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1 Introduction

String theory provides a self-consistent framework to describe quantum gravity and par-

ticle physics in a unified way. Several approaches to particle phenomenology have been

pursued, based on heterotic string compactifications, orientifold constructions, M-theory

compactification on manifold of special holonomy and/or F-theory techniques. All these

scenarios have brought new interesting ideas to particle physics and string theory, though

none can be considered as “fully realistic”. Among the various approaches, heterotic string

theory still seems to be a preferred candidate to build quasi-realistic models, and particu-

larly promising is the free-fermionic construction of heterotic vacua [1, 2]. Although these

constructions are typically formulated at special points in the moduli space and thus lack

an apparent geometric description, over the last two decades they have shown to be very

powerful tools to develop phenomenological string vacua [3–10] Three generation models

with the correct Standard Model charge assignments, as well as the canonical SO(10) em-

bedding of the weak hypercharge have been constructed, and various phenomenological

issues have been further explored [11, 12].

More recently, classes of quasi-realistic heterotic string models have also been con-

structed, based on orbifold techniques [13–15], that also allow to explore the underlying

moduli dependence of couplings and gauge groups. It should be stressed, however, that

the two formulations — in terms of free fermions or in terms of free bosons — are closely

related and the corresponding string vacua can be described equivalently using the two

formalisms. Indeed, the free-fermionic constructions correspond in general to Z
n
2 toroidal

orbifolds, when the geometric data of the six-torus are chosen to correspond to special

points of moduli space.

It is therefore necessary to develop a dictionary between the two languages, in such

a way to be able to address questions related to moduli dynamics within a given free-

fermionic vacuum. While the equivalence is anticipated, writing a detailed dictionary is

often non-trivial. A first attempt to establish such a link was done in [16–21] in the
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context of N = 4 toroidal compactification. In fact, in many quasi-realistic free-fermionic

constructions the starting (four-dimensional) gauge symmetry is SO(16) × SO(16), rather

than the more conventional E8 × E8 symmetry — or, at times, the SO(32) symmetry —

typically considered in bosonic constructions. In the free-fermionic realisations the two

choices correspond to different solutions of the modular invariance constraints. Then in

terms of free bosons the two choices can be shown to depend on the possibility to turn on

or off discrete torsion in certain freely acting Z2 × Z2 orbifolds [19–21]. Alternatively, this

amounts to different choices of Wilson lines and geometrical backgrounds.

Clearly, in order to build quasi-realistic chiral models, N = 4 supersymmetry ought

to be broken to N = 1, and eventually to N = 0. This can be achieved by perform-

ing a geometric Z2 × Z2 projection on the N = 4 vacua. Additionally, this projec-

tion breaks the SO(16) × SO(16) gauge group to the more phenomenologically appealing

SO(10)×U(1)3 × SO(16), while chiral matter emerges from the twisted sectors. Although

in free-fermionic set-ups there are many consistent solutions with different low-energy chi-

ral spectra [22–24], it seems that much fewer choices are present in the free bosonic case.

However, this is in contrast with the expectation that the two formulations are equivalent.

In particular, naively adding a Z2 geometric twist to the model of ref. [19–21] retains the

vectorial representations in the massless spectrum rather than the spinorial ones [26].

In this paper we make a step forward in the direction of a better understanding of

the connection between the formulation of the heterotic string in terms of free bosons and

free fermions. A particular issue we would like to address is the recently proposed spinor-

vector duality in heterotic-string vacua [27, 28], which was observed using the free fermionic

language. This new duality relates vacua with spinorial and vectorial representations of

orthogonal gauge groups, and it has been shown to hold in N = 2 and N = 1 free-fermionic

models. It was also suggested that the spinor-vector duality can be thought of as being an

extension of mirror symmetry [27, 28]. Indeed, mirror symmetry implies a change in the

topology of the compactification manifold, that flips the sign of its Euler number. Equiv-

alently, spinor-vector duality can be thought of as another topology-changing operation.

To date spinor-vector duality has not been studied in the orbifold language. In this

paper we study this issue by analysing the E8 × E8 heterotic string compactified on the

orbifold T 6/Z2 × Z
′
2 × Z

′′
2. The three Z2 operations correspond to the two supersymmetry

preserving freely acting twists of ref. [19–21], while Z
′′
2 reflects four internal coordinates

and breaks N = 4 to N = 2. The E8, and SO(16), symmetries are reduced by the Z2

twist to E7 × SU(2), and SO(12) × SO(4), respectively. In this case the spinor and vector

representations are both in the 56 representation of E7, that decomposes as (32, 1)+(12, 2)

under its maximal SO(12) × SU(2) subgroup. Here, the 32, and 12, are the spinorial, and

vectorial, representations, of SO(12), respectively. As the twisted sectors of the geometrical

Z2 × Z2 orbifolds preserve N = 2 supersymmetry, it is sufficient to study the spinor-vector

duality at this level rather than in the N = 1 models, which are then obtained with an

additional Z2 twist. The partition function associated to this Z2 × Z
′
2 × Z

′′
2 has eight

independent orbits, that admit seven discrete torsions taking the values ±1. Different

choices of such discrete torsions clearly yield different spectra and, among those, there are

some that retain the spinorial representation and others that retain vectorial one. As a
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consequence, we note the existence of a transformation that maps between the cases, which

reproduces the spinor-vector duality map observed in ref. [27, 28] within free fermionic

construction. As in the free fermion case [27, 28], the spinor-vector duality exists at the

N = 2 level, which is obtained with a single Z2 twist acting on the internal coordinates.

Actually, the heart of the spinor-vector splitting is in the choice of the N = 4 vacuum,

where E8×E8 is broken to SO(16)×SO(16). The additional Z
′′
2 twist then selects either the

spinorial or the vectorial representation of the resulting gauge group, and the spinor-vector

duality map depends nontrivially on the discrete torsions, as we find in this paper. This is

in a sense analogue with the mirror symmetry analysis of ref. [29], where the single discrete

torsion of the Z2×Z2 geometrical orbifold flips the Hodge numbers of the internal manifold.

Our paper is organised as follows: in section 2 we review the construction of “quasi-

realistic” free-fermionic vacua and discuss the emergence of the recently discovered vector-

spinor splitting as a freedom in the choice of generalised GSO (GGSO) phases. We then

discuss, in section 3, equivalent constructions based on Z
n
2 orbifolds of free bosons and show

explicitly how the vector-spinor splitting is, in this context, a consequence of the freedom

of turning on or off different discrete torsions. Section 4 concludes with some comments,

while in the appendix we list various combinations of characters that play a role in the

constructions presented in section 3.

2 Spinor-vector splitting in free-fermionic models

In this section we discuss the spinor-vector splitting in free-fermionic models (see [11, 12]

for a more detailed introduction). In the free-fermionic formulation of the heterotic string

in four dimensions all the world-sheet degrees of freedom, required to cancel the confor-

mal anomaly, are represented in terms of free fermions propagating on the string world

sheet [1, 2]. In the light-cone gauge, the world-sheet degrees of freedom then consist of two

transverse left-moving fermions ψµ
1,2, superpartners of the space-time left-moving bosonic

coordinates, together with additional 62 purely internal Majorana-Weyl fermions. Eighteen

of them are left-moving,

χ1,..,6, y1,...,6, ω1,...,6 ,

while the remaining 44 are right-moving

y1,...,6 , ω1,...,6 , ψ
1,..,5

, η1,2,3 , φ
1,...,8

.

Under parallel transport around a non-contractible loop on the toroidal world-sheet the

fermionic fields pick up a phase, f → − eiπα(f)f , α(f) ∈ (−1,+1]. Each set of spec-

ified phases for all world-sheet fermions, around all the non-contractible loops is called

the spin structure of the model. Such spin structures are usually given in the form of 64

dimensional boundary condition vectors, with each entry specifying the phase of the cor-

responding world-sheet fermion. The basis vectors are constrained by string consistency

requirements, and completely determine the vacuum structure of the model. The physical

spectrum is then obtained by applying suitable GGSO projections.
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The boundary condition basis defining a typical “realistic free fermionic heterotic string

model” is constructed in two stages. The first stage consists of the NAHE set, which is a

set of five boundary condition basis vectors, {1, S, b1, b2, b3} [30, 31]

S = {ψ1,2, χ1,...,6} ,

b1 = {ψ1,2 , χ1,2 , y3,..,6 | y3,..6 , ψ
1,..,5,

, η1} ,

b2 = {ψ1,2 , χ3,4 , y1,2 , ω5,6 | y1,2 , ω5,6 , ψ
1,..,5,

, η2} ,

b3 = {ψ1,2 , χ3,4 , ω1,..,4 |ω1,..,4 , ψ
1,..,5,

, η3} ,

where, for simplicity, only the fields with α(f) = 1 are explicitly indicated, while those

that are not listed have α(f) = 0. After imposing the GSO projection, the gauge group

is SO(10) × SO(6)3 × E8, and the vacuum enjoys N = 1 supersymmetry. The second

stage of the construction consists of adding to the NAHE set three (or four) additional

boundary condition basis vectors, typically denoted by {α, β, γ}. These additional basis

vectors reduce the number of chiral generations to three, one from each of the sectors b1, b2
and b3, and simultaneously break the SO(10) GUT symmetry to one of its subgroups [3–10].

The correspondence of the NAHE-based free fermionic models with the orbifold con-

struction is illustrated by extending the NAHE set, {1, S, b1, b2, b3}, by one additional

boundary condition basis vector [16–18],

ξ1 = {ψ
1,..,5

, η1,2,3} . (2.1)

In this way, the orbifold construction involves an internal lattice with nontrivial background

fields [32, 33]. Indeed, the subset of basis vectors

{1, S, ξ1, ξ2} , ξ2 = 1 + b1 + b2 + b3 (2.2)

generates a toroidally compactified model with N = 4 space-time supersymmetry and

SO(12) × E8 × E8 gauge group. Here the enhanced U(1)6 → SO(12) gauge symmetry is

precisely due to the choice of the internal SO(12) lattice, with non trivial Bij and Gij

backgrounds. Adding the two basis vectors b1 and b2 to the set (2.2) corresponds then to

the Z2 × Z2 orbifold model with standard embedding, and Hodge numbers h11 = 27 and

h21 = 3. We note that the Euler characteristic of this orbifold differs from that of a Z2×Z2

orbifold at a generic point in the moduli space due to identification of fixed points by an

internal lattice shift [16–21, 25].

The effect of the additional basis vector ξ1 of eq. (2.1), is to separate the gauge de-

grees of freedom, spanned by the world-sheet fermions {ψ̄1,··· ,5, η̄1, η̄2, η̄3, φ̄1,··· ,8}, from the

internal compactified degrees of freedom {y, ω|ȳ, ω̄}1,··· ,6. In this construction, one actu-

ally has the freedom of flipping the sign of some GGSO phases, compatibly with modular

invariance. In particular, the choice

c

(

ξ1
ξ2

)

→ −c

(

ξ1
ξ2

)

, (2.3)
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breaks the E8 × E8 gauge symmetry down to SO(16) × SO(16), that is instrumental for

getting the GUT gauge group SO(10) since, after the inclusion of the vectors b1 and b2,

SO(16) × SO(16) → SO(10) × U(1)3 × SO(16).

In the “realistic free fermionic models” this is achieved by the vector 2γ [16–18]

2γ = {ψ
1,...,5

, η1,2,3 , φ
1...,4

} , (2.4)

that has the same effect of breaking E8 × E8 gauge symmetry down to SO(16) × SO(16),

and then to SO(10) × U(1)3 × SO(16) after the standard Z2 × Z2 project is enforced.

The freedom in (2.3) actually corresponds to a discrete torsion. In fact, at the level

of the N = 4 Narain model generated by the set (2.2), one can build two different vacua,

Z+ and Z−, depending on the sign of the discrete torsion in eq. (2.3). The first, say Z+,

produces the E8 × E8 model, whereas the second, say Z−, produces the SO(16) × SO(16)

model. However, the Z2 × Z2 twist acts identically in the two models, and their physical

characteristics differ only due to the discrete torsion eq. (2.3).

The projection induced by eqs. (2.4), or (2.3), has important phenomenological con-

sequences in the free fermionic constructions that are relevant for orbifold models. In the

case of Z+, the Z2 × Z2 orbifold breaks the observable E8 symmetry to E6 × U(1)2. The

chiral matter states are contained in the 27 representation of E6, which decomposes as

27 = 16 1
2

+ 10−1 + 12 (2.5)

under its SO(10)×U(1) subgroup, where the spinorial 16 and vectorial 10 representations of

SO(10) contain the Standard Model fermion and Higgs states, respectively. The projection

induced by (2.3) in Z− entails that either the spinorial or the vectorial representation

survives the GSO projection at a given fixed point. Hence, this projection operates a

Higgs-matter splitting mechanism [34] in the phenomenological free fermionic models.

Semi-realistic four-dimensional heterotic vacua have also been built using orbifold tech-

nique, based on a choice of gauge bundle and geometrical twist. These constructions are

based essentially on the E8 × E8 heterotic string, and the breaking of E8 is achieved by

suitable Wilson lines [13, 14] (for constructions based on the SO(32) heterotic string see

e.g. [35–37]). In this set-ups, different heterotic vacua can be connected by choices of differ-

ent gauge bundles and Wilson lines. Although the equivalence of geometrical Z2’s orbifold

constructions and free-fermionic constructions is rather obvious, a explicit link between the

two approaches is still missing and, in particular, to date it is not know how to interpret

the spinor-vector duality in the realm of orbifold compactification. In the next section, we

shall try to fill this gap by analysing a specific Z
n
2 orbifold and will identify the spinor-

vector splitting in terms of discrete torsion. Connecting the choices of discrete torsion to

the choice of gauge bundles, along the lines of [15], is an interesting open problem that we

are able to answer only in the simple case of N = 4 vacua.

3 Spinor-vector duality in four-dimensional N = 2 orbifold vacua

As anticipated, the emergence of spinorial representations in the twisted sectors of four-

dimensional N = 1 heterotic vacua based on Z
n
2 orbifolds has its origin in the simpler

context of vacua with eight supercharges, where the E8 gauge group is directly broken to

an orthogonal one.
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To be specific, we consider the E8 × E8 heterotic string compactified on the (T 4 ×

T 2)/Z2 × Z
′
2 × Z

′′
2 orbifold. The factorisation of the internal T 6 in terms of the product of

a four-torus times a two-torus is suggested by the way the three Z2’s act on the various

degrees of freedom. In particular, the free action generated by Z2 × Z
′
2, with

Z2 ∋ g = (−1)F1 δ , Z
′
2 ∋ g′ = (−1)F2 δ ,

where F1,2 flips the sign of the spinorial representation in E8 = Spin(16)/Z2 and δ shifts

the compact x4 coordinate by half of its period, spontaneously break the E8 × E8 gauge

group into SO(16)× SO(16), while preserving the original N = 4 supersymmetries in four-

dimensions. The additional Z
′′
2 factor, instead, twists also the space-time degrees of freedom

and preserves only N = 2 supersymmetries. Its generator g′′ reverts the sign of the four

internal coordinates xi, i = 6, 7, 8, 9, and, at the same time, breaks one SO(16) gauge factor

(the first one, say) into SO(12) × SO(4).

To implement the action of the Z2×Z
′
2×Z

′′
2 orbifold, it is convenient to break the ten-

dimensional SO(8) little group into SO(4)× SO(4), where the second SO(4) factor reflects

the symmetry of the internal T 4, while the first SO(4) factor corresponds to the “enhanced”

little group of M1,3 × T 2. At the same time, the first Spin(16) group factor is broken into

Spin(12) × Spin(4). As a result, the one-loop partition function can be written in terms

of the familiar space-time characters, Qo, Qv, Qs and Qc, and the gauge-group ones, χo
i ,

χv
i , χ

s
i , χ

c
i and ξo,v

1,g′ . For completeness, their explicit expression in terms of SO(2n) char-

acters [38, 39] is given in the appendix. The corresponding genus one partition function

thus reads

Z =
1

8

∑

α

Zα ,

where α labels the eight (un)twisted sectors and each amplitude Zα is given explicitly by

Z1 =

{

(

Q̄o + Q̄v

) [

χo
1 ξ

o
1 + χo

g ξ
o
g′ + (−1)m

(

χo
g ξ

o
1 + χo

1 ξ
o
g′

)]

Λ(4,4)

+
(

Q̄o − Q̄v

) [

χo
g′′ ξ

o
1 + χo

g g′′ ξ
o
g′ + (−1)m

(

χo
g g′′ ξ

o
1 + χo

g′′ ξ
o
g′

)]

∣

∣

∣

∣

2η

ϑ2

∣

∣

∣

∣

4
}

× Λ(2,2) ,

Zg =

{

(

Q̄o + Q̄v

) [

χv
1 ξ

o
1 − ǫ1 χ

v
g ξ

o
g′ − (−1)m

(

χv
g ξ

o
1 − ǫ1 χ

v
1 ξ

o
g′

)]

Λ(4,4) (3.1)

+
(

Q̄o − Q̄v

) [

ǫ2 χ
v
g′′ ξ

o
1 − ǫ3 χ

v
g g′′ ξ

o
g′ − (−1)m

(

ǫ2 χ
v
g g′′ ξ

o
1 − ǫ3 χ

v
g′′ ξ

o
g′

)]

∣

∣

∣

∣

2η

ϑ2

∣

∣

∣

∣

4
}

× Λ
(2,2)
1/2 ,

Zg′ =

{

(

Q̄o + Q̄v

) [

χo
1 ξ

v
1 − ǫ1 χ

o
g ξ

v
g′ + (−1)m

(

ǫ1 χ
o
g ξ

v
1 − χo

1 ξ
v
g′

)]

Λ(4,4) (3.2)

+
(

Q̄o − Q̄v

) [

ǫ4 χ
o
g′′ ξ

v
1 − ǫ5 χ

o
g g′′ ξ

v
g′ + (−1)m

(

ǫ5 χ
o
g g′′ ξ

v
1 − ǫ4 χ

o
g′′ ξ

v
g′

)]

∣

∣

∣

∣

2η

ϑ2

∣

∣

∣

∣

4
}
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× Λ
(2,2)
1/2 ,

Zg g′ =

{

(

Q̄o + Q̄v

) [

χv
1 ξ

v
1 + χv

g ξ
v
g′ − ǫ1 (−1)m

(

χv
g ξ

v
1 + χv

1 ξ
v
g′

)]

Λ(4,4) (3.3)

+
(

Q̄o − Q̄v

) [

ǫ6
(

χv
g′′ ξ

v
1 + χv

g g′′ ξ
v
g′

)

+ ǫ7 (−1)m
(

χv
g g′′ ξ

v
1 + χv

g′′ ξ
v
g′

)]

∣

∣

∣

∣

2η

ϑ2

∣

∣

∣

∣

4
}

× Λ(2,2) ,

Zg′′ =

{

(

Q̄s + Q̄c

) [

χc
1 ξ

o
1 − ǫ6 χ

c
g ξ

o
g′ − (−1)m

(

ǫ2 χ
c
g ξ

o
1 − ǫ4 χ

c
1 ξ

o
g′

)]

∣

∣

∣

∣

2η

ϑ4

∣

∣

∣

∣

4

+
(

Q̄s − Q̄c

) [

χc
g′′ ξ

o
1 − ǫ6 χ

c
g g′′ ξ

o
g′ − (−1)m

(

ǫ2 χ
c
g g′′ ξ

o
1 − ǫ4 χ

c
g′′ ξ

o
g′

)]

∣

∣

∣

∣

2η

ϑ3

∣

∣

∣

∣

4
}

× Λ(2,2) ,

Zg g′′ =

{

(

Q̄s + Q̄c

) [

χs
1 ξ

o
1 − ǫ7 χ

s
g ξ

o
g′ + (−1)m

(

ǫ2 χ
s
g ξ

o
1 + ǫ5 χ

s
1 ξ

o
g′

)]

∣

∣

∣

∣

2η

ϑ4

∣

∣

∣

∣

4

+
(

Q̄s − Q̄c

) [

ǫ2 χ
s
g′′ ξ

o
1 + ǫ5 χ

s
g g′′ ξ

o
g′ + (−1)m

(

χs
g g′′ ξ

o
1 − ǫ7 χ

s
g′′ ξ

o
g′

)]

∣

∣

∣

∣

2η

ϑ3

∣

∣

∣

∣

4
}

× Λ
(2,2)
1/2 ,

Zg′ g′′ =

{

(

Q̄s + Q̄c

) [

χc
1 ξ

v
1 − ǫ7 χ

c
g ξ

v
g′ − (−1)m

(

ǫ3 χ
c
g ξ

v
1 + ǫ4 χ

c
1 ξ

v
g′

)]

∣

∣

∣

∣

2η

ϑ4

∣

∣

∣

∣

4

+
(

Q̄s − Q̄c

) [

ǫ4 χ
c
g′′ ξ

v
1 + ǫ3 χ

c
g g′′ ξ

v
g′ + (−1)m

(

ǫ7 χ
c
g g′′ ξ

v
1 − χc

g′′ ξ
v
g′

)]

∣

∣

∣

∣

2η

ϑ3

∣

∣

∣

∣

4
}

× Λ
(2,2)
1/2 ,

and, finally,

Zg g′ g′′ =

{

(

Q̄s + Q̄c

) [

χs
1 ξ

v
1 − ǫ6 χ

s
g ξ

v
g′ + (−1)m

(

ǫ3 χ
s
g ξ

v
1 − ǫ5 χ

s
1 ξ

v
g′

)]

∣

∣

∣

∣

2η

ϑ4

∣

∣

∣

∣

4

+
(

Q̄s − Q̄c

) [

ǫ6 χ
s
g′′ ξ

v
1 − χs

g g′′ ξ
v
g′ + (−1)m

(

ǫ5 χ
s
g g′′ ξ

v
1 − ǫ3 χ

s
g′′ ξ

v
g′

)]

∣

∣

∣

∣

2η

ϑ3

∣

∣

∣

∣

4
}

× Λ(2,2) .

Before we analyse the properties of the spectrum of this heterotic orbifold, it is conve-

nient to explain the notation and the origin of the ǫ’s signs. For convenience, let us take

the amplitude Zg. It is actually a short-hand notation for

Zg =

∫

F

d2τ

τ4
2

∑

m4,m5,n4,n5

[

(

Q̄o + Q̄v

)

η̄2

(

χv
1 − (−1)m4 χv

g

)

(

ξo
1 + ǫ1 (−1)m4 ξo

g′

)

η2
Λ(4,4)
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+

(

Q̄o − Q̄v

)

η̄2

(

χv
g′′ − (−1)m4 χv

g g′′

) (

ǫ2 ξ
o
1 + ǫ3 (−1)m4 ξo

g′

)

η2

∣

∣

∣

∣

2η

ϑ2

∣

∣

∣

∣

4
]

× Λ
(2,2)

m4,m5;n4+
1
2
,n5
,

where the eta functions in the denominators count the contribution of the non-compact

world-sheet bosons in the light-cone gauge, while

Λ(4,4) =
∑

mi,ni

q
α
′

4
p2

L q̄
α
′

4
p2

R

η4 η̄4

denotes the four-dimensional Narain lattice associated to the directions xi, i = 6, 7, 8, 9,

upon which g′′ has a non-trivial action. Finally, the (shifted) zero modes associated to the

two remaining compact coordinates fill the lattice

Λ
(2,2)
m4,m5;n4+b,n5

=
q

α
′

4

“

m4
R4

+
(n4+b)R4

α′

”2

q̄
α
′

4

“

m4
R4

−
(n4+b)R4

α′

”2

η η̄

q
α
′

4

“

m5
R5

+
n5R5

α′

”2

q̄
α
′

4

“

m5
R5

−
n5R5

α′

”2

η η̄
,

where b = 0 in the untwisted, g′′, g g′ and g g′ g′′ twisted sectors, while b = 1
2 in the g, g′,

g g′′ and g′ g′′ twisted sectors.

The signs ǫi reflect the possibility of turning on discrete torsion in this Z
3
2 orbifold.

Clearly, they affect the massless and massive spectrum and in particular the gauge-group

representations of the twisted matter.

This can be neatly seen by writing a q-series expansion of the various contributions to

the partition function, and keeping for simplicity only the low-lying states. In particular,

noting that

qn/12 V2n ∼ 2n q1/2 +O(q3/2) , qn/12O2n ∼ q−1 + n(2n− 1) +O(q) ,

qn/12 S2n ∼ 2n−1 qn/2 +O(qn/2+1) , qn/12 C2n ∼ 2n−1 qn/2 +O(qn/2+1) ,

and using similar expansions for the theta and eta functions, one finds that only the

untwisted, g g′, g′′ and g g′ g′′ twisted sectors actually yield massless states. More in details,

the leading contributions to the amplitudes read

Z(0) = Z(0) 1 + Z(0) g g′ + Z(0) g′′ + Z(0) g g′ g′′ ,

where

Z(0) 1 ∼ Q̄oO4O12O16 + Q̄v V4 V12O16 + massive ,

Z(0) g g′ ∼ Q̄o

[

O4 V12 V16
1 − ǫ1 + ǫ6 + ǫ7

4
+ V4O12 V16

1 − ǫ1 − ǫ6 − ǫ7
4

]

+ Q̄v

[

O4 V12 V16
1 − ǫ1 − ǫ6 − ǫ7

4
+ V4O12 V16

1 − ǫ1 + ǫ6 + ǫ7
4

]

+ massive ,

Z(0) g′′ ∼ 16 Q̄s

[

O4 S12O16
1 − ǫ2 + ǫ4 − ǫ6

4
+ C4 V12O16

1 + ǫ2 + ǫ4 + ǫ6
4

]

+ 16 Q̄s

[

S4O12O16
1 + ǫ2 + ǫ4 + ǫ6

4

]

+ massive ,
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and, finally,

Z(0) g g′ g′′ ∼ 16 Q̄s C4O12 V16
1 − ǫ3 − ǫ5 + ǫ6

4
+ massive .

The untwisted sector, independent of the discrete torsion, comprises an N = 2 super-

gravity multiplet, coupled to vector multiplets in the adjoint representation of the gauge

group G = U(1)2 × SO(4) × SO(12) × SO(16), and hypermultiplets in the representation

(4, 12, 1).

The twisted matter includes neutral hypermultiplets associated to the deformations

of K3, together with hypermultiplets charged with respect to G, whose representations

depend on the choice of the discrete torsions. Clearly, for the partition function to be real

the ǫ’s can only be signs, while demanding that Z have a physical interpretation in terms of

a proper counting of states, the various coefficients of the qα terms must be integers, positive

for bosons and negative for fermions. This clearly implies that the combinations of discrete

torsion, like those appearing in Z(0) should equal 0 or 1. Finally, the last requirement we

want to impose on the ǫ’s is that the gauge group be the smallest one. In fact, if any of the

combinations in the first line of Z(0),g g′ is different than zero, the gauge group is enhanced

to SO(16) × SO(16) or to SO(12) × SO(20). As we shall see momentarily, this possibility

is already present at the level of N = 4 vacua, and corresponds to different discrete values

of Wilson lines. Taking all these constraints into account, the possible choices of discrete

torsion turn out to be

ǫ1 = 1 , ǫ7 = −ǫ6 , ǫ4 = ǫ5 ,

and

sol1 = (−1,−1,+1,−1) , sol2 = (+1,+1,−1,−1) ,

sol3 = (+1,+1,+1,+1) , sol4 = (−1,−1,−1,+1) ,

where

soli = (ǫ2, ǫ3, ǫ4, ǫ6) .

As a result, the massless twisted spectra depend on the allowed combination soli of

signs, and are listed in table 1. This is a neat instance of spinor-vector duality and is at

the heart of Higgs-matter splitting in more realistic vacua. Let us note that for sol3 extra

8 × 8 neutral massless hypermultiplets appear from the twisted sector

Q̄s S4O12O16 ,

hence keeping a total number of massless degrees of freedom unchanged. From table 1

it is observed that under the different possibilities of the discrete torsions the number

of massless degrees of freedom is preserved, except sol2 that does not have any twisted

massless states, similar to what is observed in the free fermionic classification of [27, 28].

Let us note that there are no other massless twisted neutral hypermultiplets in any of soli.

To further break supersymmetry, and get more realistic chiral models, it is enough to

act with an additional Z
′′′
2 that twists the coordinates x4,5,6,7, say, and breaks the SO(12)

gauge group to the more phenomenological SO(10), while leaving untouched the hidden
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solution reps of massless charged hypermultiplets

sol1 8 × (1, 32, 1)

sol2 —

sol3 8 × [(2, 12, 1) + 4 × (2, 1, 1)]

sol4 8 × (2, 1, 16)

Table 1. Charged massless twisted spectrum for the T 6/Z3

2 heterotic orbifold, for different choices

of discrete torsion. The non-Abelian gauge group is G = SO(4) × SO(12) × SO(16) and the vac-

uum configurations also include universal (untwisted) charged hypermultiplets in the representation

(4, 12, 1).

sector. Although, additional discrete torsions can be turned on for this Z
4
2 model, in the

simplest instance where one considers only the seven signs previously introduced, the result-

ing massless chiral spectrum for the choice sol1 includes an SO(10) spinorial representation

since, under the action of Z
′′′
2 , 32 → 16 + 16, and only one spinorial eventually survives the

overall orbifold projection in a chiral model. On the other hand, the solutions sol3 and

sol4 would only include matter in vectorial (Higgs-like) representation.

Furthermore, the reduction of the number of chiral families, or alternatively the change

of the topology of the Calabi-Yau manifold, can be achieved, as usual, through the imple-

mentation of additional shift symmetries. They do not twist any internal coordinate and

the only effect on the spectrum consists in reducing the number of families of twisted chiral

matter through an identification of fixed points. In terms of free fermionic constructions,

this is equivalent to the inclusion of the {α, β, γ} system of boundary condition basis vectors

to the NAHE set, as discussed in the previous section.

Before we conclude, let us make a brief remark on the interpretation of the Z2 × Z
′
2

freely-acting orbifold of the E8 × E8 heterotic string. As already stated several times,

this orbifold projection does not break any of the original supersymmetries, and therefore

corresponds to a nine-dimensional vacuum with 16 supercharges. Depending on the value

of the discrete torsion1 one gets the models

Zǫ1=+1 = (V̄8 − S̄8)
[

O32 Λ2m,n + S32 Λ2m+1,n + V32 Λ2m+1,n+1/2 + C32 Λ2m,n+1/2

]

,

with an SO(32) gauge group,

Zǫ1=−1 = (V̄8 − S̄8)
[

(O16 O16 + C16 C16)Λ2m,n + (S16 S16 + V16 V16)Λ2m+1,n

+ (C16 O16 +O16 C16)Λ2m,n+1/2 + (V16 S16 + S16 V16)Λ2m+1,n+1/2

]

,

with a broken SO(16) × SO(16) gauge group.

However, N = 4 vacua are characterised by a moduli space, uniquely fixed by its di-

mension, and therefore by the dimension of the compactification torus and by the rank of

the gauge group. Indeed, the heterotic vacua obtained as an S1 and S1/Z2 × Z
′
2 compact-

ification, with or without discrete torsion, are all continuously connected. In this respect,

1The discrete torsion present in this Z2 × Z
′

2 actually corresponds to the sign ǫ1 in eqs. (3.1) , (3.2)

and (3.3).
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the ǫ1 discrete torsion has a natural geometrical description in terms of discrete values of

otherwise continuous Wilson lines along the compact S1. It is tempting to interpret also

the remaining signs as specific choices of gauge bundles and/or Wilson lines as in [15].

Although this connection seems quite natural, it is less evident than in the N = 4 case and

requires further analysis.

4 Conclusions

Heterotic string theory is unique among the perturbative string constructions since it gives

rise naturally to the GUT embedding of the Standard Model matter states in SO(10) and

E6 representations in a perturbative, and thus calculable, set-up. Grand unification is well

supported by the pattern of observed fermion and gauge boson charges. In the framework

of SO(10) gauge theory all the matter states of a single generation are unified in the 16

spinorial representation and, a priori, one needs only two types of representations, the

spinorial 16 and the vectorial 10 representations, to embed the Standard Model matter

and Higgs spectrum. The framework of E6 grand unification has the further property of

incorporating the 16 matter and 10 Higgs states into the 27 representation of E6.

As the observed gauge symmetry at low energies consists solely of the Standard Model

one, its embedding into a grand unification group necessitates that the larger GUT symme-

try be broken. Moreover, grand unification introduces additional difficulties with proton de-

cay and neurtino masses. The GUT symmetry breaking and the miscellanea issues typically

require the introduction of large representations, like the 126 of SO(10), or the 351 of E6.

By producing the gauge and matter structures that arise in Grand Unified Theories,

heterotic string theories offer new possibilities to tame the problems that arise in field

theory GUTs. To this end, to understand the various alternatives offered by string theory,

it is important to construct quasi-realistic string models and investigate their properties

in detail. The main approaches to this program are free-fermionic [1, 2] and bosonic [32,

33, 40, 41] constructions, as well as interacting [42–45] world-sheet conformal field theories.

The heterotic-string models in their free fermionic formulation [3–10], first constructed over

two decades ago, are among the most realistic string vacua constructed to date, though, in

recent years comparable quasi-realistic models have also been constructed using free world-

sheet bosons [13, 14, 35–37]. It should be stressed, however, that the two formulations are

closely related and that the corresponding string vacua can be described equivalently using

both approaches. Therefore it is natural to assume that for every string model constructed

using free world-sheet fermions an identical vacuum exists constructed using free world-

sheet bosons. Indeed, the free fermionic models correspond to Z
n
2 toroidal orbifolds at

special points in the moduli space.

While the free-fermionic approach can be straightforwardly implemented as an alge-

braic set of conditions that facilitate the scan of phenomenological properties, the free

boson approach is more readily adaptable to explore the underlying moduli dynamics. It

is therefore compelling to develop a dictionary between the two languages. Although the

equivalence is anticipated, writing a detailed dictionary is often non-trivial. In this paper

we investigated this aspect in some detail. An important feature in the quasi-realistic free
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fermionic models is the breaking of the E8 ×E8 symmetry to SO(16)× SO(16) at the level

of the underlying N = 4 toroidal compactification. This breaking is realised in the bosonic

construction in terms of freely acting orbifolds, or alternatively in terms of Wilson lines.

Matter states arise in the free fermion models from Z2 twisted sectors, which break the

N = 4 space-time supersymmetry to N = 2. The next step in building the dictionary

between the two classes of models is therefore to add a Z2 orbifold to the two freely acting

orbifolds of [19–21]. However, it turns out that the construction is not straightforward.

In the free fermionic models the one-loop partition functions are generated in terms of

boundary condition basis vectors and GGSO phases. One then builds a space of mod-

ular invariant partition functions, with differing physical characteristics. In the bosonic

representation, on the other hand, a variety of vacua arise from the freedom to chose the

background fields and from the existence of disconnected modular orbits. The detailed

correspondence between the two representations, while formally well understood and es-

tablished, is nevertheless non-trivial and often obscure. In this paper we addressed this

issue with respect to the twisted matter states and spinor-vector duality, first observed in

the classification of free fermionic models [22–24, 27, 28]. The spinor-vector duality is a

property over the full space of vacua generated by the given set of basis vectors [27, 28]

and corresponds to maps between different choices of GGSO projection coefficients. In

the orbifold language, as demonstrated here, it corresponds to different choices of discrete

torsions, thus extending the map of [29]. Two issues are of interest here. The first is to

improve the understanding of the detailed correspondence between the free fermion GGSO

projection coefficients and the orbifold discrete torsions. The second is to understand the

spinor-vector duality in geometrical terms. We anticipate that this should entail an action

on the internal moduli plus an action on the bundle that generates the heterotic-string

gauge degrees of freedom. We note that the existence of the spinor-vector duality raises

basic questions in regard to the relation of the string vacua to the low energy effective field

theory. While in the effective field theory the two models identified under the spinor-vector

duality map are clearly distinct, from the string point of view they are closely related. This

is exemplified by the fact that the number of degrees of freedom is preserved under the

map. Thus, whereas the spinor of SO(12) contains 32 states and the vector contains only

2 × 12 = 24, the vector representation is augmented by additional 8 SO(12) singlets, that

correct the mismatch. The issue can be further explored by studying the effect of the dual-

ity map on interactions. Another issue of further interest is the relation of the spinor-vector

duality to triality of SO(8). This question was briefly explored in the context of the free

fermionic classification [27, 28] by breaking the untwisted gauge degrees of freedom to four

SO(8) factors. We hope to address these issues in future publications.
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A List of characters

In this appendix, we list the space-time and gauge-group characters that enter in the T 6/Z3
2

partition function. For the definition of the SO(2n) characters in terms of eta and theta

functions, as well as for their modular properties, we report the interested reader to [38, 39].

Space-time (anti-holomorphic) characters

Q̄o = V̄4 Ō4 − C̄4 C̄4 , Q̄s = Ō4 C̄4 − S̄4 Ō4 , (A.1)

Q̄v = Ō4 V̄4 − S̄4 S̄4 , Q̄c = V̄4 S̄4 − C̄4 V̄4 . (A.2)

Gauge-group (holomorphic) characters associated to the first E8 → SO(4) × SO(12)

factor

χo
1 = O4O12 + V4 V12 + S4 S12 +C4 C12 ,

χo
g = O4O12 + V4 V12 − S4 S12 −C4 C12 ,

χo
g′′ = O4O12 − V4 V12 − S4 S12 +C4 C12 ,

χo
g g′′ = O4O12 − V4 V12 + S4 S12 −C4 C12 ,

χv
1 = O4 V12 + V4O12 + S4C12 + C4 S12 ,

χv
g = O4 V12 + V4O12 − S4C12 − C4 S12 ,

χv
g′′ = O4 V12 − V4O12 − S4C12 + C4 S12 ,

χv
g g′′ = O4 V12 − V4O12 + S4C12 − C4 S12 ,

χc
1 = O4 S12 + V4C12 + S4O12 +C4 V12 ,

χc
g = O4 S12 + V4C12 − S4O12 −C4 V12 ,

χc
g′′ = O4 S12 − V4C12 − S4O12 +C4 V12 ,

χc
g g′′ = O4 S12 − V4C12 + S4O12 −C4 V12 ,

and

χs
1 = O4 C12 + V4 S12 + S4 V12 + C4O12 ,

χs
g = O4 C12 + V4 S12 − S4 V12 − C4O12 ,

χs
g′′ = O4 C12 − V4 S12 − S4 V12 + C4O12 ,

χs
g g′′ = O4 C12 − V4 S12 + S4 V12 − C4O12 .

Gauge-group (holomorphic) characters associated to the second E8 → SO(16) factor

ξo
1 = O16 + S16 , ξo

g′ = O16 − S16 ,

ξv
1 = V16 + C16 , ξv

g′ = V16 − C16 .
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Notice that the characters ξo,v
1,g′ are exactly equal to χo,v

1,g. We use a different notation only

to stress that on the second E8 only the g′ generator acts non-trivially and therefore the

group is simply broken to SO(16).
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