20 research outputs found

    Allele-Specific Impairment of GJB2 Expression by GJB6 Deletion del(GJB6-D13S1854)

    Get PDF
    Mutations in the GJB2 gene, which encodes connexin 26, are a frequent cause of congenital non-syndromic sensorineural hearing loss. Two large deletions, del(GJB6-D13S1830) and del(GJB6-D13S1854), which truncate GJB6 (connexin 30), cause hearing loss in individuals homozygous, or compound heterozygous for these deletions or one such deletion and a mutation in GJB2. Recently, we have demonstrated that the del(GJB6-D13S1830) deletion contributes to hearing loss due to an allele-specific lack of GJB2 mRNA expression and not as a result of digenic inheritance, as was postulated earlier. In the current study we investigated the smaller del(GJB6-D13S1854) deletion, which disrupts the expression of GJB2 at the transcriptional level in a manner similar to the more common del(GJB6-D13S1830) deletion. Interestingly, in the presence of this deletion, GJB2 expression remains minimally but reproducibly present. The relative allele-specific expression of GJB2 was assessed by reverse-transcriptase PCR and restriction digestions in three probands who were compound heterozygous for a GJB2 mutation and del(GJB6-D13S1854). Each individual carried a different sequence variant in GJB2. All three individuals expressed the mutated GJB2 allele in trans with del(GJB6-D13S1854), but expression of the GJB2 allele in cis with the deletion was almost absent. Our study clearly corroborates the hypothesis that the del(GJB6-D13S1854), similar to the larger and more common del(GJB6-D13S1830), removes (a) putative cis-regulatory element(s) upstream of GJB6 and narrows down the region of location

    Preschool hyperactivity specifically elevates long-term mental health risks more strongly in males than females: a prospective longitudinal study through to young adulthood

    Get PDF
    Evidence of continuities between preschool hyperactivity and adult mental health problems highlight the potential value of targeting early identification and intervention strategies. However, specific risk factors are currently unclear. This large-scale prospective longitudinal study aimed to identify which hyperactive preschoolers are at greatest long-term risk of poor mental health. One hundred and seventy children (89 females) rated as hyperactive by their parents and 88 non-hyperactive controls (48 females) were identified from a community sample of 4,215 3 year-olds. Baseline data relating to behavioral/emotional problems and background characteristics were collected. Follow-up mental health and functional impairment outcomes were collected between 14 and 25 years of age. At age 3 years, males and females in the hyperactive group had similarly raised levels of hyperactivity and other behavior problems. In adolescence/young adulthood, these individuals showed elevated symptoms of ADHD, conduct disorder, mood disorder, anxiety and autism, as well as functional impairment. Preschool hyperactivity was strongly predictive of poor adolescent/adult outcomes for males across domains with effects being specifically driven by hyperactivity. For females, the effects of preschool hyperactivity were smaller and dropped to non-significant levels when other preschool problems were taken into account. Environmental risk factors also differed between the sexes, although these may also have been mediated by genetic risk. In conclusion, these results demonstrate marked sex differences in preschool predictors of later adolescent/adult mental health problems. Future research should include a measure of preschool inattention as well hyperactivity. The findings highlight the potential value of tailored approaches to early identification strategies

    Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Get PDF
    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways

    Molecular basis of USP7 inhibition by selective small-molecule inhibitors

    Get PDF
    Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise 'undruggable' targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers. Here we report that two compounds, FT671 and FT827, inhibit USP7 with high affinity and specificity in vitro and within human cells. Co-crystal structures reveal that both compounds target a dynamic pocket near the catalytic centre of the auto-inhibited apo form of USP7, which differs from other USP deubiquitinases. Consistent with USP7 target engagement in cells, FT671 destabilizes USP7 substrates including MDM2, increases levels of p53, and results in the transcription of p53 target genes, induction of the tumour suppressor p21, and inhibition of tumour growth in mice

    A phase 1 dose-escalation and expansion study of binimetinib (MEK162), a potent and selective oral MEK1/2 inhibitor

    No full text
    BACKGROUND: Binimetinib (MEK162; ARRY-438162) is a potent and selective oral MEK 1/2 inhibitor. This phase 1 study determined the maximum tolerated dose (MTD), safety, pharmacokinetic and pharmacodynamic profiles, and preliminary anti-tumour activity of binimetinib in patients with advanced solid tumours, with expansion cohorts of patients with biliary cancer or KRAS- or BRAF-mutant colorectal cancer. METHODS: Binimetinib was administered twice daily. Expansion cohorts were enroled after MTD determination following a 3+3 dose-escalation design. Pharmacokinetic properties were determined from plasma samples. Tumour samples were assessed for mutations in RAS, RAF, and other relevant genes. Pharmacodynamic properties were evaluated in serum and skin punch biopsy samples. RESULTS: Ninety-three patients received binimetinib (dose-escalation phase, 19; expansion, 74). The MTD was 60 mg twice daily, with dose-limiting adverse events (AEs) of dermatitis acneiform and chorioretinopathy. The dose for expansion patients was subsequently decreased to 45 mg twice daily because of the frequency of treatment-related ocular toxicity at the MTD. Common AEs across all dose levels included rash (81%), nausea (56%), vomiting (52%), diarrhoea (51%), peripheral oedema (46%), and fatigue (43%); most were grade 1/2. Dose-proportional increases in binimetinib exposure were observed and target inhibition was demonstrated in serum and skin punch biopsy samples. Three patients with biliary cancer had objective responses (one complete and two partial). CONCLUSIONS: Binimetinib demonstrated a manageable safety profile, target inhibition, and dose-proportional exposure. The 45 mg twice daily dose was identified as the recommended phase 2 dose. The three objective responses in biliary cancer patients are encouraging and support further evaluation in this population
    corecore