325 research outputs found

    Broad Spectrum Antiviral Activity of Favipiravir (T-705): Protection from Highly Lethal Inhalational Rift Valley Fever

    Get PDF
    Background:Development of antiviral drugs that have broad-spectrum activity against a number of viral infections would be of significant benefit. Due to the evolution of resistance to currently licensed antiviral drugs, development of novel anti-influenza drugs is in progress, including Favipiravir (T-705), which is currently in human clinical trials. T-705 displays broad-spectrum in vitro activity against a number of viruses, including Rift Valley Fever virus (RVFV). RVF is an important neglected tropical disease that causes human, agricultural, and economic losses in endemic regions. RVF has the capacity to emerge in new locations and also presents a potential bioterrorism threat. In the current study, the in vivo efficacy of T-705 was evaluated in Wistar-Furth rats infected with the virulent ZH501 strain of RVFV by the aerosol route.Methodology/Principal Findings:Wistar-Furth rats are highly susceptible to a rapidly lethal disease after parenteral or inhalational exposure to the pathogenic ZH501 strain of RVFV. In the current study, two experiments were performed: a dose-determination study and a delayed-treatment study. In both experiments, all untreated control rats succumbed to disease. Out of 72 total rats infected with RVFV and treated with T-705, only 6 succumbed to disease. The remaining 66 rats (92%) survived lethal infection with no significant weight loss or fever. The 6 treated rats that succumbed survived significantly longer before succumbing to encephalitic disease.Conclusions/Significance:Currently, there are no licensed antiviral drugs for treating RVF. Here, T-705 showed remarkable efficacy in a highly lethal rat model of Rift Valley Fever, even when given up to 48 hours post-infection. This is the first study to show protection of rats infected with the pathogenic ZH501 strain of RVFV. Our data suggest that T-705 has potential to be a broad-spectrum antiviral drug. © 2014 Caroline et al

    The RR Lyrae Distance Scale

    Get PDF
    We review seven methods of measuring the absolute magnitude M_V of RR Lyrae stars in light of the Hipparcos mission and other recent developments. We focus on identifying possible systematic errors and rank the methods by relative immunity to such errors. For the three most robust methods, statistical parallax, trigonometric parallax, and cluster kinematics, we find M_V (at [Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and theoretical models both yield a broad range of possible values (0.45-0.70 and 0.45-0.65) due to systematic uncertainties in the temperature scale and input physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but this may be due to a difference in the metallicity scales of the cluster giants and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67 +/- 0.13 and is potentially very robust, but at present is too new to be fully tested for systematics. If the three most robust methods are combined with Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at [Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose

    Vectors Based on Modified Vaccinia Ankara Expressing Influenza H5N1 Hemagglutinin Induce Substantial Cross-Clade Protective Immunity

    Get PDF
    New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA) vector vaccine.The replication-deficient MVA virus was used to express influenza hemagglutinin (HA) proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203), the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05), the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05) and A/chicken/Egypt/3/2006 (CE/06), and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05) were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades.The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines utilizing MVA vector technology, should be based on the VN/1203 hemagglutinin. Furthermore, the recombinant MVA-HA-VN, as characterized in the present study, would be a promising candidate for such a vaccine

    Does dietary tocopherol level affect fatty acid metabolism in fish?

    Get PDF
    Fish are a rich source of the n-3 polyunsaturated fatty acids (PUFA), particularly the highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids, which are vital constituents for cell membrane structure and function, but which are also highly susceptible to attack by oxygen and other organic radicals. Resultant damage to PUFA in membrane phospholipids can have serious consequences for cell membrane structure and function, with potential pathological effects on cells and tissues. Physiological antioxidant protection involves both endogenous components, such as free radical scavenging enzymes, and exogenous dietary micronutrients including tocopherols and tocotrienols, the vitamin E-type compounds, widely regarded as the primary lipid soluble antioxidants. The antioxidant activities of tocopherols are imparted by their ability to donate their phenolic hydrogen atoms to lipid (fatty acid) free radicals resulting in the stabilisation of the latter and the termination of the lipid peroxidation chain reaction. However, tocopherols can also prevent PUFA peroxidation by acting as quenchers of singlet oxygen. Recent studies on marine fish have shown correlations between dietary and tissue PUFA/tocopherol ratios and incidence of lipid peroxidation as indicated by the levels of TBARS and isoprostanes. These studies also showed that feeding diets containing oxidised oil significantly affected the activities of liver antioxidant defence enzymes and that dietary tocopherol partially attenuated these effects. However, there is evidence that dietary tocopherols can affect fatty acid metabolism in other ways. An increase in membrane PUFA was observed in rats deficient in vitamin E. This was suggested to be due to over production of PUFA arising from increased activity of the desaturation/elongation mechanisms responsible for the synthesis of PUFA. Consistent with this, increased desaturation of 18:3n-3 and 20:5n-3 in hepatocytes from salmon fed diets deficient in tocopherol and/or astaxanthin has been observed. Although the mechanism is unclear, tocopherols may influence biosynthesis of n-3PUFA through alteration of cellular oxidation potential or “peroxide tone”

    The Receptor Slamf1 on the Surface of Myeloid Lineage Cells Controls Susceptibility to Infection by Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, causes severe myocarditis often resulting in death. Here, we report that Slamf1−/− mice, which lack the hematopoietic cell surface receptor Slamf1, are completely protected from an acute lethal parasite challenge. Cardiac damage was reduced in Slamf1−/− mice compared to wild type mice, infected with the same doses of parasites, as a result of a decrease of the number of parasites in the heart even the parasitemia was only marginally less. Both in vivo and in vitro experiments reveal that Slamf1-defIcient myeloid cells are impaired in their ability to replicate the parasite and show altered production of cytokines. Importantly, IFN-γ production in the heart of Slamf1 deficient mice was much lower than in the heart of wt mice even though the number of infiltrating dendritic cells, macrophages, CD4 and CD8 T lymphocytes were comparable. Administration of an anti-Slamf1 monoclonal antibody also reduced the number of parasites and IFN-γ in the heart. These observations not only explain the reduced susceptibility to in vivo infection by the parasite, but they also suggest human Slamf1 as a potential target for therapeutic target against T. cruzi infection

    New insights regarding HCV-NS5A structure/function and indication of genotypic differences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HCV is prevalent throughout the world. It is a major cause of chronic liver disease. There is no effective vaccine and the most common therapy, based on Peginterferon, has a success rate of ~50%. The mechanisms underlying viral resistance have not been elucidated but it has been suggested that both host and virus contribute to therapy outcome. Non-structural 5A (NS5A) protein, a critical virus component, is involved in cellular and viral processes.</p> <p>Methods</p> <p>The present study analyzed structural and functional features of 345 sequences of HCV-NS5A genotypes 1 or 3, using <it>in silico </it>tools.</p> <p>Results</p> <p>There was residue type composition and secondary structure differences between the genotypes. In addition, second structural variance were statistical different for each response group in genotype 3. A motif search indicated conserved glycosylation, phosphorylation and myristoylation sites that could be important in structural stabilization and function. Furthermore, a highly conserved integrin ligation site was identified, and could be linked to nuclear forms of NS5A. ProtFun indicated NS5A to have diverse enzymatic and nonenzymatic activities, participating in a great range of cell functions, with statistical difference between genotypes.</p> <p>Conclusion</p> <p>This study presents new insights into the HCV-NS5A. It is the first study that using bioinformatics tools, suggests differences between genotypes and response to therapy that can be related to NS5A protein features. Therefore, it emphasizes the importance of using bioinformatics tools in viral studies. Data acquired herein will aid in clarifying the structure/function of this protein and in the development of antiviral agents.</p

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Non-native hydrophobic interactions detected in unfolded apoflavodoxin by paramagnetic relaxation enhancement

    Get PDF
    Transient structures in unfolded proteins are important in elucidating the molecular details of initiation of protein folding. Recently, native and non-native secondary structure have been discovered in unfolded A. vinelandii flavodoxin. These structured elements transiently interact and subsequently form the ordered core of an off-pathway folding intermediate, which is extensively formed during folding of this α–β parallel protein. Here, site-directed spin-labelling and paramagnetic relaxation enhancement are used to investigate long-range interactions in unfolded apoflavodoxin. For this purpose, glutamine-48, which resides in a non-native α-helix of unfolded apoflavodoxin, is replaced by cysteine. This replacement enables covalent attachment of nitroxide spin-labels MTSL and CMTSL. Substitution of Gln-48 by Cys-48 destabilises native apoflavodoxin and reduces flexibility of the ordered regions in unfolded apoflavodoxin in 3.4 M GuHCl, because of increased hydrophobic interactions in the unfolded protein. Here, we report that in the study of the conformational and dynamic properties of unfolded proteins interpretation of spin-label data can be complicated. The covalently attached spin-label to Cys-48 (or Cys-69 of wild-type apoflavodoxin) perturbs the unfolded protein, because hydrophobic interactions occur between the label and hydrophobic patches of unfolded apoflavodoxin. Concomitant hydrophobic free energy changes of the unfolded protein (and possibly of the off-pathway intermediate) reduce the stability of native spin-labelled protein against unfolding. In addition, attachment of MTSL or CMTSL to Cys-48 induces the presence of distinct states in unfolded apoflavodoxin. Despite these difficulties, the spin-label data obtained here show that non-native contacts exist between transiently ordered structured elements in unfolded apoflavodoxin

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world
    corecore