω), αω =
√
−iω/ν is the inverse viscous penetration length of the host

fluid and ν its kinematic viscosity. Finally, β0 = 6πηa/m is the Stokes friction coefficient
where η is the dynamic viscosity of the host fluid.
The main fact to stress here is that the fluctuation term in the Fokker-Planck equation (23)
contains the diffusion coefficient in velocity space Dv, Eq. (24), that is similar to the one
obtained through kinetic theory, see Eq. (8). This coefficient contains the expected thermal
contribution kBTβ/m and, more interesting, a non-thermal contribution coming from the
cross effect coupling the diffusion of probability in configuration and velocity subspaces:
1
6 a2β2

0∇�v0. This particular dependence of Dv leads to a modification of the spatial diffusion
coefficient D(r, t) of the Brownian particles which is in agreement with experimental and
simulation results (Pine, 2005; Sarman, 1992). However, before discussing this point, some
comments on the diffusion or Smoluchowski equation are in turn.
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2.5 Diffusion in the presence of shear flow

The Smoluchowski equation can be derived from Eq. (23) by restricting the description to the

long-time diffusion regime, that is, when t >> β−1
ij .

In references (Santamaría Holek, 2005; 2009; 2001), the Smoluchowski equation was obtained
by calculating the evolution equations for the first moments of the distribution function. These
equations constitute the hydrodynamic level of description and can be obtained through the
Fokker-Planck equation. The time evolution of the moments include relaxation equations for
the diffusion current and the pressure tensor, whose form permits to elucidate the existence of
inertial (short-time) and diffusion (long-time) regimes. As already mentioned, in the diffusion
regime the mesoscopic description is carried out by means of a Smoluchowski equation and
the equations for the moments coincide with the differential equations of nonequilibrium
thermodynamics.
The procedure is enterily similar to that followed in kinetic theory (McLennan, 1989). In
particular, after assuming that stresses relax rapidly enough, the resulting Smoluchowski
equation is

∂ρ

∂t
= −∇ ·

(

ρv0 + ζξ · �F
)

+∇ · (D · ∇ρ) , (26)

where the effective diffusion coefficient is defined according to the relation

D =
kBT

m
ξ · (1 − ξ · ∇v0)

s − 1

6
a2β2

0kωξ · (ξ · ∇v0)
s. (27)

Here ξ is the mobility tensor satisfying ξ · β = 1. Again, this diffusion coefficient contains two
contributions, one depending on the temperature T of the fluid and another one independent
from it and proportional to the velocity gradient of the imposed external flow. Therefore,
the first contribution is related to the usual thermal Brownian motion whereas the last one is
related to non-thermal effects. Notice also that the Smoluchowski equation (26) also contains
the usual convective term ∇ · (ρv0).
Thus, the effect of the flow on diffusion is to introduce a new contribution term in the diffusion
coefficient arising from spatial inhomogeneities of the velociy field. As a consequence, the
flow also induces anisotropy in the Brownian motion. This can be seen from the fact that
even if the host fluid is assumed isotropic and the particles spherical, implying β = β1,
the effective diffusivity is a tensor proportional to ∇v0. It is convenient to mention that
this non-thermal contribution, known as the shear-induced diffusion effect, is proportional
to the size (surface) of the particle and breaks-down the fluctuation-dissipation relation of
the Smoluchowski equation. The presence of a nonequilibrated bath therefore modifies the
thermal energy available to the system in order to perform fluctuations. As shown before,
similar results are obtained from kinetic theory (Rodríguez, 1983). These results suggest
that the fluctuation dissipation relation used in Langevin-like approaches should be modified
accordingly for appreciably large Reynolds numbers. Comparison of these results with other
theories like, for instance, extended irreversible thermodynamics could be of interest.

2.6 Classical simulation results on diffusion in the presence of shear flow

It is convenient to emphasize that nonequilibrium molecular dynamics simulations with
Lennard-Jones pure fluids and mixtures under strong shear flow conditions (Sarman, 1992),
lead to a dependence of the self-diffusion tensor on the shear rate.
The results on diffusion reported show that the components of the diffusion tensor start
increasing or decrasing linearly as a function of the shear rate γ̇, (Sarman, 1992), in
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agreement with the results obtained with kinetic theory and mesoscopic nonequilibrium
thermodynamics. For larger values of γ̇, a quadratic contribution seems to appear and
modifies the initial tendency. In general, diagonal elements are positive whereas the
non-diagonal elements are negative. However, despite the sign of each element of the
diffusion tensor, the authors emphasize that the dependence on γ̇ and the obtained anisotropy
for the self-diffusion tensor evidences a break-down of the Curie principle and of the local
equilibrium hypothesis of linear irreversible thermodynamics, thus implying an anisotropic
kinetic energy distribution induced by the shear flow.
These observations pose an interesting question because the results reported in Refs.
(Santamaría Holek, 2005; 2009; 2001) were obtained under the assumption of local equilibrium
in phase space, that is, at the mesoscale. It seems that for systems far from equilibrium,
as those reported in (Sarman, 1992), the validity of the fundamental hypothesis of linear
nonequilibrium thermodynamics can be assumed at the mesoscale. After a reduction of
the description to the physical space, this non-Newtonian dependedence of the transport
coefficients on the shear rate appears. This point will be discussed more thoroughly in the
following sections when analyzing the formulation of non-Newtonian constitutive equations.

2.7 The shear-induced diffusion effect and the transition to irreversibility

One of the most beautiful results manifesting the effect of flow on diffusion is the
shear-induced diffusion effect, which is the quantitative manifestation of the transition to
irreversibility in a set of particles obeying the classical reversible equations of motion.
Recently, this effect was studied in a series of experiments and numerical simulations were the
transition from a dynamical reversible behavior to a dynamical irreversible chaotic behavior
of a suspension of non-Brownian particles was directly observed (Drazer, 2002; Pine, 2005).
The importance of these experiments lies in the fact that they shed light on the origin
of the thermodynamic irreversibility and its relation to the chaotic dynamics of a system
(Guasto & Gollub, 2007; Pine, 2005).
The experiments were performed with semi-diluted suspensions of spherical particles with
diameters d ≃ 0.2mm. The host fluid had the same density as the particles and was highly
viscous. The suspension was contained in a cylindrical Couette cell which was taken out from
equilibrium by applying an oscillating shear flow γ̇ cos(ωt) with dimensionless amplitude γ
and rate γ̇ = ωγ, being ω the characteristic frequency of the oscillation. The Reynolds number
of the flow was always much smaller than one, thus avoiding turbulent effects. For small
oscillation amplitudes γ the motion of the particles was reversible, that is, after each period the
particles came back to the original position. On the contrary, when increasing the oscillation
amplitude γ the trajectories of the particles became chaotic implying that their reversible
behavior was lost. From the thermodynamic point of view, it was interesting to know that the
motion of the particles was characterized by means of the mean square displacement 〈∆x2〉,
which scaled with time in the form: 〈∆x2〉 ∼ 2d2γ̇t, thus implying that the effective diffusivity
scales with D ∼ d2γ̇. Computer simulations using Stokesian dynamics (Bossis & Brady, 1989;
Pine, 2005) modeled the experiment and determined a positive Lyapunov exponent of particle
trajectories in phase space (Pine, 2005), thus implying that particle dynamics is chaotic. The
transition was characterized by giving quantitative values for the critical strain amplitude at
which it occurs.
Different theoretical descriptions were proposed to explain this effect. One of these models
is based on a Smoluchowski equation in which the diffusivities have been constructed
by analyzing the temporal behavior of the correlation of the position of the particles as
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obtanied from simulations (Seriou & Brady, 2004). However, this description does not impose
new thermodynamic postulates but it gives good quantitative results, though it lacks of a
deeper fundamental basis. This fundamental analysis can be given in terms of mesocopic
nonequilibrium thermodynamics (Santamaría Holek, 2009).
The explanation of the effect was formulated for a set of N particles described through
a multivariate probability distribution. After deriving the corresponding Fokker-Planck
equation along the lines indicated above, the description was reduced to the case of a
single tagged particle in an effective medium composed by the host fluid and the remaining
particles. The main result was a Smoluchowski equation for the single particle distribution
function ρ(r, t) entirely similar to Eq. (26), with an effective diffusion coefficient of the
form (27). However, in the referred case the diffusion tensor depends on position and
time, and on the fraction of volume φ = NVp/V occupied by the particles in the sample.
Vp and V are the volume of a particle and the total volume. These dependencies arise
when reducing the N-particle description to the single-particle one, a process that involves
averaging over positions and (Santamaría Holek, 2009) velocities of the remaining particles
(Santamaría Holek, 2009).
For sufficiently large particles (with vanishing thermal contribution) it was possible to show
that the mean square displacement is of the form

〈r2〉 ∼ 1

3
g12(φ)d

2γ̇t, (28)

expressed in terms of the number of cycles n hence t = 2πn/ω; thus 〈r2〉 ∼ 2π
3 g12(φ)d

2γ0n,
which has the same scaling relation for the mean square displacement than that reported in
the experiments in Ref. (Pine, 2005). Here, the dimensionless factor g12(φ) depending on the
volume fraction φ is a consequence of the existence of hydrodynamic interactions between
particles.

2.8 Lattice Boltzmann simulations

Lattice Boltzmann simulations using the D2Q9 model (Aidun & Ding, 1998; Ladd, 1994)
were also performed to study the transition to irreversibility in sheared suspensions of
non-Brownian particles (Santamaría Holek, 2009). This method was used because it esentially
controls the evolution in time of the host fluid without thermal fluctuations, thus giving
in a natural way the hydrodynamic interactions that, for large shear rates and particle
concentrations, dominate the dynamics of the system. Particle interactions were implemented
with the method proposed in Ref. (Ladd, 1994). The numerical simulations were carried out in
a cavity with the bounce-back boundary condition, which consists in reversing the incoming
particle distribution function after the stream process.
From these simulations it was observed that the effective diffusion of the particles can be
enhanced by increasing the particle concentration φ or by increasing the Reynolds number
Re, even at small values of the Re. The transition to irreversibility was characterized through
a power spectrum of particle trajectories, as shown in Fig. 1, where the trajectory of one of
the sixteen particles is shown. In Fig. 1a, one can appreciate that the particle describes regular
motion and even though in Fig. 1b we can notice some regularity in the motion. However, it
is clear that hydrodynamic interactions induce correlations between all particles giving rise to
new dissipation modes in the dynamics. By increasing the Reynolds number above its critical
value (corresponding to the critical value of the strain amplitude) the motion becomes chaotic,
as shown in Fig. 1e. Correspondingly, the spectrum shows (Fig. 1f) that almost all frequencies
contribute with the same amplitude, thus suggesting the stochastization of the motion.
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Fig. 1. Trajectories and power spectra of the same particle with equal initial conditions for
(a-b) Re = 0.01 and (c-d) Re = 0.07 and (e-f) Re = 0.08 with a volume fraction of φ = 0.14
and dimensionless frquency f ∗ = 10.0. The figure is a courtesy of Dr. G. Barrios.

To close this section, we want to emphasize that the explanation of the experiments and
simulations on shear-induced diffusion shows the validity of the theoretical approach and
its importance, because it was shown that the shear-induced diffusion and the transition to
irreversibility are fully compatible with the thermodynamic irreversibility as obtained from
the second principle and the generalized Gibbs entropy postulate.

3. Constitutive relations

The main question related to the thermodynamics in presence of flow is the formulation
of constitutive relations between density currents and thermodynamic forces. In linear
irreversible thermodynamics (de Groot & Mazur, 1984; Kondepudi & Prigogine, 1999) the
constitutive relations are linear. Although this approximation is valid for a large number
of systems, there are also many of them in which these linear relationships are not valid.
A classical example of this are chemical reactions, where the currents are sometimes
not linearly related to the forces, like in the mass action law (de Groot & Mazur, 1984;
Kondepudi & Prigogine, 1999).
Flowing systems are also typical examples in which this linear behavior is broken. This
is the case of rheology, the study of viscosity of complex fluids, that is, of fluids with
internal structure that exhibit a combination of viscous and elastic behavior under strain
(Beris & Edwards, 1994; Doi & Edwards, 1998). Examples of such fluids are polymer solutions
and melts, oil and toothpaste, among many others.
There are several approaches leading to the formulation of these non-linear relationships.
Unfortunately it is not possible to summarize them here because the field is very rich in the
variety of systems and behaviors. Consequently, such a summary lies beyond the scope of this
study. An excellent and detailed review is given in Ref. (Beris & Edwards, 1994). However,
let us mention that many attempts have been made to bring together continuum mechanics
theories and molecular models in order to formulate appropriate constitutive equations for
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polymer solutions (Beris & Edwards, 1994; Doi & Edwards, 1998). One of the central aspects
of this research is the incorporation of microscopic theories such as those by Zimm or Rouse
(Doi & Edwards, 1998) in constitutive relations. However, these attempts are usually valid
only in the dilute regime, although the proposed rheological equations are often evaluated
quantitatively and qualitatively to describe concentrated colloidal suspensions or polymer
solutions (James, 1972). From a phenomenological point of view, the first model attempting
to describe the hydrodynamic behavior of complex fluids was proposed by Maxwell and
describes what is now known as Maxwell materials (Meyers & Chawla, 2009). Other type
of materials are Kelvin-Voigt and Oldroyd materials.
The main difference between constitutive relations for simple and complex fluids lies in the
fact that simple fluids satisfy the linear relationships between the stress tensor σ(r, t) and the
strain or deformation tensor θ(r, t) or the velocity gradient ∇v. In contrast, complex fluids
have to incorporate a relaxation term for the stresses and a non-linear dependence on the
strain or velocity gradient tensors.

3.1 Simple viscoelastic materials

For simple viscoelastic materials, the main characteristic of the constitutive relations is the
presence of a time derivative of the stress tensor, associated to a relaxation process. In the case
of an incompressible Maxwell material, the constitutive relation is given through the evolution
equation

τ
∂

∂t
σ + τ (v · ∇σ)cont = −σ + η

(

∇v +∇vT
)

(29)

where τ is a relaxation time of the material and the contravariant convective term is given
by the second order tensor {(v · ∇σ)cont}ij = vk∇kσij − σik∇kvj − σkj∇kvi. This convective
term has been proposed by Oldroyd in order to satisfy the material invariance condition
(Beris & Edwards, 1994). As mentioned before, the last term of the equation is often expressed
in terms of the rate of the deformation tensor θ. This model is related to microscopic
approaches where the molecules are modeled as dumbells (Hinch, 1994; Rallison & Hinch,
1988). Clearly, this equation is coupled to the momentum equation and can be solved for
many types of flows. Averaged over volume, Maxwell’s model is frequently expressed in the
more simple form

d

dt
σ̂ = − 1

τ
σ̂ +

η

τ

d

dt
θ̂, (30)

where σ̂ and θ̂ are now time dependent quantities only. Assuming that the rate of deformation
is constant dθ̂/dt = θ̇, one then obtains that the constitutive relation for a simple viscoelastic
fluid is of the form

σ̂ = ηθ̇
(

1 − e−t/τ
)

, (31)

that is, after applied an external force inducing the deformation of the material, the stress
tensor relaxes until reaching a stationary value. When an oscillatory shear is applied on
the system then one obtains that the viscoelastic response of the fluid is characterized by a
frequency dependent viscosity.

3.1.1 Non-Newtonian materials

Very frequently, complex fluid manifest non-linear constitutive relations between the stress
tensor and the velocity gradient. These relations can be a consequence of the fact that the
relaxation time dependens on a scalar function of the deformation tensor like in the FENE
models (Hinch, 1994; Rallison & Hinch, 1988) or of the stress tensor, like in the case of the
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so-called modified Maxwell models (Beris & Edwards, 1994), that is, τ = τ(tr[σ]) where the
dependence on the stress tensor is usually introduced via the invariants of σ, for example,
through trσ. As a consequence of this, the evolution equation for the fluid becomes of the
form

∂

∂t
σ + (v · ∇σ)cont = − σ

τ(tr[σ])
+

η

τ(tr[σ])

(

∇v +∇vT
)

. (32)

Frequently, non-Newtonian materials show a power-law behavior of the viscosity as a
function of the shear rate γ̇ in which the exponent is a free parameter. An example of this
is the following model for the relaxation time (Apelian, 1988)

τ(tr[σ]) =
τ0

1 + {h(τ0)tr[σ]}α−1
, (33)

where τ0 is a charateristic relaxation time and h is a function that gives the correct dimensions
to the formula. As a consequence of this type of dependencies, it is ussually obtained that the
viscosity of the fluid and the normal stress difference Ψ depend on the shear rate in the form

η ∼ γ̇k(α) and Ψ ∼ γ̇2, (34)

where in general the exponent of the shear rate k depends on α.
These examples illustrate that viscoelastic and non-Newtonian materials do not respond
instantaneously to the shear stresses applied on them and its response is not linear with
respect to those stresses.

3.2 Mesoscopic constitutive relations for polymer solutions

Nonlinear constitutive relations for complex fliuds can also be obtained by using MNET
(Málaga, 2006). As described in Section II, the description was given in terms of a probability
density accounting for the state of the system through the position r and instantaneous
velocity u of the molecules. The deformation of each molecule is modeled by introducing
a local vector parameter R.
Following the scheme of MNET, a Fokker-Planck equation was obtained from which a
coarse-grained description in terms of the hydrodynamic equations was derived in turn.
Molecular deformation and diffusion effects become coupled and a class of non-linear
constitutive relations for the kinetic P

k and elastic parts P
E of the stress tensor are obtained.

The expression for the stress tensor can be written in terms of dimensionless quantities like

σ = P
k + P

E. (35)

Each contribution can be obtained from its own evolution equation. The kinetic part of the
stress tensor is governed by the equation

dP
k

dt
+ 2

[

P
k ·

(

β +∇v
)]s

= 2
kBT

m
ρ
(

β − Lur · ∇v0

)s
(36)

where the superscript s stands for the symmetric part of a tensor, m is the mass of the
molecule, β is the the friction tensor of the particles proportional to the corresponding Stokes
coefficient (Santamaría Holek, 2001), and Lur is an Onsager coefficient. Notice that in contrast
with Eqs. (29) and (32), where the relaxation time is scalar, Eq. (36) contains a matrix of the
relaxation times τ ≡ β +∇v. This means that in contrast with the usual phenomenological
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Fig. 2. Experimental data (points) for the non-Newtonian shear stress versus the shear rate of
a dilute solution of wormlike micelles (Delgado & Castillo, 2005; 2007). Fit of the data using
the isotropic friction model (line) in Eqs. (35), (36) and (38). Notice that the dependence of the
effective viscosity as a function of the shear rate is not simply a power law. Figure taken from
Ref. (Málaga, 2006).

relations such as (29) and (32), the relaxation time of (36) has an explicit relation in terms of
the friction coefficients of the particles in the host fluid.
For a FENE-type model with nonlinear elastic force of the dumbell, the restituting elastic
force of a molecule can be represented in the form: F = −ξ0F0R, where ξ0 is the characteristic
spring restitution coefficient per unit mass and F0 = L2/

(

L2 − trA
)

with L the maximum
length of the polymer. The evolution equation for the elastic contribution is given in terms of
the deformation or conformational tensor A = 〈RR〉, which is now related to the elastic part
of the stress tensor by the formula P

E = −ξ0F0A. The equation is

dA

dt
− 2[A · ∇v]s = 2

{

LRR ·
[

kT

m
I − 〈FR〉

]}s

+ 2
[

LRr · (∇v · ∇vT) · A

]s
, (37)

where LRr and LRR are Onsager coefficients characterizing the mobility and the coupling
between the deformation of the molecule and drag forces, respectively. The mesoscopic
formalism leads naturally to the Oldroyd type derivative that maintains material frame
independence (Málaga, 2006). Eqs. (36) and (37) have similar features as those indicated
by the Maxwell and the modified Maxwell models already discussed.
These equations were applied to describe different situations. For isotropic friction, the
dynamics of dumbell-like molecule solutions under simple shear conditions was analyzed
to obtain a correction to the usual FENE models that arises through the kinetic contribution
to the stress tensor. A second application for non-constant friction coefficient β lead to the
evolution equation

dA

dt
− A · ∇v0 −∇vT

0 · A =
16

9
√

trA

1

De
(I − ξ0F0A) (38)

where De = βγ̇/ξ0 is the Deborah number. As a consequence of this equation, a non-linear
relation between the elastic part of the stress tensor P

E and the shear rate γ̇ appears. This
relation was used to describe satisfactorily experiments with dilute miscellar solutions in
water (Málaga, 2006), see Fig. 2.
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4. Nonequilibrium equations of state

One interesting aspect of the previous discussion is that the expressions for the normal as well
as for the diagonal elements of the stress tensor σ or, more generally, the pressure tensor P

are functions of the applied velocity gradient or the strain rate. In this sense, these relations
represent what is known as nonequilibrium equations of state. It was shown rigorously that
at mesoscopic level, the chemical potential becomes modified by the external flow in a term
proportional to its local kinetic energy, see Eq. (21).
In this section we want to address how the presence of flow may lead to the existence of these
nonequilibrium equations of state at macroscopic level. For convenience we will only consider
the case of particle suspensions (Santamaría Holek, 2005), that is, we will not consider the
internal degrees of freedom of each molecule, as we did for the case of polymer solutions.
Let us recall that the evolution equation for the kinetic part of the pressure tensor P

k was
given by equation (36). For times t ≫ β−1 the particles enter the diffusion regime governed
by the corresponding Smoluchowski equation. In this regime, assuming a stationary process,
the following constitutive relation for P

k was obtained

P
k ≃ kBT

m
ρ1 −

[(

η
B
+ η

H

)

· ∇�v0

]s
, (39)

where the Brownian (η
B

) and hydrodynamic (η
H

) viscosity tensors are defined by

η
B
≡ kBT

m
ρβ−1 and η

H
≡ kBT

m
ρβ−1 · ǫ. (40)

For spherical particles, the friction coefficient β can be identified with the Stokes friction
coefficient β ≃ β1. Two cases are of interest.

4.1 Oscillatory flows in the creeping flow approximation

When the oscillatory flow is slow enough, by using Faxen’s theorem it was shown that the
friction coefficient depends on the frequency (ω) in the form (Mazur & Bedeaux, 1974)

β = β0(1 + aαω), (41)

where αω =
√

−iω/ν(ω), is the inverse viscous penetration length of the host fluid with
kinematic viscosity ν(ω). The expression for ǫ is given through Eq. (25). Using these results it
was found that the expressions for the Brownian η

B
(ω) and hydrodynamic η

H
(ω) viscosities

are

η
B
≃ kBT

mβ0
ρ
[

1 − ∆ω(τω)δω

]

and η
H
≃ 1

12
β0a2ρ

[

1 + ∆ω(τω)δω

]

, (42)

where ∆ω and δω are a scaling factor and an exponent that in general may depend on the
particle volume fraction φ. For viscoelastic fluids the expressions corresponding to the normal
stress difference and the non-diagonal elements of the pressure tensor are

Pxx − Pyy ≃ β−1
0

[

η
B
(ω) + η

H
(ω)

]

γ̇2, (43)

Pxy ≃ β−1
0

[

η
B
(ω) + η

H
(ω)

]

γ̇.

This relation suggests that the normal stresses of simple viscoelastic fluids depend on the
shear rate γ̇, that is, are modified by the flow conditions Pii ∝ γ̇2, see Eq. (34).
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Fig. 3. Brownian (solid and dash-dotted lines ) and hydrodynamic (dashed and dotted lines)
viscosities in terms of the shear rate for different values of the radius of the Brownian
particle. The figure shows the shear thinning and shear thickening effects associated to the
Brownian and hydrodynamic contributions, respectively. The values of the parameters we
have used are β0 = 106s−1, D0 = 106cm2s−1 and ρ = 10−2gcm−3. Figure taken from Ref.
Santamaría Holek (2005).

4.2 Non-Newtonian behavior

When the applied shear is large enough, the friction coefficient becomes a function of the shear
rate in the form (Santamaría Holek, 2005)

β−1 = β−1
0

(

1 − Maαγ̇
)

(44)

where αγ̇ =
√

γ̇/ν(ω), is the inverse viscous penetration length due to the presence of a
large shear flow and M is a geometrical factor depending on the boundary conditions over
the surface of the particle. Using the corresponding expression for ǫ(γ̇) it is found that in
the concentrated case, the non-Newtonian expressions for the Brownian and hydrodynamic
viscosities are

η
B
≃ kBT

mβ0
ρ
[

1 − Mxx∆γ(τγ̇)δγ

]

and η
H
≃ 1

12
β0a2ρ

[

1 + Mxx∆γ(τγ̇)δγ

]

. (45)

where, as in the previous case, the scaling factor ∆γ and the exponent δγ are φ dependent.
For the present case, the expressions corresponding to the normal stress difference and the
non-diagonal elements of the pressure tensor are

Pxx − Pyy ≃ − Mxy

3
β−1

0 a2ρ∆γτδγ γ̇1+δγ , (46)

Pxy ≃ β−1
0

[

η
B
(γ̇) + η

H
(γ̇)

]

γ̇.

These results, together with those for pure viscoelastic fluids clearly suggest the possibility of
the existence of non-equilibrium equations of state, that is, equations of state that are modified
by the presence of the flow. This possibility will be analyzed more thoroughly in the following
sections.
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5. Nucleation in the presence of flow

One of the interesting applications where the influence of flow on transport coefficients and on
the constitutive and state equation is relevant, is the nucleation process. The effect of flow on
crystallization is important because it often occurs in the presence of mechanical processing
of the melt, such as extrusion, shearing, or injection, all these factors may affect the process
drastically.
Despite the various existing approaches to the problem, we will restrict the presentation to
that based on MNET (Gadomski, 2005; 2008; Reguera & Rubi, 2003b). In this approach the
influence of a shear flow on the process of nucleation is analyzed through the derivation of a
Fokker-Planck equation for the probability distribution that depends on size. This is done for
a metastable phase subjected to a stationary flow. In addition to the correction of the diffusion
coefficient, it was shown that to the flow also introduces modifications to the nucleation rate.
By considering a metastable phase in which the emerging clusters, liquid droplets or
crystallites are embedded, the description is given in terms of the probability distribution
f (r, u, n, t), where now n denotes a cluster of n molecules. Following a scheme similar to that
of Section 2, after proposing the Gibbs equation the authors assume that the local equilibrium
distribution [see Eqs. (17) and (19)] has the form

fleq(r, u) = exp

{[

μB − ∆G(n) +
1

2
m(n)(u − v0)

2

]

/kBT

}

, (47)

The description given in Ref. (Reguera & Rubi, 2003b) is completely general since the
particular for of the free energy difference is not specified. However, to fix ideas, one may
assume that ∆G(n) is given by the expression of the classical nucleation theory

∆G(n) = −n∆μ + v∗a σ̃ n2/3 , (48)

where ∆μ is the difference in chemical potential between the solid and the liquid phase, v∗a is

a constant given by v∗a = (3
√

4πva)2/3 where va is the molecular volume of the liquid and σ̃
is the interfacial free energy per unit area appearing because an interface between the solid
nucleus and surrounding liquid is formed. In terms of the number of particles of the cluster
with critical size ncrit, the free energy difference may be written in the form

∆G(n) = ∆Gcrit

[

3

(

n

ncrit

)2/3

− 2

(

n

ncrit

)

]

, (49)

where the height of the barrier is given by ∆Gcrit =
16π

3 v2
a σ̃3/∆μ2.

Using Eq. (47) and the rules of mesoscopic nonequilibrium thermodynamics, the resulting
Fokker-Planck equation for the probability distribution is

∂ f

∂t
+∇ · (u f ) =

∂

∂n

(

Dn

kBT
f

∂

∂n

[

∆G(n) +
m(n)

2
(u − v0)

2

]

+ Dn
∂ f

∂n

)

(50)

+
∂

∂u
·
{

β · (u − v0) f − ζ · F f + Dv ·
∂ f

∂u

}

.

Here Dn plays the role of a diffusion coefficient in cluster size space. Reducing the description
to the diffusion regime (t ≫ β−1), an effective value for the nucleation barrier was obtained:
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∆G̃ = ∆G + (3/2)kBT ln |n|. This result is interesting because it implies that the flow modifies
the nucleation rate in the form

J ≃ k+(ncrit)e
∆G̃crit/kBT, (51)

where k+ is the rate of attachment of particles to the cluster and ∆G̃crit is the height of the
nucleation barrier.

5.1 Extension of the classical nucleation theory

A different approach to the problem of nucleation in the presence of flow was proposed in Ref.
(Blaak, 2004) by extending the classical nucleation theory in an intuitive and interesting form.
Starting from Eq. (49), a macroscopic nonequilibrium equation of state was proposed for the
Gibbs free energy difference by expanding in powers of the shear rate about the equilibrium
values of both, the chemical potential difference and the surface energy

∆μ = ∆μeq
[

1 + c0γ̇2 + O(γ̇4)
]

, (52)

σ̃ = σ̃eq
[

1 + κ0γ̇2 + O(γ̇4)
]

,

where c0 and κ0 are, in principle, fitting constants and ∆μeq and σ̃eq are the equilibrium values
of the chemical potential difference and the surface energy. The second term at the right hand
side of Eq. (52) is similar to the corrections previously obtained from MNET, see Eq. (21). The
main difference is that in the latter case these corrections enter through the local kinetic energy
of the system. Using these dependences, it was shown that the barrier height and the critical
cluster size ncrit depend on the shear in the form

∆Gcrit =
16πνs[σ̃

eq]3

3[∆μeq]2

[

1 + (3κ0 − 2c0)γ̇
2 + O(γ̇4)

]

, (53)

ncrit =
32πνs[σ̃eq]3

3[∆μeq]3

[

1 + (3κ0 − 3c0)γ̇
2 + O(γ̇4)

]

.

Brownian dynamic simulations performed with relatively small shear rates showed a shift of
the maximum of the free energy difference as a function of the applied shear rate implying an
increase in the nucleation barrier and the critical nucleation size (Blaak, 2004).
The authors conlcuded that their results indicate that crystal nucleation is suppressed
by the presence of shear (Butler & Harrowell, 1995), however much larger shear rates
were not accessed by simulations because the increase of the critical nucleus size would
lead to simulation artefacts. However, this study seems to be necessary because
experimental observations on lyzosyme, ferritin and apoferritin crystallization reported in
Ref. (A. Penkova, 2006), showed that the presence of moderate flows may promote nucleation
whereas large flows may suppress the nucleation. As a consequence, there is still an open
question on the appropriate theoretical description of the effect of flow on nucleation.

5.2 Flow induced nucleation: A Control volume thermodynamics approach

Here, we will formulate a novel model of flow induced nucleation by using control volume
thermodynamics. The general idea is very simple and goes through the lines indicated along
this chapter, that is, by assuming that nonequilibrium equations of state can be formulated in
a way consistent with the laws of thermodynamics when a flow is imposed on the system.
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Consider that the system is an open control volume with size V that allows the transit of
particles in solution through it and that, on average, remains with stationary pressure and
temperature. The first law of thermodynamics for open systems states that the change of the
total energy E of the system obeys the relation

∆E = Q + W , (54)

where Q and W are the amount of heat and work exchanged between the system and the
surroundings, and the change in the total energy is given by the relation

∆E = ∆U + ∆Ec + ∆Ep. (55)

Here, U is the internal energy of the system and Ec and Ep are their kinetic and potential
energies. Assuming that the potential energy contribution is negligible in the case of our
interest, then Ec is the kinetic energy of the particles in solution and we may write

E = U +
1

2
mNv2 +

1

2
ρVv2 ,

where m is the mass of a particle, N is the total number of particles in the control volume and
ρ is the density of the solvent, that we assume constant. Thus, the total mass of the solution
mN crosses the container volume with average velocity v.
In equilibrium, the Gibbs free energy G is defined in terms of the internal energy U, the
entropy S and the total volume of the system V:

G(N, P, T) = U − TS + PV , (56)

where P is the pressure. However, in order to be consistent with the first principle (55) for
an open system, in formulating the definition of the free energy we have to take into account
not only the internal energy U, but the total energy E of the system. Otherwise, it may occur
that the free energy difference could not be equal to the work exchanged between the system
and the surroundings. In view of these considerations, we propose the nonequilibrium free
energy

G neq(N, P, T, v) = E − TS + PV . (57)

Now, by using Euler’s thermodynamic equation, U = TS − PV + μN, one can write the
nonequilibrium Gibbs free energy in terms of the chemical potential μ and the kinetic energy
of particles in solution in the form

G neq = μN +
1

2
mNv2 +

1

2
ρVv2 . (58)

Using Eq. (58), we may define the effective chemical potential of the particles in solution μneq

μneq = μ +
1

2
mv2 . (59)

Notice that Eq. (59) is fully compatible with Eq. (52) and with (21). However, it is important
to stress that Eq. (59) is exact and a natural consequence of the first law of thermodynamics
for open systems.
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5.3 The kinetic energy contribution to nucleation

Consider now that nucleation of crystals/aggregates may occur in the system. Following
the lines of classical nucleation theory, the description of the nucleation process can be given
by means of the free energy difference between the solution G

neq
s and the solution/cluster

compound G
neq
c . Thus, assuming that the particles in solution move at a constant average

velocity v, that is, local diffusion is negligible, the Gibbs free energy of the particles in solution
G

neq
s takes the form

G
neq
s = μ

neq
s ns +

1

2
ρVv2 , (60)

where μs and ns are the chemical potential and the number of particles in solution,
respectively. When the cluster of particles starts to form, the Gibbs free energy of the system
changes and therefore, the solution/cluster compound Gc becomes

G
neq
c = (ns − nc)μ

neq
s + μcnc + σ̃A +

1

2
ρVv2 , (61)

where μc and nc are the chemical potential and the number of particles of the cluster with
surface energy σ̃ and surface A. Using Eqs. (60) and (61), one obtains the following expression
for the total change in the Gibbs free energy of the system ∆G neq = G

neq
c − G

neq
s

∆G neq = −∆μneq 4πR3

3νs
+ 4πγR2 (62)

where ∆μneq = μs − μc +
1
2 mv2 = ∆μ + 1

2 mv2 and we have assumed that the cluster has
spherical shape with radius R. Eq. (62) shows that for a constant value of ∆μ, the Gibbs
free energy free energy barrier decreases for increasing values of the flow velocity v. This
means that the flow gives energy to the particles in order to overcome the barrier. This
result agrees partially with those reported in (Blaak, 2004) and, more importantly, with
the experimental observation (A. Penkova, 2006) that for low and moderate flow velocities
nucleation is enhanced. However, it disagrees with the experimental fact that for large flow
velocities nucleation is inhibited or supressed. To explain this second effect, it is necessary to
consider the deformation of the nuclei. For another discussion on nucleation in soft-matter
colloid-type systems, see (Gadomski, 2005; 2006).

5.4 The elastic contribution

The stresses applied by the solvent on the nucleus’ surface will induce its deformation and, as
a consequence, an elastic contribution to the free energy Gel will emerge. This contribution is
proportional to the restitution force that tends to maintain the spherical shape of the nucleus
of volume Vc and, consequently, it is proportional to the elastic stress per unit volume PE =
tr[PE], thus leading to the expression: Gel ∝ PEVc.
The average elastic stress per unit volume of the solution/cluster compound is given through
the relation: P

E = −ξ0F0A with A the conformation tensor accounting for the average
deformation of the nuclei. In the present case, the characteristic restitution coefficient per
unit mass ξ0 will be related to the Lame coefficients of the material and the dimensionless
factor F0 will be held constant for simplicity. Thus, from Eq. (37), the average deformation of
the nuclei in terms of the flow velocity is

A =
kT

F0
I ·

(

I − LRr

LRRF0
(∇v · ∇vT)

)−1

, (63)
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Fig. 4. Supersaturation as a function of the averge flow velocity for a lysozime solution as
given by Eq. (67). The existence of an optimal flow velocity vopt gives rise to two nulceation
regimes. For moderate flow velocities v < vopt nucleation is enhanced whereas for large flow
velocities v > vopt becomes inhibited and even supressed.

where we have assumed stationary conditions: dA/dt − 2[A · ∇v]s = 0 and used the relation

〈�F�R〉 = F0A. Now, assuming that the average flow is in the x-direction and calculating the
trace of A we may finally write

PE ≈ −ξ0kT

(

ã

ã − bv2

)

, (64)

where ã = LRRF0 and b = LRrR−2
crit. Here we have assumed that |∇v| ∼ v/Rcrit with the

characteristic length given by the radius of the critical nucleus Rcrit. Eq. (64) shows that
the elastic contribution to the stresses in the nuclei is a function of the temperature T and
the average flow velocity v. This effect modifies the total free energy of the particles in the
solution/cluster compound Gc by adding the term Gel = ∆PEVc, with ∆PE = PE − PE

0 with

PE
0 = −ξ0kT the value of PE at zero flow. Therefore, the expression for the Gibbs free energy

taking into account the elastic contribution is

Gc = (ns − nc)μ
neq
s + μcnc + γA + ∆PEVc . (65)

Now, using Eqs. (60) and (65), the total change in the Gibbs free energy in terms of the radius
of the nucleus is given by

∆Gneq = −∆μ̃neq 4πR3

3ν
+ 4πγR2 , (66)

where

∆μ̃neq = ∆μ +
1

2
mv2 + ξ0νskT

(

1 − ã

ã − bv2

)

. (67)

This result implies that the steady state nucleation rate J becomes a function of the average
flow velocity

J(v) ≃ exp
[

−∆G
neq
crit(v)/kT

]

(68)
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because the height of the free energy barrier becomes a function of v: ∆G
neq
crit ∼ σ̃3/[∆μ̃neq]2,

see Eq. (53). The main consequence arising from the last term of (67) is that an optimal
average flow velocity vopt appears. This means that there are two regimes for nucleation in
the presence of flow. For moderate flow velocities, v < vopt, nucleation is enhanced whereas
for large flow velocities v > vopt nucleation is inhibited or even supressed. The existence of
an optimal flow velocity for nucleation was established experimentally in Ref. (A. Penkova,
2006) for lyzosyme, ferritin and apoferritin solutions.

6. Conclusions

In this chapter, we have discussed three important aspects of thermodynamics in the presence
of flow. By considering different points of view ranging from kinetic and stochastic theories
to thermodynamic theories at mesoscopic and macroscopic levels, we addressed the effects of
flow on transport coefficients like diffusion and viscosity, constitutive relations and equations
of state. In particular, we focused on how some of these effects may be derived from the
framework of mesoscopic nonequilibrium thermodynamics.
Our analysis started by considering how the flow introduces corrections on transport
coefficients and illustrated how this may be relevant for giving a sound theoretical description
of experiments. The first case considered was the contribution on the diffusion coefficient due
to a shear flow. This contribution, proportional to the velocity gradient or shear rate, was first
obtained by means of kinetic theory for Lorentz fluids and after that corroborated in a more
general fashion by MNET and Langevin calculations. Computer simulations and experiments
in which this correction was observed were also discussed. Comparison with experiments
illustrating how these contributions are relevant for giving a sound theoretical explanation of
the shear induced effect and the transition to the irreversibility was also presented.
Afterwards, we studied the existence of non-linear constitutive relations on several systems
like, for example, suspensions of Brownian and non-Brownian particles and polymer
solutions. These non-linear relations are understood in the sense that the currents, like
for instance, the diffusion current or the momentum current are not simply proportional to
their conjugated thermodynamic forces. In particular, the relation between the stress tensor
of a fluid and the velocity gradient, which is linear for simple Newtonian fluids, becomes
non-linear for many soft-matter systems like polymer solutions, polymer melts, glasses,
etc. This fact makes these materials non-Newtonian and viscoelastic. We illustrated the
phenomenological approach to this problem by mentioning Maxwell and extended Maxwell
fluid models, and then showed how similar non-linear constitutive relations emerge from the
mesoscopic thermodynamics analysis by considering Faxén’s theorem and its generalizations
to the case of time dependent flows.
These analyses allowed us to present a discussion on how the equilibrium equations of
state become modified when the system is subject to sufficiently strong flows, because
not only the non-diagonal components of the stress tensor become modified, but also the
normal components. In addition, through the discussion we have shown that the chemical
potential becomes corrected by a term proportional to the local kinetic energy of diffusion,
and therefore, is a flow dependent quantity. This correction was analyzed in the context of
nucleation, were it was found that both the nucleation barrier and consequently the nucleation
rate can be written in terms of the kinetic energy of the flow.
Using control volume thermodynamics, we showed that the nonequilibrium equations of
state heuristically proposed by Frenkel and co-workers is in fact consistent with the general
expression of the first law of thermodynamics, in which the heat and the work exchanged
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between the system and its surroundings are responsible for the change of the internal,
kinetic and potential energies of the system. Our proof uses arguments similar to those
previously used by Oono’s when discussing why nonequilibrium thermodynamics may treat
both thermodynamic and hydrodynamic fluctuations. Finally, we have proposed a model
taking into account internal restitutive stresses of the nucleus that allows to describe in
a qualitative form the experiments on lysozyme, ferritin and apoferritin nucleation in the
presence of flow. The main result is that the supersaturation parameter and consequently
the nucleation rate exhibit two regimes. One in which nucleation is enhanced by low and
moderate flow velocities and other one (large flow velocities) in which nucleation is inhibited
or even supressed by the flow. These results lead to the existence of an optimal nucleation
flow velocity, a quantity that was reported in experiments.
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