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Abstract

It is widely postulated that nutritional factors drive bottom-up, resource-based

patterns in herbivore ecology and distribution. There is, however, much controversy

over the roles of different plant constituents and how these influence individual

herbivores and herbivore populations. The density of koala (Phascolarctos

cinereus) populations varies widely and many attribute population trends to

variation in the nutritional quality of the eucalypt leaves of their diet, but there is little

evidence to support this hypothesis. We used a nested design that involved

sampling of trees at two spatial scales to investigate how leaf chemistry influences

free-living koalas from a low-density population in south east New South Wales,

Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we

found an interaction between toxins and nutrients in leaves at a small spatial scale,

whereby koalas preferred trees with leaves of higher concentrations of available

nitrogen but lower concentrations of sideroxylonals (secondary metabolites found

exclusively in eucalypts) compared to neighbouring trees of the same species. We

argue that taxonomic and phenotypic diversity is likely to be important when

foraging in habitats of low nutritional quality in providing diet choice to tradeoff

nutrients and toxins and minimise movement costs. Our findings suggest that

immediate nutritional concerns are an important priority of folivores in low-quality

habitats and imply that nutritional limitations play an important role in constraining

folivore populations. We show that, with a careful experimental design, it is possible

to make inferences about populations of herbivores that exist at extremely low

densities and thus achieve a better understanding about how plant composition

influences herbivore ecology and persistence.
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Introduction

It is widely postulated that nutritional factors drive bottom-up, resource-based

patterns in herbivore ecology, distribution and abundance [1, 2]. The nutritional

quality of leaves for herbivores is largely determined by leaf chemistry and is

influenced by the complex interactions between the types and amounts of

nutrients and toxic chemicals in leaves. Although it is clear that leaf chemistry

impacts the feeding behaviour of captive herbivores [3–6], it is still unclear how

free-living herbivores respond to variations in leaf chemistry. Leaf chemistry can

vary at different spatial scales, from tree-to-tree variations between and among

species [7] to larger-scale patches of high and low nutritional quality habitats

across a landscape [8, 9]. Foraging behaviours of animals are also scale-dependent,

where folivores make small-scale decisions to choose desired individual trees and

navigate at a larger scale between habitat patches [10, 11]. It is often assumed that

factors that determine small-scale habitat choices will influence the larger scale

movements and ecology of animals; however few studies have examined this

question [12, 13].

Animals simultaneously need many different nutrients. Optimal foraging

theory predicts that animals choose foods in order to maximise their intake of

energy-rich substrates per unit time feeding [14, 15]. However recent studies using

the Geometric Framework [6, 16, 17] suggests that animals aim for an intake

target that meets their requirement for protein, while satisfying the requirements

for energy and other vitamins and minerals in the process. Compared to the diets

of carnivores, plant parts contain low concentrations of essential nutrients such as

amino acids (measured as nitrogen, N) and are simultaneously defended by a

variety of potentially toxic plant secondary metabolites (PSMs). Toxic PSMs

invoke metabolic costs either directly [5, 18, 19] or indirectly such as by forming

indigestible complexes with nutrients to reduce their availability [5, 20]. Tannins

in particular can reduce the availability of protein to animals [21, 22]. The use of

tannin-blocking agents (such as polyethylene glycol 4000, PEG) with in vitro

digestion of leaves has recently been suggested as a simple way to measure the

proportion of the total foliar protein that an animal can digest, termed ‘available

nitrogen’ or ‘available N’ [22–24]. Recent studies suggest available N could be an

important factor limiting population densities of wild herbivores [25].

The ability of wild herbivores to tolerate, avoid or detoxify leaf chemicals while

meeting their nutrient requirements is thought to ultimately determine their

fitness [26]. Experimental studies of herbivores in captivity have revealed a wealth

of information on the feeding behaviour of individual animals in response to

specific leaf compounds. For example, no-choice feeding experiments of captive

marsupial folivores have highlighted one group of toxic PSMs in eucalypts as

particularly important feeding deterrents: the formylated phloroglucinol com-

pounds (FPCs) [19, 27–32]. FPCs are present only in Eucalyptus species of the

Symphyomyrtus subgenus [33], which is considered the preferred subgenus of our

study organism, the koala (Phascolarctos cinereus) [34]. Captive animals will

balance the toxic effects of PSMs like FPCs, terpenes and tannins against the
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benefits of obtaining nutrients by choosing nutrient-rich foods [32], reducing

intake [19, 35, 36], increasing time between feeding bouts [30, 37] and by mixing

food sources containing toxins metabolised by different pathways [20, 29, 31]. It is

largely unknown, however, to what extent free-living folivores behave similarly

and the consequences for folivore populations [38].

The koala is an iconic eucalypt specialist and has a varying population status

across its range in eastern Australia and so is an excellent study organism to

investigate the bottom-up effects of nutritional factors. The koala persists largely

in declining or stable, small and low-density populations in the north of its range

in New South Wales and south east Queensland [39–42]; while in the south, such

as in Victoria and on offshore islands, there are many translocated populations of

koalas that now persist at such high densities that they are considered pests

[43, 44]. Many attribute these regional population trends to variation in the

nutritional quality of the eucalypt leaves of their diet [45–47], but there is little

evidence supporting this hypothesis. The difficulties and costs associated with

large-scale field studies and subsequent chemical analyses are major barriers to

research on folivores [48] and cause most researchers to disregard complex leaf

chemistries and intraspecific differences and instead use tree species composition

to define nutritional quality [46, 49–51]. Research on free-living koalas and other

folivores is largely undertaken on high-density herbivore populations in higher-

nutrient areas [52, 53]. In contrast, conservation and management efforts are

focused on low-density, small and declining herbivore populations, often in low-

nutrient areas [41, 44] and it is not known to what extent inferences drawn from

previous research can be applied in these circumstances.

In this paper, we examine the influence of leaf chemistry on the distribution

and ecology of a low-density population of koalas in south east New South Wales,

Australia. We use koala faecal pellets as a proxy for visitation to trees. Using a

nested experimental design, we sample trees at two spatial scales to investigate

whether differences in leaf chemistry of neighbouring trees influence which trees

koalas visit (within-plot), and whether differences in the leaf chemistry of trees in

different areas influence which areas koalas visit (between-plot).

We hypothesise that:

1) (a) Koalas visit the trees with higher concentrations of foliar available N, leaf

digestibility and (b) lower concentrations of FPCs when compared with leaves

from a neighbouring tree;

2) (a) Koalas visit the trees with higher concentrations of foliar available N, leaf

digestibility and (b) lower concentrations of FPCs when compared with leaves

from a tree at a different plot.

Our findings will allow us to examine how the feeding behaviours shown by

captive herbivores in short-term feeding experiments translate to the behaviour

and ecology of free-living herbivores in low-nutrient habitats and provide insight

into how natural variations in food quality limit wild herbivore populations.
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Methods

Study site

We studied koalas in the forests between Bermagui and Tathra on the far south

coast of New South Wales (36 2̊69 S, 150 0̊0 E and 36 3̊49 S, 149 5̊59 E, 0–450
metres above sea level). The site (‘Bermagui-Mumbulla’) is approximately 22 000

hectares and includes National Parks, State Forests and private land. These dry,

open sclerophyll forests are primarily on Ordovician metasediments with small

areas of tertiary deposits and alluvial deposits in the river and valleys. Although

once common, koalas are now considered to be locally rare [54, 55] and in the last

10 years have been recorded only in the northern hillside forests of the region

[42].

The research was approved by the NSW Department of Primary Industries

(Special Purpose Permit for Research R20/98) and authorized under the NSW

National Parks and Wildlife Act 1974, s132c, (Scientific License 101079). Access

and sample collection on private land was approved by the land owners.

Spot Assessment Technique survey (SAT)

The site was initially surveyed for koala distribution between 2007 and 2009 using

the Spot Assessment Technique (SAT) [56]. At every SAT plot, 30 neighbouring

trees of any species over 150 mm diameter at 1.3 m (Diameter at Breast Height,

DBH) were marked and then searched for two minutes for koala faecal pellets out

to 1 m from the base of the tree. At completion of the SAT survey, 590 plots with

17 700 trees had been surveyed for pellets in a random grid pattern across the site.

Only 60 SAT plots contained koala faecal pellets, suggesting that about 10% of the

site was occupied by koalas at the time of this initial SAT survey. Although

clustered in places, these occupied plots were widely scattered.

Leaf collection protocol

Trees were sampled for this study from October to November 2009. Using a

nested experimental design (Figure 1), we randomly selected 20 SAT plots where

koala faecal pellets had been found (‘occupied’ plots) and paired each of these

with a plot within 1 km with similar tree species and elevation where no faecal

pellets had been found (‘unoccupied’ plots). In the field at each occupied plot, we

identified all 30 trees that were part of the initial SAT survey and identified those

trees where koala faecal pellets had initially been found (visited trees) and trees

where no pellets had been found (non-visited trees). From each visited tree, we

collected 50 g of fully expanded, mature leaves without signs of insect infestation.

We then collected leaves from two non-visited, neighbouring trees (i.e. no record

of faecal pellets from the SAT plot) for each visited tree; the first was a tree of the

same species, and the second from a different Eucalyptus subgenus (either

Symphyomyrtus or Eucalyptus subgenus). To compare visited trees with non-

visited non-neighbouring trees, we collected leaves from trees at the paired

unoccupied plot, again collecting from a tree of the same species and from one of
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the different Eucalyptus subgenus for each visited tree. Thereby, every visited tree

was grouped with four non-visited trees: two from the same occupied plot and

two from the paired unoccupied plot (Figure 1). We searched all sampled trees for

koalas, koala faecal pellets and measured DBH. After assessing that no koalas were

nearby and that no other fauna were likely to be disturbed, leaves were collected

from tree branches using a 12 gauge shotgun (MIROKU Model 10), a 0.204

calibre Ruger rifle (KIMBER Provarmint), or secateurs mounted on a 6 m

telescopic aluminium pole. We placed leaves in individual paper bags and stored

them in portable freezers.

Leaf chemical analysis

We determined the concentrations of total nitrogen (total N), available nitrogen

(available N), (the ranked effect of both tannins and fibre on leaf nitrogen

concentration [23]), in vitro dry matter digestibility (DMD, a proxy for many

nutrients) and FPCs in leaf samples from all sampled trees (n5310).

Frozen leaf samples were freeze-dried and ground to pass a 1 mm sieve in a

Cyclotec 1093 mill (Tecator, Sweden). We determined the concentrations of FPCs

in all Symphyomyrtus samples (n5168) following the method of Wallis and Foley

[57]. The FPCs were extracted by sonicating 20¡2 mg of freeze-dried, ground

foliage with a known mass (ca 4.5 g) of solvent (7% water in acetonitrile

containing 0.1% trifluoroacetic acid and 0.30 g per litre of the internal standard 2-

ethylphenol) for five min. The mixture was filtered (0.22 mm) into an autosampler

vial and then 15 mL was injected onto a Wakosil 25064 nm GL 3C18RS (SGE

Analytical: Ringwood, Australia) column maintained at 37 C̊ with a flow rate of

0.75 mL/min on a Waters Alliance Model HPLC. The FPCs were eluted under

gradient conditions with 0.1% TFA acid in acetonitrile (A) and 0.1% TFA in water

(B) as follows: 60% A/40% B for 5 min, linear gradient to 90% A 10% B at

60 min, held for 10 min and returned to starting conditions over 10 min. We

Figure 1. Schematic of nested sampling design with tree and plot categories. Experimental sampling
design showing the tree and plot categories. At Occupied Plots, trees visited by koalas (A) were grouped with
one nearby and similar tree that had not been visited (B) and with one nearby tree of a different subgenus (C).
Then, at a matched Unoccupied Plot, leaves were collected from a tree of the same species (D) and one of a
different subgenus (E) to Category A trees.

doi:10.1371/journal.pone.0113930.g001
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measured the peak response at 275 nm and calibrated the concentration with

standards purified in the laboratory.

We selected a representative subset (n5167) from all the leaf samples using

their near-infrared reflectance spectra (NIRS) to analyse using an in vitro

procedure [58]. The in vitro procedure involved incubation with polyethylene

glycol (PEG), a tannin-blocking agent, together with pepsin and cellulase to rank

trees with respect to the availability of N. The difference in the available N of

samples digested with and without PEG is considered to be the effect of tannins.

Using this method, we determined total leaf N, available N (the ranked effect of

tannins and indigestible components of the diet on N), and in vitro DMD. We

quantified the concentration of N in the original sample and the digested residues

using the Dumas technique with a LECO TruSpec combustion N analyser (LECO

Corporation, Michigan, USA) calibrated with EDTA. We calculated residual

moisture by oven drying (60 C̊) 20 samples to a constant mass to express all

results on a dry matter (DM) basis.

Near Infrared Reflectance Spectroscopy

We obtained NIR spectra between 408–1093 nm, and between 1108–2493 nm of

all 310 samples in duplicate using a scanning spectrophotometer with a spinning

cup module (NIR System Model 6500, Foss, Silver Springs, Maryland, USA). We

developed NIRS calibration equations from the in vitro subset (n5167) to predict

the foliar chemistry of the remaining samples. We randomly selected 20 samples

to independently validate our NIRS predictions. All calculations used NIRS 3,

version 4.00 (WinISI Infrasoft International, Port Matilda, Pennsylvania, USA).

For most calibrations, we applied mathematical transformations of standard

normal variate and detrend to raw near-infrared spectra to reduce the influence of

particle size. We then used modified partial least squares regression and partial

least squares regression with various combinations of Savitzy-Golay spectral-

smoothing functions until the most robust equations were developed for each

variable [59]. Relationships between NIR predicted values and the validation set

were investigated using simple linear regressions and Pearson’s correlation.

Analyses and modelling of tree visitation

We fitted linear mixed models to the foliar compounds we measured using the

residual maximum likelihood algorithm in GenStat 12th Edition (VSN

International, Ltd. Oxford, UK). This algorithm incorporates the fixed and

random terms in the highly-nested study design to produce unbiased estimates of

variance components and thus reduce the chance of type 1 error [60, 61]. We

checked residuals for normality at each stage of the analysis.

We analysed each foliar compound individually by fitting Model (1) (below).

This model incorporates all levels of nesting and spatial scale in the study design

and therefore simultaneously investigates the relationships between leaf chemistry

and koala visitation at the two spatial-scales. We fitted the model separately to
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plants from each subgenus to compare the chemistry of visited trees to non-visited

trees of the same species both within and between-plots. To identify which species

contributed to the broader pattern, we used Model (1) with restriction on each

species. Non-significant terms were sequentially dropped from the models to

obtain simplified models with only significant fixed terms, determined using a

Wald test of significance.

Terms used in the model of fixed effect included tree activity, tree category, plot

category, subgenus, and plot activity. Tree (A–D) and plot category (occupied or

unoccupied) terms are defined in Figure 1. The presence of faeces at the base of

trees was a proxy for koala visitation and determined the tree and plot activity

level. Tree activity number represented the number of times koala faecal pellets

were found at the base of the tree (visited twice, once or not at all). Plot activity

represented the relative koala activity at each plot. It was calculated as the

percentage of trees searched at each site (out of 30 trees) that had faecal pellets.

The random model included terms for the plot pair and tree group.

Model (1).

Response: Foliar compound

Fixed model: Constant + Plot activity + Plot type/Tree category + Tree activity +
Subgenus

Random model: Plot pair/Plot type + Plot pair/Tree group

Foliar total N, available N and DMD concentrations approximated a normal

distribution within all but one species: E. globoidea.

Results

Visitation to different tree species

Koalas visited 67 trees of 8 eucalypt species: E. longifolia, E. bosistoana, E.

cypellocarpa, E. tricarpa from the Symphyomyrtus subgenus; and E. globoidea, E.

muelleriana, E. agglomerata and E. sieberi from the Eucalyptus subgenus. They

visited trees of the Symphyomyrtus subgenus more than they did the Eucalyptus

subgenus (40 versus 27) even though the Eucalyptus subgenus comprised 58% of

the eucalypt trees at the occupied plots. Koalas tended to visit the most common

species at the occupied plots: E. longifolia (visited n524), followed by the third

most common species: E. globoidea (visited n511). They rarely visited E.

agglomerata (visited n52). We found fresh koala faecal pellets under six new trees

and at 29 trees where pellets were found during the original SAT survey. We thus

concluded that koalas revisited 43% of the trees they had visited previously. Three

koalas were sighted during the SAT field work between 2007 and 2009 but none

during leaf collection.

Near-Infrared Reflectance Spectroscopy

The NIRS calibration equations developed for all compounds measured with the

in vitro analysis had R2 values between 0.95 and 0.97 and 1-VR values between
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0.90 and 0.95 (Table 1). The predicted values were significantly correlated with

analysed concentrations of the validation set (n520, P,0.001, Pearson’s

correlation coefficients for available N: 0.930; DMD: 0.890; available N in the

presence of PEG: 0.954; DMD in the presence of PEG: 0.973; and total N: 0.962).

Effects of leaf chemistry on koala preference

The models revealed that koalas visited trees that had higher nutritional quality

compared with a neighbouring tree of the same species (Tables 2 and 3). Koalas

preferred trees of the Eucalyptus subgenus with higher concentrations of available

N (16% higher, P50.003) and higher DMD (4% higher, P50.040) compared with

concentrations in neighbouring conspecifics (Table 2, Figure 2), but were not

influenced by the total N concentration in leaves. This effect was particularly

evident among the E. sieberi trees visited by koalas, where the species-restricted

model revealed a statistical significant difference between visited and non-visited

trees (P50.005, N523, 9 visited). The Symphyomyrtus trees visited twice had

foliage with significantly lower sideroxylonal concentrations compared with

neighbouring conspecifics (41% lower, P50.016) (Table 3, Figure 3).

Concentrations of the other FPCs, available N, total N and DMD were not

significantly related to koala visitation to Symphyomyrtus trees, but the models

suggested that the trees visited twice by koalas had lower total FPC and higher

available N concentrations than did their neighbouring conspecifics (P50.077 and

0.094 respectively).

Table 1. Description of modified partial least squares regression equations relating near infrared spectra of Eucalyptus leaves to analytical values{.

Constituent N Mean SD R2 SECV 1-VR Scatter Data processing

Total N 162 1.06 0.16 0.97 0.04 0.95 SNV Detrend 2441

DMD with PEG 160 64.60 9.8 0.95 3.1 0.90 SNV Detrend 2641

DMD 159 65.50 9.4 0.96 2.6 0.92 None 2441

Available N with PEG 160 0.84 0.15 0.95 0.05 0.90 SNV Detrend 2441

Available N 160 0.72 0.24 0.96 0.07 0.92 SNV Detrend 2641

{N number of samples used in the equation, R2 the coefficient of determination between the spectra and the analytical values, SECV the standard error of
cross validation, 1-VR coefficient of determination of cross validation; Scatter: no scatter correction or ‘‘standard normal variate and detrend’’; ‘‘Data
processing’’ provides details of the derivation and smoothing functions applied. For example, ‘‘2,4,4,1’’ refers to using the second derivative, leaving a gap of
four wavebands between calculated values, doing a first smoothing over four wavebands and then a second smoothing over one waveband.

doi:10.1371/journal.pone.0113930.t001

Table 2. Summary of REML model results for statistically significant foliar attributes in trees of the subgenus Eucalyptus.

Eucalyptus subgenus trees

Foliar attribute
Predicted mean (¡ s.e.m. % DM) of
trees visited at least once

% Difference of trees visited at least
once to other categories

Wald statistic for fixed
effects d.f. P-value{

Available N 0.61 (¡0.03) +16 9.93 1 0.003*

DMD 62.79 (¡1.28) +4 4.53 1 0.040*

{P-values that were statistically significant at P,0.05 are marked with asterisks.

doi:10.1371/journal.pone.0113930.t002
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The leaf chemistry of trees in occupied plots did not differ significantly from

the leaf chemistry of conspecifics in unoccupied plots. Variations in leaf chemistry

were not related to differences in plot activity (how many trees were visited by

koalas at each plot) or plot type (visited or non-visited) in the REML modelling.

Therefore, leaf chemistry explained why koalas visited particular trees, although

did not explain why koalas visited different locations.

Comparisons of leaf chemistry between tree species

Species from the Eucalyptus subgenus had lower concentrations of available N in

their leaves than did those from the Symphyomyrtus: however there was

considerable between and within species variation. Total foliar N can be split into

three components that show the ranked effect of tannins and fibre on N

availability: available N, tannin-bound nitrogen and fibre-bound nitrogen

(Figure 4). The leaves of two Symphyomyrtus species: E. bosistoana and

Table 3. Summary of REML model results for statistically significant foliar attributes in trees of the subgenus Symphyomyrtus.

Symphyomyrtus trees

Foliar attribute
Predicted mean (¡s.e.m. mg/g
DM) of trees visited twice

% Difference of trees visited
twice to other categories

Wald statistic for
fixed effects d.f. P-value{

Sideroxylonals 3.77 (¡1.07) 241 6.10 1 0.016*

Total FPCs 22.80 (¡2.79) 218 3.19 1 0.077

Available N 0.85 (¡0.04) +7 2.87 1 0.094

{P-values that were statistically significant at P,0.05 are marked with asterisks.

doi:10.1371/journal.pone.0113930.t003

Figure 2. Available N concentrations in leaves from Eucalyptus subgenus trees in the REML model
categories. Available N concentrations in the leaves of Eucalyptus subgenus trees in the three visitation
categories used in the REML subgenus-specific model. Visited trees are trees that were visited by koalas, not-
visited trees are neighbouring conspecifics from the same plot that were not visited by koalas, and
unoccupied-plot trees are conspecifics from unoccupied plots. a Significantly different from other categories
(P,0.05).

doi:10.1371/journal.pone.0113930.g002
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E. cypellocarpa tended to have the highest available N, and the leaves of two

Eucalyptus subgenus species: E. agglomerata and E. sieberi tended to have the

lowest available N concentrations of the eight species. Eucalyptus tricarpa leaves

tended to have higher concentrations of sideroxylonals and Eucalyptus

cypellocarpa leaves had lower concentrations of sideroxylonals and total FPCs

compared with the other Symphyomyrtus species (Figure 5).

Discussion

Using a nested design that involved sampling at two spatial scales we show that

koalas are influenced by an interaction between toxins and nutrients in leaves.

Koalas visited trees with leaves containing higher available N and avoided trees

with higher foliar sideroxylonal concentrations when compared with a

neighbouring tree of the same species. This result supports hypotheses 1) (a) and

(b) and suggests that koalas in low-nutrient habitats prioritise nutritional

concerns when selecting individual eucalypt trees to visit. In contrast, the leaf

chemistry of visited trees at occupied plots did not differ from that of paired trees

at the unoccupied plot, suggesting that leaf chemistry did not influence the koalas

at this broader spatial scale and refuting hypotheses 2) (a) and (b).

Diet selection by free-living herbivores

The Bermagui-Mumbulla site encompasses typical eucalypt forests that contain a

mixture of species from the two main eucalypt subgenera – Symphyomyrtus and

Figure 3. Sideroxylonal concentrations in leaves from Symphyomyrtus subgenus trees in the REML
model categories. Sideroxylonal concentrations in the leaves of Symphyomyrtus subgenus trees in the four
visitation categories used in the REML subgenus-specific model. The categories are trees that were visited
twice by koalas (pellets found twice), trees that were visited once by koalas (pellets found once), neighbouring
conspecifics from the same plot that were not visited, and conspecifics from unoccupied plots. a Significantly
different from other categories (P,0.05).

doi:10.1371/journal.pone.0113930.g003

Nutrition and Persistence of Koalas

PLOS ONE | DOI:10.1371/journal.pone.0113930 December 3, 2014 10 / 21



Eucalyptus. Symphyomyrtus species have leaves that contain FPCs and high

concentrations of these compounds are toxic to herbivores [62]. In contrast,

species from the Eucalyptus subgenus do not produce FPCs but the leaves contain

lower concentrations of available N and more indigestible material than do those

of Symphyomyrtus. In both subgenera, leaf chemistry was highly variable among

trees of the same species [33, 48] and folivores may take advantage of this

intraspecific variation to meet their nutritional requirements from the available

trees [5, 19]. When visiting species from the Eucalyptus subgenus, koalas selected

individual trees with higher foliar concentrations of available N and DMD,

although not total N, when compared with a neighbouring tree of the same

species. In contrast, variations in concentrations of a single FPC, sideroxylonal,

determined visits by koalas to Symphyomyrtus trees.

Our results reveal a tradeoff between toxins and nutrients in diet choice. The

consumption of leaves from trees containing lower concentrations of available N

Figure 4. Components of total foliar N concentration for the two subgenera and each species. The
proportions of the three chemical components that make up total foliar N concentration (% dry matter ¡
standard error of the mean, s.e.m.) in the two subgenera and in individual species. Total N is made up of the
three components: proportion bound to indigestible fibre (shown in white), proportion bound to tannins (shown
in grey) and the amount of N available to animals (available N, shown in black).

doi:10.1371/journal.pone.0113930.g004
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is driven by the avoidance of FPCs; while in turn, the consumption of leaves from

trees with higher concentrations of available N is driven by the need to avoid

consuming large quantities of gut-filling indigestible tissues before nutrient targets

are met [63–65]. A series of studies on a free-living high-density population of

koalas at Phillip Island in Victoria reveal a similar tradeoff between nutrients and

toxins in koala feeding choices. Koala visitation to two tree species of the

Symphyomyrtus subgenus was found to be related to low concentrations of total

FPCs and higher total N concentrations [62, 66]. When feeding bouts were

directly measured, researchers found that the koalas spent more time feeding in

particular trees with higher concentrations of foliar available N when the

concentration of FPCs was low, but had consistent short feeding bouts across

different available N concentrations at high FPC concentrations [67]. The tradeoff

between nutrients and toxins reflect the high protein and energy costs associated

with detoxification and the limited capacity and efficiency of detoxification

pathways [20, 68]. For example, the cost of detoxifying a single PSM, benzoate

Figure 5. Mean concentrations of total sideroxylonal and total FPC concentrations in the four
Symphyomyrtus species. Mean concentrations (¡ s.e.m.) of total sideroxylonal and Total FPCs in the four
Symphyomyrtus species. Part A. Total sideroxylonal concentrations; Part B. Total FPC concentrations.

doi:10.1371/journal.pone.0113930.g005
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(a common plant secondary metabolite) was found to be about 20% of the total

digestible protein intake of common brushtail possums [69]. This is a dramatic

tax on protein intake and suggests that higher concentrations of available N in

Symphyomyrtus may assist koalas to defray these costs [67].

Herbivores are limited in their ability to meet nutritional goals by their gut

capacity, food retention times and the capacity and efficiency of detoxification

pathways [20]; as well as by their ability to move safely and efficiency through the

landscape [70]. In most cases, few individual trees have leaves that meet all the

nutritional needs of a folivore at once and so animals must either accept the costs

of a sub-optimal diet or switch to another food source to meet nutrient targets

and avoid or dilute the effect of toxins [20]. Koalas are larger and less mobile than

many other arboreal folivores and are particularly vulnerable to predation when

moving on the ground between trees [71]. In captive feeding experiments,

foraging efficiency and overall intake was increased when generalist herbivores

were given access to a range of plants with diverse leaf chemical profiles in a small

area [31, 72, 73]. Koalas are dietary specialists, however we found substantial

differences in the amounts and types of chemical compounds in leaves of

neighbouring Eucalyptus trees, even between trees of the same species, and we

predict that this diversity provides koalas with sufficient choice to allow them to

select a suitable and varied diet while minimising movement costs. This

taxonomic and phenotypic diversity of trees is likely to be particularly important

in low-quality habitats because there may be great distances between richer

resources and so folivores are compelled to make direct tradeoffs to address

immediate concerns at a small-spatial scale [4].

Habitat quality influences herbivore populations

Demonstrating the link between nutritional constraints and population processes

in wild herbivores remains a challenging but essential task. A major difficulty is

the lack of a common currency and methodology in which to measure plant

nutritional quality [38]. Ecologists have sought to define nutritional quality using

a variety of metrics such as soil fertility [9, 74], leaf protein concentrations [9, 46],

and a ratio of leaf protein to fibre concentrations [75]. These simple metrics and

ratios fail to adequately capture the complex plant chemistries in the food of

mammalian herbivores, in particular the effect of tannins on the availability of

protein [22]. In contrast, available N accounts for the multivariate nature of

herbivore nutrition and so is a more appropriate method to describe food quality

from an herbivore’s perspective [22, 23].

Our study allowed us to make inferences about the role of leaf chemistry in

influencing low-density herbivore populations and thus contributes to our

understanding of how nutrition regulates populations of herbivorous mammals.

Our foliar available N assays support the view that Bermagui-Mumbulla is of

lower nutritional quality than other parts of the koala’s range. The occupied plots

were dominated by the species of the Eucalyptus subgenus that contain lower

concentrations of available N. Eucalyptus longifolia was the dominant species of

Nutrition and Persistence of Koalas

PLOS ONE | DOI:10.1371/journal.pone.0113930 December 3, 2014 13 / 21



the Symphyomyrtus subgenus and showed only moderate available N values. Trees

from the subgenus Eucalyptus visited by koalas had leaves with mean available N

concentrations of 0.61¡0.03% DM. In contrast, trees of the Symphyomyrtus

subgenus that were visited had mean foliar available N concentrations of

0.85¡0.04% DM. In comparison, Marsh and colleagues [67] found that trees

visited by koalas at Phillip Island had available N concentrations above 1.15%

DM. Small differences in foliar available N in trees available to wild folivores have

been shown to have significant impacts on population dynamics and reproduc-

tion. For example, common brushtail possums (Trichosurus vulpecula) inhabiting

home ranges with low average concentrations of available N had lower

reproductive success and slower growing offspring than did possums occupying

home ranges with higher nutritional quality [25]. Similarly, McArt and colleagues

[76] reported lower fecundity and twinning rates in moose where the available N

concentrations of summer food was lower. The biomass of folivorous primate

communities in Africa and Asia can been largely explained by the ratio of leaf

protein-to-fibre [75, 77–79] but recent evidence suggests that tannins also play an

important regulating role for folivorous primates [22, 80].

Mechanisms regulating population expansion

The degree to which habitats will limit herbivore populations is determined by the

overall quality and diversity of the trees available [4]. Animals in low-quality

forests may be unable to obtain the necessary nutrients for population expansion,

whereas low-diversity forests limit an herbivore’s ability to select foods with

different chemical profiles to achieve a varied diet. Digestion and PSM

detoxification of low-quality leaf diets consumes more time, energy and nutrients

when compared to a leaf diet that is rich in nutrients and low in fibre and toxins

[5] and this additional time, energy and nutrients would otherwise be allocated to

other activities such as social interaction and reproduction [81, 82]. Nutritionally

stressed animals reduce activity and mobility which in turn compels animals to

choose nearby resources that are more accessible, even if these accessible resources

are of sub-optimal nutritional quality [4, 12, 83]. Low reproductive output and

lower levels of activity increase vulnerability to both ongoing and stochastic

threats and suggests a mechanism by which herbivore population dynamics are

driven by bottom-up factors. Lunney and colleagues modelled population

dynamics in two koala populations in north east NSW and found that small

changes in mortality and fertility rates, in particular the death of one breeding

female, had a major impact on population viability [71, 84].

Koalas were once common throughout south eastern Australia but a range of

factors, particularly hunting for pelts and the clearing of the more fertile lands for

agriculture, drastically reduced koala numbers and relegated surviving animals to

forests of lower soil fertility in many regions, including in the far south coast

region of NSW [41, 44, 85]. Multiple threats continue to impact on koalas

including habitat loss, degradation and fragmentation from logging, land clearing,

roads and infrastructure [42, 47, 55, 86] as well as environmental impacts from fire
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and climate change (particularly drought and heatwaves) [46, 87]. Our findings

suggest that immediate nutritional concerns are an important priority of south

coast koalas making them particularly vulnerable to a range of threats, which in

turn implies that nutritional limitations have played a role in constraining koala

ecology and populations in the forests of the region. However, as there were no

differences in leaf chemistry between trees at occupied and unoccupied plots and

because koalas have disappeared from areas where they were once known to

persist [42], it is possible that the low-density koala population may spread to

parts of the forest not currently occupied if existing threats are controlled.

Faecal pellets as a proxy of koala visitation

The extremely low density of the Bermagui-Mumbulla koala population (only

three koalas seen during the extensive fieldwork) means that koala faecal pellets

provide the sole clue of their distribution and habitat use. Faecal pellet surveys

have been widely employed to investigate herbivore habitat use, ecology and

population distribution in a range of species [88, 89]. Research on browsers in

boreal forests of Sweden and in tropical forests of India, have found strong

relationships between browse intensity, browse preference and habitat selection

and the location and frequency of faecal pellets [90–92].

Koala faecal pellets surveys have been employed as a proxy for a range of

purposes from surveys of koala abundance and population distribution [93, 94] to

developing habitat categorisation for conservation management [46, 50, 56, 95].

Koala faecal pellets have also been widely used to infer habitat and feed tree

preferences [56, 96, 97], however their reliability to draw nutritional inferences is

still in debate [98]. Koalas are known to visit unpalatable trees, such as Callitris

glaucophylla in north western NSW, for non-dietary purposes such as

thermoregulation [99, 100]. As a result, all studies that record koala tree visitation

or use a proxy for feeding such as pellets, rather than observe feeding directly, are

likely to include trees that koalas have not fed from. Marsh and colleagues [67]

fitted radio and audio-telemetry collars to wild koalas to continuously monitor

and quantify feeding activity. They found that koalas ate from 75% of the eucalypt

trees they visited and confirmed the nutritional findings of Moore and Foley [62]

from the same site whom recorded only koala visitation rather than feeding

events. By restricting our study to eucalypts over 15 cm DBH, we ensured that all

trees searched for pellets might be considered palatable to koalas. Koalas feed for

only 0.9 to 4.7 hours per 24 hours [19, 101, 102], of which 75% occurs at night

[67], and deposit pellets continuously over 24 h. However peak deposition times

have been found to coincide with peaks in feeding activity [67, 103], thereby

increasing the reliability of pellets as indicators of feeding.

A second disadvantage of faecal pellets is that environmental heterogeneity may

impact on rates of pellet decay and can lead to false negative results whereby

pellets decay and disappear from some trees faster than others [103]. We

accounted for this issue by searching our trees twice [98]; first in the initial SAT

survey (method described by Phillips and Callaghan [56]), and second during leaf
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collection. Many trees at Bermagui-Mumbulla had pellets during both these

surveys which indicated that koalas had visited them more than once and show a

fidelity to these trees. Koalas elsewhere establish stable home ranges and revisit

trees that they have marked with their sternal scent gland [101, 104]. Thus, in spite

of the disadvantages of using faecal pellets as a proxy for visitation and feeding, a

careful statistical design accounts for this potential source of error and allows the

identification and differentiation of trees that are important koala habitat

resources and to discover vital ecological and nutritional information for the

management of cryptic and vulnerable koala populations.

Conclusions

This study showed that, with a careful experimental design, it is possible to make

inferences about populations of herbivores that exist at extremely low densities

and thus achieve a better understanding of how nutrition influences herbivore

ecology and persistence. We identified a significant tradeoff between nutrients and

toxins in the selection of individual trees at a small-spatial scale and found that

available N was the key to understanding the selection of some trees. We argue

that taxonomic and phenotypic diversity is likely to be important when foraging

in habitats of low nutritional quality providing diet choice to tradeoff nutrients

and toxins and minimise movement costs. Our findings support the assertion that

immediate nutritional concerns are an important priority of folivores in low-

quality habitats and imply that nutritional limitations play an important role in

constraining folivore populations.
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