635 research outputs found
Testing A (Stringy) Model of Quantum Gravity
I discuss a specific model of space-time foam, inspired by the modern
non-perturbative approach to string theory (D-branes). The model views our
world as a three brane, intersecting with D-particles that represent stringy
quantum gravity effects, which can be real or virtual. In this picture, matter
is represented generically by (closed or open) strings on the D3 brane
propagating in such a background. Scattering of the (matter) strings off the
D-particles causes recoil of the latter, which in turn results in a distortion
of the surrounding space-time fluid and the formation of (microscopic, i.e.
Planckian size) horizons around the defects. As a mean-field result, the
dispersion relation of the various particle excitations is modified, leading to
non-trivial optical properties of the space time, for instance a non-trivial
refractive index for the case of photons or other massless probes. Such models
make falsifiable predictions, that may be tested experimentally in the
foreseeable future. I describe a few such tests, ranging from observations of
light from distant gamma-ray-bursters and ultra high energy cosmic rays, to
tests using gravity-wave interferometric devices and terrestrial particle
physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings
  style. Invited talk at the third international conference on Dark Matter in
  Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200
Realistic Standard Model Fermion Mass Relations in Generalized Minimal Supergravity (GmSUGRA)
Grand Unified Theories (GUTs) usually predict wrong Standard Model (SM)
fermion mass relation m_e/m_{\mu} = m_d/m_s toward low energies. To solve this
problem, we consider the Generalized Minimal Supergravity (GmSUGRA) models,
which are GUTs with gravity mediated supersymmetry breaking and higher
dimensional operators. Introducing non-renormalizable terms in the super- and
K\"ahler potentials, we can obtain the correct SM fermion mass relations in the
SU(5) model with GUT Higgs fields in the {\bf 24} and {\bf 75} representations,
and in the SO(10) model. In the latter case the gauge symmetry is broken down
to SU(3)_C X SU(2)_L X SU(2)_R X U(1)_{B-L}, to flipped SU(5)X U(1)_X, or to
SU(3)_C X SU(2)_L X U(1)_1 X U(1)_2. Especially, for the first time we generate
the realistic SM fermion mass relation in GUTs by considering the
high-dimensional operators in the K\"ahler potential.Comment: JHEP style, 29 pages, no figure,references adde
Flux and Instanton Effects in Local F-theory Models and Hierarchical Fermion Masses
We study the deformation induced by fluxes and instanton effects on Yukawa
couplings involving 7-brane intersections in local F-theory constructions. In
the absence of non-perturbative effects, holomorphic Yukawa couplings do not
depend on open string fluxes. On the other hand instanton effects (or gaugino
condensation on distant 7-branes) do induce corrections to the Yukawas. The
leading order effect may also be captured by the presence of closed string
(1,2) IASD fluxes, which give rise to a non-commutative structure. We check
that even in the presence of these non-perturbative effects the holomorphic
Yukawas remain independent of magnetic fluxes. Although fermion mass
hierarchies may be obtained from these non-perturbative effects, they would
give identical Yukawa couplings for D-quark and Lepton masses in SU(5) F-theory
GUT's, in contradiction with experiment. We point out that this problem may be
solved by appropriately normalizing the wavefunctions. We show in a simple toy
model how the presence of hypercharge flux may then be responsible for the
difference between D-quarks and Lepton masses in local SU(5) GUT's.Comment: 84 pages, 1 figure. v2: minor corrections and references adde
Phenomenological analysis of D-brane Pati-Salam vacua
In the present work we perform a phenomenological analysis of the effective
low energy models with Pati-Salam (PS) gauge symmetry derived in the context of
D-branes. A main issue in these models arises from the fact that the
right-handed fermions and the PS-symmetry breaking Higgs field transform
identically under the PS symmetry, causing unnatural matter-Higgs mixing
effects. We argue that this problem could be solved in particular D-brane
setups where these fields arise in different intersections. We further observe
that whenever a large Higgs mass term is generated in a particular class of
mass spectra, a splitting mechanism -reminiscent of the doublet triplet
splitting- may protect the neutral Higgs components from a heavy mass term. We
analyze the implications of each individual representation which in principle
is available in these models in order to specify the minimal spectrum required
to build up a consistent PS model which reconciles the low energy data. A short
discussion is devoted on the effects of stringy instanton corrections,
particularly those generating missing Yukawa couplings and contributing to the
fermion mass textures. We discuss the correlations of the intersecting D-brane
spectra with those obtained from Gepner constructions and analyze the
superpotential, the resulting mass textures and the low energy implications of
some examples of the latter along the lines proposed above.Comment: 50 pages, 3 figures (v2 - Minor corrections
On hypercharge flux and exotics in F-theory GUTs
We study SU(5) Grand Unified Theories within a local framework in F-theory
with multiple extra U(1) symmetries arising from a small monodromy group. The
use of hypercharge flux for doublet-triplet splitting implies massless exotics
in the spectrum that are protected from obtaining a mass by the U(1)
symmetries. We find that lifting the exotics by giving vacuum expectation
values to some GUT singlets spontaneously breaks all the U(1) symmetries which
implies that proton decay operators are induced. If we impose an additional
R-parity symmetry by hand we find all the exotics can be lifted while proton
decay operators are still forbidden. These models can retain the gauge coupling
unification accuracy of the MSSM at 1-loop. For models where the generations
are distributed across multiple curves we also present a motivation for the
quark-lepton mass splittings at the GUT scale based on a Froggatt-Nielsen
approach to flavour.Comment: 38 pages; v2: emphasised possibility of avoiding exotics in models
  without a global E8 structure, added ref, journal versio
Spinor-Vector Duality in Heterotic String Orbifolds
The three generation heterotic-string models in the free fermionic
formulation are among the most realistic string vacua constructed to date,
which motivated their detailed investigation. The classification of free
fermion heterotic string vacua has revealed a duality under the exchange of
spinor and vector representations of the SO(10) GUT symmetry over the space of
models. We demonstrate the existence of the spinor-vector duality using
orbifold techniques, and elaborate on the relation of these vacua to free
fermionic models.Comment: 20 pages. v2 minor corrections. Version to appear on JHEP. v3
  misprints correcte
The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model
Both Grand Unified symmetries and discrete flavour symmetries are appealing
ways to describe apparent structures in the gauge and flavour sectors of the
Standard Model. Both symmetries put constraints on the high energy behaviour of
the theory. This can give rise to unexpected interplay when building models
that possess both symmetries. We investigate on the possibility to combine a
Pati-Salam model with the discrete flavour symmetry  that gives rise to
quark-lepton complementarity. Under appropriate assumptions at the GUT scale,
the model reproduces fermion masses and mixings both in the quark and in the
lepton sectors. We show that in particular the Higgs sector and the running
Yukawa couplings are strongly affected by the combined constraints of the Grand
Unified and family symmetries. This in turn reduces the phenomenologically
viable parameter space, with high energy mass scales confined to a small region
and some parameters in the neutrino sector slightly unnatural. In the allowed
regions, we can reproduce the quark masses and the CKM matrix. In the lepton
sector, we reproduce the charged lepton masses, including bottom-tau
unification and the Georgi-Jarlskog relation as well as the two known angles of
the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse
hierarchy, and only allowing the neutrino parameters to spread into a range of
values between  and , with .
Finally, our model suggests that the reactor mixing angle is close to its
current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for
  publication in JHE
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Nutritional correlates of koala persistence in a low-density population
It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.IW and WF received a grant from New
South Wales (NSW) Department of Environment,
Climate Change & Water
Vitamin D supplementation and breast cancer prevention : a systematic review and meta-analysis of randomized clinical trials
In recent years, the scientific evidence linking vitamin D status or supplementation to breast cancer has grown notably. To investigate the role of vitamin D supplementation on breast cancer incidence, we conducted a systematic review and meta-analysis of randomized controlled trials comparing vitamin D with placebo or no treatment. We used OVID to search MEDLINE (R), EMBASE and CENTRAL until April 2012. We screened the reference lists of included studies and used the “Related Article” feature in PubMed to identify additional articles. No language restrictions were applied. Two reviewers independently extracted data on methodological quality, participants, intervention, comparison and outcomes. Risk Ratios and 95% Confident Intervals for breast cancer were pooled using a random-effects model. Heterogeneity was assessed using the I2 test. In sensitivity analysis, we assessed the impact of vitamin D dosage and mode of administration on treatment effects. Only two randomized controlled trials fulfilled the pre-set inclusion criteria. The pooled analysis included 5372 postmenopausal women. Overall, Risk Ratios and 95% Confident Intervals were 1.11 and 0.74–1.68. We found no evidence of heterogeneity. Neither vitamin D dosage nor mode of administration significantly affected breast cancer risk. However, treatment efficacy was somewhat greater when vitamin D was administered at the highest dosage and in combination with calcium (Risk Ratio 0.58, 95% Confident Interval 0.23–1.47 and Risk Ratio 0.93, 95% Confident Interval 0.54–1.60, respectively). In conclusions, vitamin D use seems not to be associated with a reduced risk of breast cancer development in postmenopausal women. However, the available evidence is still limited and inadequate to draw firm conclusions. Study protocol code: FARM8L2B5L
- …
