377 research outputs found

    Root resorptions associated with canine retraction treatment

    Get PDF
    INTRODUCTION: The hypothesis of this study was that multiple factors are dominant in causing external apical root resorption (EARR). The objective of this investigation was to better understand the clinical factors that may lead to EARR. METHODS: Maxillary cone-beam computed tomography scans of 18 subjects who were treated with bilateral canine retractions during orthodontics were used to calculate EARR. The subjects were treated using well-calibrated segmental T-loops for delivering a 124-cN retraction force and the moment-to-force ratio suitable for moving the canine under either translation or controlled tipping. The subjects' age, sex, treatment duration, and genotype were collected. RESULTS: Six subjects of the 18 showed definite EARR, meaning that load was not the only causing factor. All 5 subjects with the genotype identified had GG genotype of IL-1ÎČ rs11143634, indicating that people with this genotype may be at high risk. Longer treatment duration, female sex, and older age may also contribute to EARR, although the findings were not statistically significant. CONCLUSIONS: EARR appears to be related to multiple factors. The orthodontic load and the genotype should be the focuses for future studies

    Quantum computational capability of a 2D valence bond solid phase

    Full text link
    Quantum phases of naturally-occurring systems exhibit distinctive collective phenomena as manifestation of their many-body correlations, in contrast to our persistent technological challenge to engineer at will such strong correlations artificially. Here we show theoretically that quantum correlations exhibited in the two-dimensional valence bond solid phase of a quantum antiferromagnet, modeled by Affleck, Kennedy, Lieb, and Tasaki as a precursor of spin liquids and topological orders, are sufficiently complex yet structured enough to simulate universal quantum computation when every single spin can be measured individually. This unveils that an intrinsic complexity of naturally-occurring 2D quantum systems -- which has been a long-standing challenge for traditional computers -- could be tamed as a computationally valuable resource, even if we are limited not to create newly entanglement during computation. Our constructive protocol leverages a novel way to herald the correlations suitable for deterministic quantum computation through a random sampling, and may be extensible to other ground states of various 2D valence bond phases beyond the AKLT state.Comment: 19 pages, 3 figures; final published version, submitted to the journal on 23 Sep 2010. The article does not assume familiarity with quantum computatio

    Constraining Gas Motions in the Intra-Cluster Medium

    Get PDF
    The detailed velocity structure of the diffuse X-ray emitting intra-cluster medium (ICM) remains one of the last missing key ingredients in understanding the microphysical properties of these hot baryons and constraining our models of the growth and evolution of structure on the largest scales in the Universe. Direct measurements of the gas velocities from the widths and shifts of X-ray emission lines were recently provided for the central region of the Perseus Cluster of galaxies by Hitomi, and upcoming high-resolution X-ray microcalorimeters onboard XRISM and Athena are expected to extend these studies to many more systems. In the mean time, several other direct and indirect methods have been proposed for estimating the velocity structure in the ICM, ranging from resonant scattering to X-ray surface brightness fluctuation analysis, the kinematic Sunyaev-Zeldovich effect, or using optical line emitting nebulae in the brightest cluster galaxies as tracers of the motions of the ambient plasma. Here, we review and compare the existing estimates of the velocities of the hot baryons, as well as the various overlapping physical processes that drive motions in the ICM, and discuss the implications of these measurements for constraining the viscosity and identifying the source of turbulence in clusters of galaxies

    Quantifying Quantum Correlations in Fermionic Systems using Witness Operators

    Full text link
    We present a method to quantify quantum correlations in arbitrary systems of indistinguishable fermions using witness operators. The method associates the problem of finding the optimal entan- glement witness of a state with a class of problems known as semidefinite programs (SDPs), which can be solved efficiently with arbitrary accuracy. Based on these optimal witnesses, we introduce a measure of quantum correlations which has an interpretation analogous to the Generalized Robust- ness of entanglement. We also extend the notion of quantum discord to the case of indistinguishable fermions, and propose a geometric quantifier, which is compared to our entanglement measure. Our numerical results show a remarkable equivalence between the proposed Generalized Robustness and the Schliemann concurrence, which are equal for pure states. For mixed states, the Schliemann con- currence presents itself as an upper bound for the Generalized Robustness. The quantum discord is also found to be an upper bound for the entanglement.Comment: 7 pages, 6 figures, Accepted for publication in Quantum Information Processin

    What contributes to individual differences in brain structure?

    Get PDF
    Individual differences in adult human brain structure have been found to reveal a great deal of information about variability in behaviors, cognitive abilities and mental and physical health. Driven by such evidence, what contributes to individual variation in brain structure has gained accelerated attention as a research question. Findings thus far appear to support the notion that an individual’s brain architecture is determined largely by genetic and environmental influences. This review aims to evaluate the empirical literature on whether and how genes and the environment contribute to individual differences in brain structure. It first considers how genetic and environmental effects may separately contribute to brain morphology, by examining evidence from twin, genome-wide association, cross-sectional and longitudinal studies. Next, evidence for the influence of the complex interplay between genetic and environmental factors, characterized as gene-environment interactions and correlations, is reviewed. In evaluating the extant literature, this review will conclude that both genetic and environmental factors play critical roles in contributing to individual variability in brain structure

    Towards computational insights into the large-scale structure of spin foams

    Full text link
    Understanding the large-scale physics is crucial for the spin foam approach to quantum gravity. We tackle this challenge from a statistical physics perspective using simplified, yet feature-rich models. In particular, this allows us to explicitly answer whether broken symmetries will be restored by renormalization: We observe a weak phase transition in both Migdal-Kadanoff and tensor network renormalization. In this work we give a concise presentation of the concepts, results and promises of this new direction of research.Comment: 10 pages, 9 figures, to be published in proceedings of the Loops'11 Madrid international conference on quantum gravit

    Towards computational insights into the large-scale structure of spin foams

    Full text link
    Understanding the large-scale physics is crucial for the spin foam approach to quantum gravity. We tackle this challenge from a statistical physics perspective using simplified, yet feature-rich models. In particular, this allows us to explicitly answer whether broken symmetries will be restored by renormalization: We observe a weak phase transition in both Migdal-Kadanoff and tensor network renormalization. In this work we give a concise presentation of the concepts, results and promises of this new direction of research.Comment: 10 pages, 9 figures, to be published in proceedings of the Loops'11 Madrid international conference on quantum gravit

    Towards computational insights into the large-scale structure of spin foams

    Full text link
    Understanding the large-scale physics is crucial for the spin foam approach to quantum gravity. We tackle this challenge from a statistical physics perspective using simplified, yet feature-rich models. In particular, this allows us to explicitly answer whether broken symmetries will be restored by renormalization: We observe a weak phase transition in both Migdal-Kadanoff and tensor network renormalization. In this work we give a concise presentation of the concepts, results and promises of this new direction of research.Comment: 10 pages, 9 figures, to be published in proceedings of the Loops'11 Madrid international conference on quantum gravit

    Rapid Probing of Biological Surfaces with a Sparse-Matrix Peptide Library

    Get PDF
    Finding unique peptides to target specific biological surfaces is crucial to basic research and technology development, though methods based on biological arrays or large libraries limit the speed and ease with which these necessary compounds can be found. We reasoned that because biological surfaces, such as cell surfaces, mineralized tissues, and various extracellular matrices have unique molecular compositions, they present unique physicochemical signatures to the surrounding medium which could be probed by peptides with appropriately corresponding physicochemical properties. To test this hypothesis, a naïve pilot library of 36 peptides, varying in their hydrophobicity and charge, was arranged in a two-dimensional matrix and screened against various biological surfaces. While the number of peptides in the matrix library was very small, we obtained “hits” against all biological surfaces probed. Sequence refinement of the “hits” led to peptides with markedly higher specificity and binding activity against screened biological surfaces. Genetic studies revealed that peptide binding to bacteria was mediated, at least in some cases, by specific cell-surface molecules, while examination of human tooth sections showed that this method can be used to derive peptides with highly specific binding to human tissue

    Coarse graining methods for spin net and spin foam models

    Full text link
    We undertake first steps in making a class of discrete models of quantum gravity, spin foams, accessible to a large scale analysis by numerical and computational methods. In particular, we apply Migdal-Kadanoff and Tensor Network Renormalization schemes to spin net and spin foam models based on finite Abelian groups and introduce `cutoff models' to probe the fate of gauge symmetries under various such approximated renormalization group flows. For the Tensor Network Renormalization analysis, a new Gauss constraint preserving algorithm is introduced to improve numerical stability and aid physical interpretation. We also describe the fixed point structure and establish an equivalence of certain models.Comment: 39 pages, 13 figures, 1 tabl
    • 

    corecore