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91405 Orsay Cedex, France

E-mail: emilian.dudas@cpht.polytechnique.fr,

palti@cpht.polytechnique.fr

Abstract: We study SU(5) Grand Unified Theories within a local framework in F-theory

with multiple extra U(1) symmetries arising from a small monodromy group. The use

of hypercharge flux for doublet-triplet splitting implies massless exotics in the spectrum

that are protected from obtaining a mass by the U(1) symmetries. We find that lifting the

exotics by giving vacuum expectation values to some GUT singlets spontaneously breaks all

the U(1) symmetries which implies that proton decay operators are induced. If we impose

an additional R-parity symmetry by hand we find all the exotics can be lifted while proton

decay operators are still forbidden. These models can retain the gauge coupling unification

accuracy of the MSSM at 1-loop. For models where the generations are distributed across

multiple curves we also present a motivation for the quark-lepton mass splittings at the

GUT scale based on a Froggatt-Nielsen approach to flavour.

Keywords: GUT, F-Theory

ArXiv ePrint: 1007.1297

Open Access doi:10.1007/JHEP09(2010)013

mailto:emilian.dudas@cpht.polytechnique.fr
mailto:palti@cpht.polytechnique.fr
http://arxiv.org/abs/1007.1297
http://dx.doi.org/10.1007/JHEP09(2010)013


J
H
E
P
0
9
(
2
0
1
0
)
0
1
3

Contents

1 Introduction 1

2 Semi-local models with multiple U(1)s 3

2.1 The elliptic fibration 3

2.2 Matter curves for a 2 + 1 + 1 + 1 splitting 6

2.3 Matter curves for a 2 + 2 + 1 splitting 10

2.4 Matter curves for a 3 + 1 + 1 splitting 11

3 Phenomenological constraints 13

3.1 The exotics mass and proton decay 13

3.2 R-parity 19

3.3 Neutrinos 20

4 Single curve models 21

4.1 Models from 2 + 1 + 1 + 1 factorisation 21

4.2 Models from 2 + 2 + 1 factorisation 25

4.3 Models from 3 + 1 + 1 factorisation 27

5 3-curve models 29

5.1 Froggatt-Nielsen and quark-lepton mass splitting 31

6 Summary 32

A More single curve models 33

A.1 Models based on 2 + 1 + 1 + 1 monodromy 33

A.2 Models based on 2 + 2 + 1 monodromy 36

1 Introduction

The idea that a Grand Unified Theory (GUT) underlies the Standard Model (SM) remains

one of the most attractive ideas in theoretical particle physics. Perhaps the strongest

phenomenological motivation for this is that once supersymmetry is introduced at the TEV

scale the gauge couplings of the Minimal Supersymmetric Standard Model (MSSM) unify to

a high accuracy at the GUT scale 2×1016GEV. The unification of the coupling is certainly

something we would like to retain in a GUT construction within string phenomenology.

Recently string GUT constructions have been developed in the context of F-theory [1–4]

(see [5] for a phenomenological review). One of the attractive features of these models is

that they permit an elegant way of breaking the GUT group to the that of the standard

model by turning on flux along the hypercharge direction in the unified gauge group [3, 4, 6].
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The hypercharge flux however causes tension with gauge coupling unification. The most

immediate problem arises from a direct non-universal correction to the gauge couplings at

the GUT scale induced by the flux itself [7]. We do not address this issue and assume that

this correction is small enough to keep within the coupling unification accuracy level or

around 3 percent present in the MSSM. A more subtle problem arises from the fact that

if the hypercharge flux is used to split the Higgs triplets from the doublets, it typically

also induces massless exotics, by which we mean non-MSSM fields charged under the SM

gauge groups [8].1 In order to retain the MSSM gauge coupling unification these exotics

must obtain mass. However they are usually protected against obtaining a mass by extra

U(1) symmetries typically present in such set-ups and can only gain a mass if some of these

U(1) symmetries are spontaneously broken. The problem is that these U(1) symmetries are

particularly useful for other purposes. For example to prevent a µ-term or proton decay or

to generate flavour hierarchies [8–13]. It is the interplay between the exotics and the U(1)

symmetries that forms the primary motivation for this work and in particular the question:

can we retain gauge coupling unification by lifting the exotic fields whilst still preventing

a µ-term and proton decay operators through the U(1) symmetries?

In F-theory the GUT is realised on a 7-brane wrapping some 4-dimensional surface S

with other 7-branes intersecting S along curves where matter representations are localised.

Interactions between the matter representations are generally localised at points in S.

One of the attractive features of such setups is that they can be studied within a local

context. This means that a lot of information can be gained, for example regarding Yukawa

couplings, simply by studying the local area around the point where the interaction is

localised. In the case where all the matter interactions are localised on a single point such

an approach can explore a wide range of model building aspects [10, 12, 14]. Since the

hypercharge flux is embedded within the GUT gauge group it is not localised at a point but

rather over all of S. This means that aspects associated to GUT breaking, such as doublet-

triplet splitting, are sensitive to the compact nature of S. It is still possible to study the

properties of S while decoupling the geometry of the full Calabi-Yau (CY) four-fold. This

approach has been labeled semi-local and has been actively studied in [8, 11, 15–17]. We

refer to [8, 11, 16, 17, 21–28] for fully global models. In the semi-local approach the GUT

theory is assumed to arise from a Higgsed E8 gauge theory. The GUT theory arises from

the breaking of

E8 → SU(5)GUT × SU(5)⊥ → SU(5)GUT × U(1)4 . (1.1)

The decoupling of the full CY geometry implies that some aspects must be chosen by hand

and in particular the monodromy group experienced by the matter curves on S. This group

identifies U(1) factors in (1.1) and also matter fields on curves related by the monodromy.

The smaller the monodromy group the more U(1)s and matter curves remain. Semi-local

constructions so far in the literature have only studied the case of a single U(1) after the

monodromy [8, 11]. We will study semi-local constructions with multiple U(1)s. There

are two key motivations for this. The first is that having multiple U(1)s implies a better

1It may be possible to avoid exotics in models that are more general than those studied in this paper

and we refer to section 3.1 for a discussion regarding this possibility.
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prospect for giving a mass to the exotics whilst retaining some protection against a µ term

and proton decay. The second is that it is possible to realise the idea that each MSSM

generation comes from a different matter curve which as shown in [12, 13] can lead to

attractive models of flavour.

In section 2, following a brief review of some of the important geometric tools, we derive

some general geometric properties of the curves on S for the different possible monodromy

groups that lead to multiple U(1)s. In particular we will calculate how the hypercharge

flux restricts to the matter curves and also show that it is possible to have a semi-local

realisation of such models without inducing exotic non-Kodaira singularities. With this

geometric information we then proceed to perform some model building. In section 3 we

discuss the phenomenological constraints that are imposed on the models. In section 4 we

begin explicit model building in setups where all the MSSM generations are located on one

matter curve. Following this in section 5 we study models where the MSSM generations

are located on different matter curves. In section 6 we summarise our findings.

2 Semi-local models with multiple U(1)s

In this section we develop semi-local constructions for small monodromy groups such that

multiple U(1) symmetries remain after imposing the monodromy identification. We begin

by reviewing the basic ideas behind semi-local models in section 2.1. We then go on to con-

struct new models with small monodromy groups. The final product for each construction

is a determination of the restriction of the hypercharge flux to each of the matter curves.

It is important to stress that the models constructed in each subsection are not the

most general setups that can be considered. They rely on a particular solution to the

tracelessness constraints b1 = 0 and they do not include all the possible monodromies.

Further they rely on the assumption of an underlying E8 singularity unfolded over the

surface S such that all curve and point enhacements on S come from this single E8.

2.1 The elliptic fibration

The key properties of semi-local models are determined by how the elliptic fibration degen-

erates on the GUT surface S. We now review some of the relevant tools. For a small and

incomplete selection of some of the original work and more recent pedagogical introduc-

tions see [8, 15, 16, 22, 24, 30–32]. Given the current extensive literature on the subject

we shall be brief and only introduce the key concepts that will be used.

The Tate form of the elliptic fibration is given by

x3 − y2 − xyα1 + x2α2 − yα3 + xα4 + α6 = 0 . (2.1)

Here (x, y) are affine coordinates on the torus fibre and the αi are functions of the coordi-

nates on the three-fold base. The relevant data for the degeneration can be parameterised
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ord(f) ord(g) ord(∆) fiber type singularity type

≥ 0 ≥ 0 0 smooth none

0 0 n In An−1

≥ 1 1 2 II none

1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n + 6 I∗n Dn+4

≥ 2 3 n + 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

Table 1. Table showing Kodaira’s classification of elliptic singularities.

using the quantities

β2 = α2
1 + 4α2 ,

β4 = α1α3 + 2α4 ,

β6 = α2
3 + 4α6 ,

β8 = β2α6 − α1α3α4 + α2α
2
3 − α2

4 ,

∆ = −β2
2β8 − 8β3

4 − 27β2
6 + 9β2β4β6 ,

f = − 1

48

(

β2
2 − 24β4

)

,

g = − 1

864

(

−β3
2 + 36β2β4 − 216β6

)

. (2.2)

Here ∆ is the discriminant whose vanishing signals a singularity and f and g are defined

as usual ∆ = 4f3 + 27g2. The type of singularity is determined by the order to which the

discriminant vanishes as given by Kodaira’s classification in table 1.

We are interested in an SU(5) GUT that is localised on a divisor in the base three-fold.

We choose the coordinates of the base so that the divisor is given by z = 0. Then since we

want an SU(5) singularity on this divisor we can impose the order of vanishing of the αi

by writing them as

α1 = b5 , α2 = b4z , α3 = b3z
2 , α4 = b2z

3 , α6 = b0z
5 , (2.3)

where now the bis can depend on z but do not vanish at z = 0. For these it is easy to see

that at z = 0 we have ord(β2) = 0 and so ord(f) = 0 and ord(g) = 0 while ord(∆) = 5

giving an A4 singularity. The singularity is further enhanced when various combinations

of the bi vanish. In particular using (2.3) we can write

∆ = −z5
[

P 4
10P5 + zP 2

10 (8b4P5 + b5R) + O
(

z2
)]

, (2.4)
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where we define2

P10 = b5 , (2.5)

P5 = b2
3b4 − b2b3b5 + b0b

2
5 . (2.6)

This means that, on the GUT divisor z = 0, if P5 = 0 the singularity enhances to at least

SU(6) and if P10 = 0 the singularity enhances to at least SO(10). These loci correspond to

the curves on the GUT divisor S on which matter in the 5⊕ 5̄ and 10⊕ 1̄0 representations

is localised as can be determined by decomposing the adjoint of the enhanced gauge group

under SU(5) representations. We denote these as 5-matter curves and 10-matter curves

respectively. For other vanishing combinations it is possible to enhance further correspond-

ing to intersections of the matter curves. In particular the point of E8 discussed in the

introduction corresponds to bi6=0 = 0.

In a global model the determination of the bi’s as functions of the base coordinates gives

the structure of the GUT theory. However in a semi-local approach it is possible to bypass

some of the complications by looking close to the GUT divisor. In this approach we can

consider the full CY four-fold as given by an Asymptotically Locally Euclidean (ALE) space

with ADE singularities fibered over the GUT divisor. This can be modeled by considering

an E8 singularity in the fibre which is resolved by blowing up the collapsed two-cycles

as we move around the GUT divisor. Since we can write E8 = SU(5)GUT × SU(5)⊥ the

two-cycles correspond to generators in SU(5)⊥ and so we write the curves on which they

collapse using the ti with i = 1, .., 5 and
∑

ti = 0. Explicitly using the decomposition of

the adjoint of E8

248 → (24,1) ⊕ (1,24) ⊕ (10,5) ⊕ (5̄,10) ⊕ (1̄0, 5̄) ⊕ (5, 1̄0) , (2.7)

we see that we have 5 10-matter curves, 10 5-matter curves and 24 singlets which can be

parameterised by the vanishing combinations

Σ10⊕1̄0 : ti = 0 , (2.8)

Σ5⊕5̄ : −ti − tj = 0, i 6= j , (2.9)

Σ1 : ± (ti − tj) = 0, i 6= j . (2.10)

The bi are given in terms of elementary symmetric polynomials of degree i in the ti. An

important point is that since this is a non-linear relation there can be branch cuts that

connect the various ti and these are the monodromies discussed in the introduction. If

some ti lie in the same orbit of the monodromy group they can, for the purposes of this

analysis, be identified. This reduces the number of matter curves and also the number of

U(1) gauge symmetries.

A useful way to encode all this information is by using the spectral cover construction.

More precisely we need to introduce the spectral cover for the fundamental representations

of SU(5)⊥. The spectral cover is a hypersurface inside the projective 3-fold

X = P(OSGUT
⊕ KSGUT

) , (2.11)

2Also R = −b3
3 − b2

2b5 + 4b0b4b5.
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given by the constraint

C10 = b0U
5 + b2V

2U3 + b3V
3U2 + b4V

4U + b5V
5 = 0 . (2.12)

Here OSGUT
and KSGUT

are the trivial and canonical bundle on SGUT respectively and

{U, V } are homogeneous complex coordinates on the P
1 fibre in X. The idea is that locally

we can set some affine parameter s = U/V in which (2.12) is a polynomial whose 5 roots

are exactly the ti. Indeed s can be equated with the value of the Higgs field that breaks

the E8 gauge theory and overall (2.12) forms a 5-fold cover of SGUT. The monodromy of

the Higgs or the ti is encoded in the global properties of (2.12) and more specifically in

how the polynomial decomposes into products. We can think of all the 10-matter curves as

lifting to a single curve on the spectral cover which then decomposes into parts according

to the decomposition of the spectral cover. Indeed this curve is determined by the equation

U = 0 which gives

P10 = b5 = t1t2t3t4t5 = 0 , (2.13)

which reproduces the equations for the 5 10-matter curves.

Having introduced the necessary tools we go on to study the structure of the matter

curves for various monodromy groups. There are only 3 types of monodromy actions that

preserve at least 2 independent U(1)s. We denote them by which tis are identified or

equivalently how the spectral cover factorises. The 3 cases are for factorisations of the type

2 + 2 + 1, 3 + 1 + 1 and 2 + 1 + 1 + 1, where for example the first case denotes identifying

t1 with t2 and t3 with t4.
3

2.2 Matter curves for a 2 + 1 + 1 + 1 splitting

In this section we consider the case where the spectral cover decomposes into 4 pieces

C10 =
(

a1V
2 + a2V U + a3U

2
)

(a4V + a7U) (a5V + a8U) (a6V + a9U) = 0 . (2.14)

Here the aI are some as yet undetermined coefficients that are functions on S. This

decomposition corresponds to a Z2 monodromy group that by choice of parameterisation

we shall take to act as t1 ↔ t2. So that the 10-curves t1 and t2 both lift to a curve on a

single factor of the spectral cover given by the first brackets in (2.14). We can write the bi

in terms of the aI as

b0 = a3789 ,

b1 = a2789 + a3678 + a3579 + a3489 ,

b2 = a1789 + a2678 + a2579 + a2489 + a3567 + a3468 + a3459 ,

b3 = a3456 + a1678 + a1579 + a1489 + a2567 + a2468 + a2459 ,

b4 = a2456 + a1567 + a1468 + a1459 ,

b5 = a1456 . (2.15)

Here we use the notation aIJKL = aIaJaKaL.
3We do not consider cases where the monodromy group is a subgroup of the factorisation which can

only occur for factors of degree 4 or 5 [8]. Also we do not consider cases with a single U(1) corresponding

to factorisation 3 + 2 and 4 + 1 which have been studied in [8, 11].

– 6 –
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section c1(Bundle)

a1 η − 2c1 − χ̃

a2 η − c1 − χ̃

a3 η − χ̃

a4 −c1 + χ7

a5 −c1 + χ8

a6 −c1 + χ9

a7 χ7

a8 χ8

a9 χ9

Table 2. Table showing the first Chern classes of the line bundles that the aI are sections of for

the factorisation 2 + 1 + 1 + 1. The forms χ{7,8,9} are unspecified and we define χ̃ = χ7 + χ8 + χ9.

We are interested in determining the curves aI = 0 on SGUT. This can be done as

follows. The bi are zero sections of the bundle η − ic1 [8, 16]. Here c1 is the first Chern

class of the tangent bundle of SGUT and η = 6c1 − t with −t being the first Chern class

of the normal bundle to SGUT. Using (2.15) this then implies that the aI are sections of

bundles as shown in table 2.4 Here χ{7,8,9} are unspecified and we define χ̃ = χ7 +χ8 +χ9.

We can gain more information by noting that since

b1 = t1 + t2 + t3 + t4 + t5 = 0 , (2.16)

we have the constraint on the ai that

a2a7a8a9 + a3a6a7a8 + a3a5a7a9 + a3a4a8a9 = 0 . (2.17)

There are a number of ways to solve this constraint but, as also noted in [11], most

lead to non-Kodaira type singularities on the manifold. By this we mean that over some

curves/points on S the bi vanish to such an order that a singularity is induced that does

not fall into the classification of table 1. However we can take the following ansatz

a2 = −c (a6a7a8 + a5a7a9 + a4a8a9) ,

a3 = c a7a8a9 , (2.18)

where c is some unspecified holomorphic section in the homology class

[c] = η − 2χ̃ . (2.19)

4Note that the η factor is not completely determined by the bi and can be chosen such that all the

sections are sufficiently positive. Generally, for all the monodromy groups, taking η and the χ sufficiently

positive means the ai are holomorphic sections.
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Of course this assumes that in a global model such a constraint can be met which is a

non-trivial assumption. With this choice we can write

b0 = c (a7a8a9)
2 ,

b1 = 0 ,

b2 = a1a7a8a9 − c
[

(a6a7a8)
2 + a6a7a8a9 (a5a7 + a4a8) + a2

9

(

a2
5a

2
7 + a4a5a7a8 + a2

4a
2
8

)

]

,

b3 = a1 (a6a7a8 + a5a7a9 + a4a8a9) − c (a5a7 + a4a8) (a6a7 + a4a9) (a6a8 + a5a9) ,

b4 = a1 (a5a6a7 + a4a6a8 + a4a5a9) − ca4a5a6 (a6a7a8 + a5a7a9 + a4a8a9) ,

b5 = a1a4a5a6 , (2.20)

We can check that this does not lead to any exotic non-Kodaira singularities. For example

consider setting a1 = 0 then using the results of section 2.1 we find a Kodaira singularity of

SO(10) signaling a 10-matter curve.5 The same follows for a4, a5 and a6. We can consider

a7 = 0 which gives an A4 singularity and the same for a8 and a9 and c. It is possible to

generate bad singularities say if a1 = c = 0 but then this just implies that these curves

should not intersect.

After imposing (2.18) the 5-matter curve polynomial (2.6) decomposes as

P5 = (a5a7 + a4a8) (a6a7 + a4a9) (a6a8 + a5a9)

(a6a7a8 + a5a7a9 + a4a8a9)

(a1 − ca5a6a7 − ca4a6a8)

(a1 − ca5a6a7 − ca4a5a9)

(a1 − ca4a6a8 − ca4a5a9) . (2.21)

These are the 7 5-matter curves that are left after the Z2 monodromy. We describe these

curves in table 3. Note that 3 of the 5-matter curves share the same homology class

[51] = [52] = [53]. This implies that any flux restricts to them in the same way. It also

implies that their intersections are determined by the number of self-intersections.

Having determined the homology classes of the matter curves we can determine the

induced chiral spectrum in terms of the restriction of the fluxes to the curves. There are two

types of fluxes that contribute to the spectrum. The first is flux turned on in the 4 U(1)s,

or rather the number of U(1)s left after the monodromy identification which in the case

of Z2 is 3, of the SU(5)⊥. This flux respects the SU(5) GUT structure and so only affects

the chirality of complete GUT multiplets. We refer to this type of flux henceforth as U(1)-

flux and denote it by FU(1). The second type of flux is turned on along the hypercharge

direction in SU(5)GUT. This flux determines the splitting of the GUT matter multiplets.

We refer to this type of flux henceforth as hypercharge flux and denote it by FY . Given

a restriction to a curve of the U(1) flux given by an integer M and the hypercharge flux

5The procedure is to use (2.20) to read off the vanishing order of the bi, which then give the vanishing

order of the αi through (2.3) which then can be used to determine the vanishing order of f , g and ∆

through (2.2) which then give the singularity type as in table 1.
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Matter Charge Equation Homology NY MU(1)

5Hu −2t1 a6a7a8+ a5a7a9+ a4a8a9 −c1 + χ̃ Ñ M5Hu

51 −t1 − t3 a1 − ca4a6a8 − ca4a5a9 η − 2c1 − χ̃ −Ñ M51

52 −t1 − t4 a1 − ca5a6a7 − ca4a5a9 η − 2c1 − χ̃ −Ñ M52

53 −t1 − t5 a1 − ca5a6a7 − ca4a6a8 η − 2c1 − χ̃ −Ñ M53

54 −t3 − t4 a5a7 + a4a8 −c1+χ7+χ8 N7+N8 M54

55 −t3 − t5 a6a7 + a4a9 −c1+χ7+χ9 N7+N9 M55

56 −t4 − t5 a6a8 + a5a9 −c1+χ8+χ9 N8+N9 M56

10M t1 a1 η − 2c1 − χ̃ −Ñ − (M51 +M52+M53)

102 t3 a4 −c1 + χ7 N7 M102

103 t4 a5 −c1 + χ8 N8 M103

104 t5 a6 −c1 + χ9 N9 M104

Table 3. Table showing curves and flux restrictions for 2 + 1 + 1 + 1 splitting. We have defined

Ñ = N7 + N8 + N9.

given by an integer N we have the spectrum [1–4, 11, 24]6

n(3,1)−1/3
− n(3̄,1)+1/3

= M5 ,

n(1,2)+1/2
− n(1,2)−1/2

= M5 + N , (2.22)

for the 5-matter curves and

n(3,2)+1/6
− n(3̄,2)−1/6

= M10 ,

n(3̄,1)−2/3
− n(3,1)+2/3

= M10 − N ,

n(1,1)+1
− n(1,1)−1

= M10 + N , (2.23)

for the 10-matter curves.

Since the U(1) fluxes are turned on along the world-volume of branes that are not

restricted to SGUT but rather probe the full geometry of the CY four-fold their determina-

tion requires knowledge of the full compact geometry. Therefore for our purposes we shall

take their restriction to the matter curves as free parameters. This ignores any subtleties

to do with quantisation conditions and other issues that may come up in a global con-

text. We note also that some information on the U(1) flux can be gained in a semi-local

context using the so called universal flux [11, 16] but a complete study requires also non-

universal fluxes which are constructed in a global model. There are some mild restrictions

that can be imposed locally since whatever form the flux takes it restricts to elements in

the same homology class identically. Combining this with the tracelessness condition, i.e.
∑

i FU(1)i
= 0, gives the universal constraint

∑

M10 = −
∑

M5 , (2.24)

6More precisely the flux is specified by fractional line-bundles LY , V10 and V5 (sometimes denoted as V

and ∧
2V respectively) such that M10 = deg

“

L
1/6
Y ⊗ V10

”

, M5 = deg
“

L
−1/3
Y ⊗ V5

”

and N = deg
“

L
5/6
Y

”

.
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which is just anomaly cancellation. Further we also find the relation between M101 and

M51 + M52 + M53 shown in table 3.

The hypercharge flux on the other hand is restricted purely to SGUT and so is more

constrained within a semi-local model. In particular we require that it restricts trivially

to any matter curves on SGUT that are lifted to non-trivial homology classes of the full

CY four-fold. This is of course the requirement that it does not receive a Green-Schwarz

mass [3, 4, 6]. In terms of the introduced homology classes such restriction translates to [8]

FY · c1 = 0 , FY · η = 0 . (2.25)

Therefore for the Z2 monodromy model we have the restrictions as in table 3. In particular,

as pointed out in [8], if the hypercharge restricts non-trivially to any 5-matter curves it must

also restrict non-trivially to a 10-matter curve. This implies that using the hypercharge

flux for doublet-triplet splitting, as suggested in [3], implies that some non-GUT exotics

appear. Note also that the sum over the hypercharge flux for each type of matter curve

vanishes which means that the hypercharge flux induces no net chirality overall.

The flux restrictions in table 3 are the required data to begin model building. This

essentially amounts to picking Ms and Ns freely and studying the resulting phenomenology.

This is the subject of sections 4 and 5 but before proceeding we perform a similar analysis

for the other possible factorisations.

2.3 Matter curves for a 2 + 2 + 1 splitting

Since in the previous section we studied the factorisation in detail in the next two sections

we briefly state the results without repeating the discussions of the calculations. In the

2 + 2 + 1 case we have the spectral cover splitting as

C10 =
(

a1v
2 + a2vu + a3u

2
) (

a4v
2 + a5vu + a6u

2
)

(a7v + a8u) . (2.26)

The bi are given by

b0 = a368 ,

b1 = a367 + a358 + a268 ,

b2 = a357 + a267 + a348 + a258 + a168 ,

b3 = a347 + a257 + a167 + a248 + a158 ,

b4 = a247 + a157 + a148 ,

b5 = a147 . (2.27)

This then implies that the aI transform as shown in table 4. We solve the b1 = 0 constraint

by the following ansatz7

a2 = −c (a6a7 + a5a8) ,

a3 = c a6a8 , (2.28)

7There is an equivalent possibility taking a2 ↔ a5 and a3 ↔ a6 which just amounts to relabeling.
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section c1(Bundle)

a1 −2c1 + χ1

a2 −c1 + χ1

a3 χ1

a4 −2c1 + χ2

a5 −c1 + χ2

a6 χ2

a7 η − c1 − χ1 − χ2

a8 η − χ1 − χ2

Table 4. Table showing the first Chern classes of the line bundles that the aI are sections of for

the factorisation 2 + 2 + 1.

Matter Charge Equation Homology NY MU(1)

5Hu −2t1 a6a7 + a5a8 η − c1 − χ1 −N1 M5Hu

51 −t1−t3
a2
1 − a1a5a7c − 2a1a4a8c

+a4a6a
2
7c

2+a4a5a7a8c
2+a2

4a
2
8c

2 −4c1 + 2χ1 2N1 M51

52 −t1−t5 a1 − a5a7c −2c1 + χ1 N1 M52

53 −t3−t5 a6a
2
7 + a5a7a8 + a4a

2
8 2η−2c1−2χ1−χ2 −2N1−N2 M53

54 −2t3 a5 −c1 + χ2 N2 M54

10M t1 a1 −2c1 + χ1 N1 − (M51+M52)

102 t3 a4 −2c1 + χ2 N2 M102

103 t5 a7 η − c1 − χ1 − χ2 −N1−N2 M103

Table 5. Table showing curves for 2 + 2 + 1 splitting.

where c is some unspecified holomorphic section in the homology class

[c] = −η + 2χ1 . (2.29)

With this choice we find

b0 = a2
6a

2
8c ,

b1 = 0 ,

b2 = a1a6a8 + c
(

−a2
6a

2
7 − a5a6a7a8 − a2

5a
2
8 + a4a6a

2
8

)

,

b3 = a1a6a7 + a1a5a8 − c
(

a5a6a
2
7 + a2

5a7a8 + a4a5a
2
8

)

,

b4 = a1a5a7 + a1a4a8 − c
(

a4a6a
2
7 + a4a5a7a8

)

,

b5 = a1a4a7 . (2.30)

This does not lead to any non-Kodaira singularities. The P5 polynomial decomposes into

the product of the polynomials given in table 5 where also the relevant data is summarised.

2.4 Matter curves for a 3 + 1 + 1 splitting

In this case we have the spectral cover splitting as

C10 =
(

a1v
3 + a2v

2u + a3vu2 + a4u
3
)

(a5v + a6u) (a7v + a8u) . (2.31)
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section c1(Bundle)

a1 η − 3c1 − (χ1 + χ2)

a2 η − 2c1 − (χ1 + χ2)

a3 η − c1 − (χ1 + χ2)

a4 η − (χ1 + χ2)

a5 −c1 + χ1

a6 χ1

a7 −c1 + χ2

a8 χ2

Table 6. Table showing the first Chern classes of the line bundles that the aI are sections of for

the factorisation 3 + 1 + 1.

The bi are given by

b0 = a468 ,

b1 = a467 + a458 + a368 ,

b2 = a457 + a367 + a358 + a268 ,

b3 = a357 + a267 + a258 + a168 ,

b4 = a257 + a167 + a158 ,

b5 = a157 . (2.32)

This then implies that the aI transform as shown in table 6. We solve the b1 = 0 constraint

by the following ansatz

a3 = −c (a6a7 + a5a8) ,

a4 = c a6a8 , (2.33)

where c is some unspecified holomorphic section in the homology class

[c] = η − 2 (χ1 + χ2) . (2.34)

With this choice we find

b0 = a2
6a

2
8c ,

b1 = 0 ,

b2 = a2a6a8 − c
(

a2
6a

2
7 + a5a6a7a8 + a2

5a
2
8

)

,

b3 = a1a6a8 + a2a5a8 + a2a6a7 − c
(

a5a6a
2
7 + a2

5a7a8

)

,

b4 = a2a5a7 + a1a6a7 + a1a5a8 ,

b5 = a1a5a7 ,

(2.35)

This does not lead to any non-Kodaira singularities. The P5 polynomial decomposes into

the product of the polynomials given in table 7 where also the relevant data is summarised.
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Matter Charge Equation Homology NY MU(1)

5Hu −2t1 a2a6a7 + a2a5a8 + a1a6a8 η − 3c1 0 M5Hu

51 −t1 − t4 a2a5 + a1a6 − a2
5a7c η − 3c1 − χ2 −N2 M51

52 −t1 − t5 a2a7 + a1a8 − a5a
2
7c η − 3c1 − χ1 −N1 M52

53 −t4 − t5 a6a7 + a5a8 −c1 + χ1 + χ2 N1 + N2 M53

10M t1 a1 η − 3c1 − χ1 − χ2 −N1 − N2 M10M

102 t4 a5 −c1 + χ1 N1 M102

103 t5 a7 −c1 + χ2 N2 M103

Table 7. Table showing curves for 3 + 1 + 1 splitting.

3 Phenomenological constraints

In this section we discuss in general terms the key phenomenological aspects of the models.

In particular the tension between lifting the exotics and preventing proton decay.

3.1 The exotics mass and proton decay

It was shown in [8] that the use of hypercharge flux for doublet-triplet splitting typically

induces exotics that are not in complete GUT multiplets. The more precise statement is

that if one imposes a global E8 structure over all of S, such that any singularity enhance-

ments are associated to this global E8, then exotics are always induced by hypercharge

flux. This includes all models with heterotic duals. In general it may be possible to avoid

this in models where there are enhancements not associated to a single global E8 but such

models are not of the semi-local type studied in this paper. Note further that the existence

of a global E8 is not implied by the existence of a point of E8 enhancement as studied

in [10, 12]. An important fact is that because the hypercharge flux is required to be trivial

in homology in order to not gain a Green-Schwarz mass [3, 4, 6] it does not induce any

net chirality with respect to the GUT gauge group. This means that the exotics always

come in vector pair representations. However they are still forbidden from obtaining a

mass by the extra U(1) symmetries inherited from the E8 structure. The exotics do have

renormalisable couplings to GUT singlets which can be used to give them a mass through

a vacuum expectation value. So the mass terms for the exotics take the form

W ⊃ XRR̄ , (3.1)

where X denotes a GUT singlet, R denotes a SM component of a GUT representation

with R̄ its conjugate.8 The problem with this is that the singlets vev spontaneously break

8It may be that we have multiple matter generations on one curve and so we should consider whether all

of them can be lifted by such an interaction. For example consider the curve holding the R representation to

hold I generations and that of R̄ to hold J with J < I . Then if the mass matrix takes the most general form

we expect that by chirality J vector pairs of fields are lifted by such an interaction leaving I − J massless

modes. This means that, for example, if on a curve holding 3 SM generations also there is an exotic then

we count this as 1 exotic field and given a mass interaction with a curve holding a single generation of the

chiral conjugate representation we take the exotic to be lifted. More precisely what would happen is that

the remaining 3 massless modes will be linear combinations of all 4 generations on the SM curve. There

is a subtlety to do with whether the mass matrix does take the most general form. The reason is that
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some of the U(1) symmetries. Indeed generically they should break them quite strongly

since in order to retain gauge coupling unification the exotics should have a large mass.

Non-generically it is possible to only break them slightly if the exotics act as complete

GUT multiplets in the beta functions since then gauge coupling unification is unaltered

at 1-loop. Breaking the U(1) symmetries implies that we should re-examine whether they

can be used to solve some of the problems of GUT theories which we now turn to.

Constraints on proton decay operators. A famous problem with minimal SU(5)

GUT theories is that they predict heavy Higgs triplets and such triplets can mediate proton

decay which is very constrained. Since we are working with non-minimal GUT theories it is

worth recalling first what the constraints are directly on proton decay operators. There are

two types of proton decay operators of dimensions 4 and 5 (we do not consider dimension

6 proton decay)

λ5̄M 5̄M10M , W10M10M10M 5̄M . (3.2)

Here the subscript M refers to the curve on which the matter representations are localised

which means any generation. The dimension 4 operator is constrained for any generation

indices to be λijk < 10−5 [38]. The dimension 5 operator is less clear. Studies of constraints

on such operators were done in [39–42]. There the limit on the particular generation

structure was given as W112l < 10−10

MGUT
. Here subscript 1 refers to the lightest generation and

l refers to either of the two light leptons. With updated proton decay lifetime constraints,

which have prolonged the lifetime by around 103 we expect this limit to be increased by

101 − 102 so that as a crude estimate

W112l <
10−11

MGUT
. (3.3)

We have used the suppression scale of MGUT which follows from the results of [43] which

show that the correct suppression scale should be the ‘winding’ scale MsV1/6, where V is

the B6 or CY 3-fold volume, and Ms is the string scale. This is combined with the results

of [44–46] which show that this is also the unification scale for a local model.

The constraint (3.3) is very strong. Within an F-theory context the question is can

it be weakened through factors coming from Yukawa couplings for example. In a minimal

SU(5) GUT context the operator is induced through the heavy Higgs triplets. In that

case there is a strong suppression due to Yukawa couplings which relaxes somewhat the

constraint (3.3). In the case of F-theory models where all the generations come from a single

matter curve it is not clear what the suppression is in going to the lighter generations since

it relies on evaluating KK mode wavefunction overlaps. We return to this later in the

section. Possible suppression can occur by separating the matter curves so that there is a

geometric wavefunction suppression [50] though this does not apply to models based on a

there may be local U(1) symmetries that prevent the interactions as occurs for Yukawa couplings where, in

the absence of non-commutative deformations, the matrix is exactly rank 1 [33–36]. However in the case

where the singlet is participating, since its wavefunction is not localised on S, such a cancellation seems

less likely [9]. We leave a more through study of this effect for future work and for now assume that the

mass matrix is general enough for exotics to be lifted unless protected by chirality.
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point of E8 enhancement and is also limited by the finite size of S. See also [51] for studies

of suppressing proton decay in F-theory by raising the unification scale.

In the case where the generations come from 3 different matter curves the U(1) charges

can be used to suppress the dimension 5 proton decay operator for lighter generations. In

this case it is also possible to calculate this suppression since it is given exactly by the

CKM matrix. Requiring a realistic CKM matrix implies that for the 10 matter the top

generation is suppressed compared to the charm generation by a factor of ǫ2 and the top

generation is suppressed compared to the up generation by a factor of ǫ3 where ǫ is the

Wolfenstein parameter ǫ ∼ 0.2. In the lepton sector a suppression factor in going from a τ

to a µ gives an extra factor of ǫ2. This implies that for a dimension 5 operator involving

only the heaviest generations we expect a suppression of ǫ10 ∼ 10−7. Therefore we estimate

that Wijkl < 10−4

MGUT
for any generations. This seems a little strong compared with minimal

SU(5) models which are usually a couple of orders of magnitude weaker. However these

are usually evaluated at very small tanβ while in F-theory GUTs since the bottom Yukawa

appears on the same footing as the top Yukawas we expect large tanβ.9 There are other

factors present and we refer to [47–49] for more discussions.

Inducing proton decay operators. The low energy effective theory in a semi-local

model comes from an 8-dimensional E8 gauge theory. The theory is then compactified

and Higgsed to obtain a 4-dimensional GUT theory. This means that from the cubic

interaction term of the 8-dimensional theory we obtain in the 4-dimensional theory the

following superpotential interactions

W ⊃ 51010 + 5̄5̄10 + X55̄ + X101̄0 + XXX . (3.4)

The massless modes that participate in these interactions can be rendered chiral by an

appropriate U(1) flux. On top of these we also have a tower of KK modes with the same

gauge charges but which are non chiral and have a mass coming from the profile in the

internal directions. We can model these by adding an effective superpotential operator

W ⊃ M5KK 5̄KK + M10KK1̄0
KK

, (3.5)

here M is a mass parameter which we come back to in more detail at the end of this section

but for now it is sufficient to note it is of order MGUT. We also need to add KK versions

of the operators in (3.4) where each field may be taken with a KK index.

The operators of (3.4) and (3.5) all come from the interaction in the 8-dimensional

theory

W 8D ⊃ Φc∂̄AΦ , (3.6)

where Φ and Φc denote (different) 8-dimensional fields. The field Φ is composed of a

massless mode Φ0 and massive modes Φi

Φ = Φ0 +
∑

i

Φi , ∂̄AΦ0 = 0 , ∂̄AΦi = MiΦ
i . (3.7)

The KK masses are apparent, while the cubic interactions are given by fluctuations in A.

9Note that the amplitude goes like (tanβ)2 and so going from small to large tanβ can give an enhancement

of 102
− 103.
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Finally we also have potential masses for the zero modes coming from vevs for E8

singlets such as moduli. The vev for such singlets is not determined but we expect it to be

around the GUT scale. Therefore if a mass term is gauge invariant under the full E8 we

assume it is present and large

W ⊃ 〈φ〉55̄ + 〈φ〉101̄0 , (3.8)

where φ denotes a generic E8 singlet.

It is important to note that not all the parameters of (3.4) and (3.8) must be present

with order 1 coefficients. Each interaction is multiplied by an integral over the internal

dimensions and so may be suppressed or even forbidden if an appropriate geometric sym-

metry is present.

In minimal GUTs proton decay operators are induced by integrating out the Higgs

triplets in the 5 representations. However this assumes a coupling between the heavy

triplets. In F-theory models there are two possible approaches to higher dimension oper-

ators. The first is to allow all possible operators unless constrained by some symmetries

of the theory. This accounts for the presence of heavy string modes that might not be

accounted for by the renormalisable couplings of the low energy effective theory. The sec-

ond approach is to consider a higher dimension operator present only if it is induced from

renormalisable couplings by integrating out heavy modes that are present in the theory.

We label the first approach stringy and the latter field theoretic.

The field theoretic approach to higher dimension operators. To see how operators

are induced in this approach it is useful to consider an example model. We take the model

of [11] which is based on a 3+2 monodromy group. The matter content of the model is

shown in table 8. Table 8 is split into 4 sections. The first shows the curves, their charges,

flux restrictions and matter content. The second section shows the GUT singlets and

whether they develop a vev or not. The third section shows which exotics are lifted by the

appropriate vev. The last section shows if some of the dangerous operators are induced by

the singlet vev. We see that a dimension 5 proton decay operator is induced by the singlet

vev. It arises from integrating out the KK states in the interactions

W ⊃ X15
KK
M 5̄KK

Hd
+ 5̄KK

Hd
5̄M10M + 5KK

Hu
10M10M + X15̄

KK
Hu

5KK
Hd

, (3.9)

where here and henceforth we drop the dimensionful masses M and also the KK

masses M55̄.

It is important to note that since the Yukawa type interactions involve the KK states,

for the case where all the generations come from a single curve they do not behave like the

Yukawa couplings. This is because the KK wavefunctions are not holomorphic and so the

mechanism proposed in [33] for the Yukawa couplings is altered. This could mean that the

proton decay operator for heavier generations is not as strongly suppressed compared to

the lighter ones as would be the case if the Yukawa couplings were used, though we leave

a more thorough study for future work.

The constraints on proton decay therefore imply the vev ǫ1 can not be too large. This

in turn implies the exotics can not obtain a large mass and so can affect strongly gauge
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Field Curve NY MU(1) Exotics

5Hu −2t2 +1 0

5̄Hd
t1 + t2 -1 0

5̄M 2t1 0 -3

10M t2 +1 +4 (3, 2)+1/6 + 2 × (1, 1)+1

1̄02 −t1 -1 -1 (3̄, 2)−1/6 + 2 × (1, 1)−1

Singlet Curve vev

X1 t1 − t2 ǫ1

N −t1 + t2 Right-handed neutrino

Induced mass Exotics lifted

ǫ110M 1̄02 (3̄, 2)−1/6(3, 2)+1/6 + 2 × (1, 1)−1(1, 1)+1

Operator Charges Super/Kahler potential Induced?

10M10M10M 5̄M 2t1 + 3t2 W ǫ110M10M10M 5̄M

5̄M 5̄M10M 4t1 + t2 W

5Hu 5̄Hd
t1 − t2 W

5Hu 5̄M 2t1 − 2t2 W

Table 8. Table showing flux restrictions, induced exotics, singlet vevs and induced operators for a

model based on a 3 + 2 splitting [11].

coupling unification. However a definite statement on how large ǫ1 can be is difficult to

make given the model dependent parameters.

It is worth recalling some facts about gauge coupling unification for the MSSM. See [53]

for a review. At 1-loop the couplings unify to around 0.5 percent accuracy. However at 2-

loops threshold effects at the TEV scale induce corrections which in turn must be canceled

by threshold effects at the GUT scale. These latter effects must be of the order of around

3 percent. Therefore when the exotics are included we require that the gauge couplings

unify to around 3 percent at 1-loop to be compatible with MSSM unification. We do not

consider the effects of the exotics at 2-loops.

With this in mind we can return to the exotics and note that if we place the exotics

spectrum of table 8 at a scale 2× 1012GEV the gauge couplings read at the GUT scale, at

1-loop, α−1
1 = 20.5, α−1

2 = 19.9 and α−1
3 = 21.2, which unifies to an accuracy of 6 percent.

If we take them down to 2 × 1010GEV unification is at 12 percent.

A possible way out of this tension is to consider additional U(1) symmetries and

attempt to lift all the exotics while still preventing proton decay. This is the main theme

of this paper.

The stringy approach to higher dimension operators. Before proceeding we return

to the alternative approach to higher dimension operators which is to allow for them unless

forbidden by symmetries. Here there is not much to say and the preceding analysis is not

required. However there is a subtlety to this approach concerning inverse powers of fields.

Once the singlets gain a vev in this approach we should write down all operators that

involve positive powers of the vevs and are gauge invariant. However this misses out on
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the possibility that a vev appears with an inverse power and so an opposite U(1) charge.

This can occur if the singlet vev gives a mass to an otherwise massless field as is the case

with the lifted exotics. Integrating out this field can induce operators with inverse powers

of the vevs. The divergence as the vev goes to zero simply signals having integrated out

a massless field. In these cases since the integrated out fields must be massless before the

singlet vev the field theoretic approach of only allowing such an operator if it comes from

integrating out a field/operator already present in the theory is the correct one. We give

more explicit examples of this in the model building sections.

To summarise, in the stringy approach, we allow for any operators with positive powers

of the singlet vevs that are not forbidden by symmetries to be present but only allow for

operators involving negative powers of singlet vevs if we can identify the corresponding

mode and operators that are integrated out.

Exotics and multiple U(1) models. In section 2 we calculated how the hypercharge

flux restricts to the matter curves for monodromy groups which allow multiple U(1) sym-

metries. We can use this to make some general statements about the possibility of lifting

all the exotics while preserving a U(1) symmetry to protect against proton decay. First we

note that given that the Yukawa couplings must be neutral under all U(1)s the charge of the

dimension 5 proton decay operator is opposite to that of the µ-term. Therefore the sym-

metry which forbids proton decay should be a Pecci-Quinn symmetry in that at least one

of the Higgs curves must be charged under it. Next we note the following property of the

hypercharge restriction to the curves: given a ti factor, say t1, if we sum the hypercharge

restriction over all the 5 curves weighted by their charge under t1 this is equal to minus

the sum over the 10 curves weighted by the same t1 charge.10 This means that to have

no exotics charged under a symmetry we require that the sum over the 5 curves weighted

by the charges under that symmetry vanishes. This in turn implies that the Higgs curves

can not be charged under that symmetry since either they have non-trivial hypercharge

restrictions in which case there must be exotics on one of the other curves charged under

that symmetry, or there is vanishing hypercharge restriction to the Higgs curves in which

case there are triplet exotics on the curves which are charged under the symmetry. Hence

such a conserved symmetry can not be a PQ symmetry.

Practically we seem to find that the above conclusion indeed holds and there are no

models in which all the exotics are lifted and a U(1) remains unbroken to protect against

proton decay. The fact that the U(1)s are broken is a necessary but not sufficient condition

for a model to induce proton decay operators. However practically we find that in all the

models we could construct, if we allow for all the interactions allowed by the U(1) charges

selection rules, proton decay operators are always induced.11,12 As a result our models have

10This corresponds to the sum of the hypercharge flux vanishing on each factor of the spectral cover.
11In all the models where the generations come from a single matter curve the proton decay operators

are forbidden by the U(1) charges as long as only positive powers of singlet vevs are allowed. However we

find that integrating out the exotics always generates proton decay operators with inverse powers of singlet

vevs.
12Some of the models we find offer the possibility of avoiding proton decay by simply taking the exotics

to be very light. It turns out that this still maintains gauge coupling unification because of the particular
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to utilise some extra selection rule which we choose to be an R-parity imposed by hand on

the curves. It is important to emphasise that it may be possible to utilise some other selec-

tion rules which could follow from, for example, geometric separation of the matter curves.

Physical and holomorphic exotics mass. Here we discuss a small subtlety to do with

physical versus holomorphic operators. The suppression scales discussed are for physical

operators meaning that the fields have canonical kinetic terms. Also the masses of the

exotics should be canonically normalised. We now briefly show that the naive intuition is

correct at least with respect to scaling with the overall CY base volume. In the superpo-

tential the higher dimension operators can only be suppressed by the Planck scale since the

string scale can not appear due to holomorphy which means that for dimension 5 proton

decay operator induced by a singlet vev we have the physical suppression [43]

Lphys =

(

< X >√
ZXMp

)

1010105

Z2
MMpe−K/2

≡ ǫX
1010105

MGUT
. (3.10)

Here K is the closed string Kahler potential which has a factor of −2 ln V. ZX is the kinetic

normalisation factor of the singlet field which is not important as long as the vev is a free

parameter, i.e. all the physics will concern ǫX . ZM is the matter kinetic normalisation

which goes as ZM ∼ V−2/3 [52]. Now consider the mass term for the exotics

Lphys = ǫX
eK/2Mp101̄0

ZM
= ǫXMGUT101̄0 . (3.11)

Hence we see that indeed the singlet vev sets the mass for the exotics with respect to the

GUT scale.

3.2 R-parity

As discussed above, in all our models we find that the U(1) symmetries are not sufficient

to forbid dimension 5 proton decay. We have to forbid these by hand and the primary

motivation is the possibility of extra discrete symmetries. The leading candidate is (an

extended version of) R-parity (or matter parity) where the Higgs fields are assigned positive

parity and the matter fields are assigned negative parity. The GUT singlets and curves

holding exotic fields can assigned positive or negative parity.

The R-parity assignment has different meaning according to whether we are adopting

the field theoretic or stringy approach to higher dimensional operators as in section 3.1. In

the stringy approach the R-parity is assigned to only the massless modes and all operators

involving the massless modes that are allowed by the U(1) symmetries and R-parity are

induced. This is the mild version of R-parity.

In the field theoretic approach R-parity is assigned to a curve and also the high mass

KK (and string) modes on that curve have that R-parity charge. This implies that a higher

exotics spectrum that is induced (see section 4.1 for example). However we find that the models which

allow for this possibility also require an extra selection principle to avoid an operator of the form 5Hu 5̄M

which leads to large neutrino masses.
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dimensional operator that is allowed by R-parity could still not be present if the renormal-

isable operators that generate it once the KK modes are integrated out are forbidden by

R-parity. This latter use is a strong version of R-parity.

Indeed it is possible to show that in this approach an R-parity assignment where all

the non singlet curves apart from the Higgs curves are assigned negative charge and all

the singlet curves are assigned positive charge, when combined with the U(1) symmetries,

always forbids proton decay as long as the only operators present are those discussed in

section 3.1. To see this note that since all the exotics are assigned negative R-parity the

only possible cubic couplings involving matter curves are of the type

W ⊃ 5̃Hd
5̄10 + 5̃Hu1010 . (3.12)

Here 5̃Hu can be either 5Hu or 5KK
Hu

and the 5 and 10 without an H subscript denote

curves holding either MSSM matter or exotic matter. R-parity by itself also allows for

operators such as 5KK
Hd

1010 but these are not allowed by the U(1) symmetries since Hu

and Hd must have different charges. Proton decay must be induced starting from these

operators and integrating out other heavy states. However the net coupling at the end

must couple 5̃Hd
5̃Hu . Such a coupling can only be induced by integrating out heavy states

starting from the operators

W ⊃ X5̃Hd
5 + X5̃Hu 5̄ , (3.13)

where X stand for some GUT singlets. Note that the vector partner in each coupling can

not be a Higgs curve as long as a µ-term is forbidden by the U(1) symmetries. Then we see

that the terms (3.13) are forbidden by R-parity. Hence we conclude that such an R-parity

forbids proton decay operators. This result can be applied to any models where the Higgs

curves do not have any massless exotics. In other cases the coupling needs to be studied

on a case-by-case basis using the U(1) symmetries.

Having discussed the benefits of the introduced R-parity it is important to emphasise

that the origin of such a symmetry is not clear and would also require a global completion

to realise. For these reasons we regard the introduction of this symmetry as the weakest

phenomenological aspect of the models presented. We refer to [29] for some initial attempts

at finding such a symmetry within an F-theory context.

Finally we note that this symmetry could be replaced by some other selection principle

such as a geometric separation of curves leading to wavefunction overlap suppression of

some operators.

3.3 Neutrinos

The neutrino sector is quite model dependent. However there are some general comments

that can still be made. Recall that there are two phenomenologically appealing neutrino

scenarios studied in F-theory GUTs: the Dirac and Majorana scenarios [9, 54]. In the

case of a Dirac scenario superpotential Dirac and Majorana masses are forbidden while the

Neutrinos obtain a Dirac mass from the Kahler potential. In the Majorana scenario there

are both Dirac and Majorana neutrino masses in the superpotential.
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We find realisations of the Dirac scenario in most of the models. However there is a

tension with the µ-term generation through the Giudice-Masiero mechanism. The problem

is that we find that giving an F-term to an appropriate singlet to generate an µ-term

also implies that Majorana masses are generated for the right-handed neutrinos through

operators in the Kahler potential which are generically at the TEV scale. Since in the

Dirac scenario the neutrinos already have eV scale masses the extra suppressions from

the Majorana masses makes them too light. We refer to section 4.1 for explicit examples

of these issues (and where we also present a resolution to this problem by making the

exotics very light).

The Majorana scenario can also be realised. There are two possibilities for right-handed

neutrino candidates. The first is for them to be singlets under not only the GUT group

but also the extra U(1)s [9]. Then a Majorana mass is naturally expected. However there

is then the following problem: a superpotential Dirac mass 5Hu 5̄MN implies that also the

R-parity violating term 5Hu 5̄M is allowed which in turn must be forbidden by hand. The

case where the right-handed neutrinos are taken completely neutral is not model dependent

in that it can work for any model and so we have nothing new to say on the matter and

do not consider this option in any further detail. There is another Majorana option, which

is the one we explicitly realise, which is to take the right-handed neutrinos to be GUT

singlets but charged under the U(1)s. The Majorana mass can then be generated once

some singlets develop a vev [12].

With both neutrino scenarios we find that there is a always a linear term induced by

the singlet vevs. This requires the use of an additional R-parity assignment to forbid.

Finally we note that for the single U(1) model the neutrino scenario is problematic

since there is no superpotential Dirac mass which means only the Kahler potential Dirac

scenario is available. However the singlet also induces a Majorana mass ǫ2
1NN which

suppresses the neutrino masses too much.

4 Single curve models

In this section we present some models, based on the setup where all 3 of the SM generations

come from a single matter curve. We allow ourselves to choose freely the flux restriction M

and N parameters in tables 3), (5 and 7. With these specified the spectrum is determined.

The operators are then determined by the U(1) symmetries and by an imposed R-parity

assignment. We study the resulting phenomenology and the relation to the constraints

discussed in section 3. In all the models we only use the mild version of R-parity which is

just imposed on the massless modes (see section 3.2). Models where the strong version of

R-parity is used and where automatically proton decay is therefore forbidden are studied

in the appendix.

4.1 Models from 2 + 1 + 1 + 1 factorisation

The model building for this monodromy splitting amounts to assigning the appropriate

curves to each matter representation and specifying the flux parameters in table 3. Further
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we can give a vev to the available charged singlets which for this monodromy are (for the

full orbits see [12])

11 : ± (t1 − t3) ,

12 : ± (t1 − t4) ,

13 : ± (t1 − t5) ,

14 : ± (t3 − t4) ,

15 : ± (t3 − t5) ,

16 : ± (t4 − t5) . (4.1)

The curves for the up Higgs and 10 matter representations are fixed to be

5Hu = −2t1 ,

10M = t1 . (4.2)

Note that we have identified t1 ↔ t2 and denoted both as t1, a notation that we use hence-

forth. Next we specify the Higgs down curve. There are two choices for this curve: either

it involves t1 or it does not. The former case allows for the Giudice-Masiero interaction

X†5Hu 5̄Hd
in the Kahler potential while the latter case does not. However, the former

choice also implies that proton decay operators are generated by the singlets that are re-

quired to obtain a vev to lift the exotics. We give an example in the appendix. Therefore

we choose the down Higgs curve to not have a t1 factor which without loss of generality

implies

5̄Hd
= t3 + t5 . (4.3)

The Giudice-Masiero operator will in turn be generated once the singlet vevs are accounted

for. Given this choice the 5-matter curve is determined by the requirement of a renormal-

isable bottom Yukawa to be

5̄M = t1 + t4 . (4.4)

We note that phenomenologically it is not unreasonable to induce the bottom Yukawa

coupling through a non-renormalisable operator involving a singlet vev since the bottom

quark is much lighter than the top. However we find that in our models the appropriate

singlet also led to a µ term being generated once combined with the other singlets that

develop a vev. Therefore we avoid this option.

With the appropriate curves specified it remains to specify the restriction of the fluxes.

The first requirement is to induce doublet-triplet splitting on the Higgs curves. This can be

achieved in two ways. The first well-known way is by having a non-trivial restriction of the

hypercharge flux to the Higgs curves [3]. There is a second possibility which is to induce

doublet-triplet splitting on some other 5-matter curve such that the Higgs triplets can pair

up with the exotic triplets and gain a mass once the appropriate GUT singlets develop a vev.

We find that the latter method leads to more phenomenologically attractive models and

so we study this in this section. Models of the former type are discussed in the appendix.

The model is based on a 2 + 1 + 1 + 1 monodromy group and is shown in table 9. It

has hypercharge flux choices N7 = −1, N8 = +1, N9 = 0.
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Field Curve NY MU(1) Exotics R-parity

5Hu −2t1 0 +1 (3, 1)−1/3 +

5̄Hd
t3 + t5 -1 0 +

5̄M t1 + t4 0 -3 -

51 −t1 − t3 0 0

5̄3 t1 + t5 0 0

54 −t3 − t4 0 0

5̄6 t4 + t5 +1 -1 (3̄, 1)+1/3 -

10M t1 0 +3 -

1̄02 −t3 -1 -1 (3̄, 2)−1/6 + 2 × (1, 1)−1 -

103 t4 +1 +1 (3, 2)+1/6 + 2 × (1, 1)+1 -

104 t5 0 0

Singlet Curve vev F-term R-parity

X1 t1 − t4 ǫ1 +

X2 t1 − t5 ǫ2 -

X3 t3 − t1 ǫ3 〈F3〉 +

X4 t3 − t5 ǫ1 +

Induced mass Exotics lifted R-parity

ǫ15Hu 5̄M -

ǫ1ǫ25Hu 5̄6 (3, 1)−1/3(3̄, 1)+1/3 +

ǫ1ǫ31031̄02 (3̄, 2)−1/6(3, 2)+1/6 + 2 × (1, 1)−1(1, 1)+1 +

ǫ310M 1̄02 +

Operator Charges Super/Kahler potential U(1) Neutrality R-parity

5Hu 5̄Hd
−2t1 + t3 + t5 W +

5̄M 5̄M10M 3t1 + 2t4 W -

10M10M10M 5̄M 4t1 + t4 W +

5Hu 5̄M −t1 + t4 W ǫ15Hu 5̄M -
˙

F †
¸

5Hu 5̄Hd
−2t1 + t3 + t5 K ǫ3ǫ4

D

F †
3

E

5Hu 5̄Hd
+

Table 9. Table showing flux restrictions, induced exotics, singlet vevs and induced operators with

positive powers of singlet insertions for a model based on a 2 + 1 + 1 + 1 splitting.

Table 9 is split into 4 sections. The first lists the matter curve assignments, the

flux restrictions, the exotics spectrum and the assigned R-parity charges. The second

section lists the GUT singlets that have a vev, possible F-terms and the assigned R-parity

charges. The third section shows the induced mass for the exotics and which exotics are

lifted by which singlet vevs. The final column shows the R-parity charge of the full mass

operator. The fourth section shows whether other important operators are allowed by the

U(1) symmetries with only positive powers of singlet insertions and by R-parity.

Consider first gauge coupling unification. If we give the singlets vevs ǫ1ǫ2 = ǫ1ǫ3 =

2 × 1015GEV the gauge couplings at the GUT scale read α−1
1 = 23.2, α−1

2 = 23.2 and

α−1
3 = 23.1. This is equivalent to 1-loop MSSM unification. The reason for this is that

although the exotics do not form complete GUT representations as far as the beta functions

are concerned they act as a complete vector pair of 10 representations

[10]=
[

(3, 2)+1/6 + (3̄, 1)−2/3 + (1, 1)+1

]

∼
[

(3, 2)+1/6 + (3̄, 1)+1/3 + 2 × (1, 1)+1

]

. (4.5)

Indeed this means that they can be taken all the way down to the TeV scale by taking

ǫ1ǫ2 ∼ ǫ3 ∼ 10−13 which still gives α−1
1 = 10.0, α−1

2 = 10.0 and α−1
3 = 9.9 at the GUT

scale. We find that such combinations of exotics arise frequently in the models.
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Consider now proton decay. As is shown in last section of table 9 proton decay op-

erators are forbidden with only positive powers of singlet insertions by the U(1) charges.

However let us forget about the R-parity assignments and consider the following operators

allowed simply by the U(1) symmetries

W ⊃ ǫ15Hu 5̄M + ǫ1ǫ25Hu 5̄6 + ǫ1ǫ35̄65̄M10M . (4.6)

If we integrate out the exotic pair on 5Hu and 5̄6 we generate the effective proton decay

operator

W ⊃
(

ǫ1ǫ3

ǫ2

)

5̄M 5̄M10M . (4.7)

The pole indicates that as ǫ2 → 0 the exotics become massless. Another way to think of

this operator is to realise that the massless mode in (4.6) is a mixture of 5̄M and 5̄6 which

then induces proton decay from the final term in (4.6). Similar physics occurs by mixing in

the 10 representations. Once we impose R-parity however the first and last terms in (4.6)

are absent and no such operator is generated. It is important to note that the mild version

of R-parity (see section 3.2) which acts only on the massless modes is sufficient for these

purposes. This is so even though the final operator (4.7) is not forbidden by any symmetries

including R-parity. The reason is that the pole in ǫ2 could only have come from the terms

in (4.6) (and similar ones in the 10 sector).

The appropriate R-parity assignments for all the curves are shown in the last column

of table 9. These amount to forbidding mixing between the matter and exotic representa-

tions. They also forbid a direct coupling ǫ1ǫ35̄65̄M10M which would lead to proton decay

mediated by the exotic triplets leading to the dimension 5 operator
(

ǫ3

ǫ2

)

5̄M10M10M10M . (4.8)

Finally we note that they also forbid the dangerous operator ǫ15Hu 5̄M which would lead

to large neutrino masses.

Note that because the exotics spectrum does not affect gauge coupling unification we

can consider the possibility of not forbidding proton decay operators but rather suppressing

them by taking small singlet vevs and light exotics. In this model this can be realised by

taking ǫ1 ∼ ǫ3 ≪ 1. However the operator ǫ15Hu 5̄M would still be too large and would

require some extra selection rule to forbid. Nonetheless forbidding this operator may be

easier to realise than the full R-parity implementation suggested here and so this possibility

remains attractive.

A Giudice-Masiero term in the Kahler potential can lead to a µ-term

K ⊃ ǫ3ǫ4

〈

F †
3

〉

5Hu 5̄Hd
. (4.9)

Note that it is for this operator that ǫ4 must be introduced. A similar term ǫ2

〈

F †
3

〉

5Hu 5̄Hd

also satisfies the U(1) constraints but is forbidden by the R-parity assignments.

We now turn to the neutrinos. A Dirac scenario would involve a right-handed neutrino

choice of N = t3 − t4 (with positive R-parity charge). The factor of +t3 implies that it
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can not appear in the superpotential and so there are no superpotential Dirac or Majorana

masses which allows for the Kahler potential Dirac scenario. Indeed such Dirac mass terms

are obtained through the Kahler potential operator ǫ3ǫ45Hd
5̄MN . However, as discussed

in section 3, in this model and also in the other models considered in this work the Dirac

neutrino scenario, where a neutrino mass is generated through the Higgs F-term in the

Kahler potential as originally proposed in [9, 54], is in tension with the Giudice-Masiero

mechanism. The reason is that the Giudice-Masiero F-term generically induces TeV scale

Majorana masses for the right-handed neutrinos. Explicitly we also have the Kahler poten-

tial operator ǫ2
1ǫ3

〈

F †
3

〉

NN . However in this model because of the exotic spectrum we can

take ǫ1 and ǫ3 very small to suppress these masses which leads to an interesting connection

between the exotics and neutrino masses.

It is also possible to realise a Majorana scenario with charged GUT singlets. For

example taking the right-handed neutrino curve to be N = t4 − t3. The resulting neutrino

masses are given by the operators

ǫ2
1ǫ35Hu 5̄MN + ǫ2

1ǫ
2
3NN , (4.10)

which give the mass scale

Mν ∼ ǫ2
110

−3eV . (4.11)

This mass is quite light though even with a large vev for ǫ1.

4.2 Models from 2 + 2 + 1 factorisation

For this monodromy configuration the available charged singlets are (for the full orbits

see [12])

11 : ± (t1 − t3) ,

12 : ± (t1 − t5) ,

13 : ± (t3 − t5) . (4.12)

There are 4 choices for the 5̄Hd
and 5̄M curves. 3 of these have a factor of +t1 in 5̄Hd

which means that the µ-term can be induced by just one singlet vev. This type of set up

always leads to a µ-term or proton decay once the exotics are lifted by the singlets.13 The

remaining possibility is

5Hu = −2t1 ,

5̄Hd
= 5̄3 = t3 + t5

5̄M = 5̄1 = t1 + t3 . (4.13)

The model is shown in table 10. It has hypercharge flux choices N1 = 0 and N2 = +1.

The gauge coupling unification scenario is the same as that of the model in section 4.1

with equal accuracy to that of the MSSM. The only requirement is that ǫ2
1 ∼ ǫ2.

13We study one of these possibilities in the appendix where although proton decay operators are not

forbidden by the U(1) symmetries they can be forbidden by the strong version of R-parity.
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Field Curve NY MU(1) Exotics R-parity

5Hu −2t1 0 +1 (3, 1)−1/3 +

5̄Hd
t3 + t5 -1 0 +

5̄M t1 + t3 0 -3 -

5̄2 t1 + t5 0 0

5̄4 2t3 +1 -1 (3̄, 1)+1/3 +

10M t1 0 +3 -

102 t3 +1 +1 (3, 2)+1/6 + 2 × (1, 1)+1 +

1̄03 −t5 -1 -1 (3̄, 2)−1/6 + 2 × (1, 1)−1 -

Singlet Curve vev F-term R-parity

X1 t1 − t3 ǫ1 +

X2 −t3 + t5 ǫ2 -

X3 −t1 + t5 ǫ3 〈F3〉 +

Induced mass Exotics lifted R-parity

ǫ15Hu 5̄M -

ǫ215Hu 5̄4 (3, 1)−1/3(3̄, 1)+1/3 +

ǫ21021̄03 (3̄, 2)−1/6(3, 2)+1/6 + 2 × (1, 1)+1(1, 1)−1 +

ǫ1ǫ210M 1̄03 -

ǫ1ǫ31021̄03 -

ǫ21ǫ310M 1̄03 +

Operator Charges Super/Kahler potential U(1) Neutrality R-parity

5Hu 5̄Hd
−2t1 + t3 + t5 W +

5̄M 5̄M10M 3t1 + 2t3 W ǫ35̄M 5̄M10M -

10M10M10M 5̄M 4t1 + t3 W +

5Hu 5̄M −t1 + t3 W ǫ15Hu 5̄M -
˙

F †
¸

5Hu 5̄Hd
−2t1 + t3 + t5 K ǫ1

D

F †
3

E

5Hu 5̄Hd
+

Table 10. Table showing flux restrictions, induced exotics, singlet vevs and induced operators with

positive powers of singlet insertions for a model based on a 2 + 2 + 1 splitting.

The key to understanding proton decay in this model is the singlet vev ǫ3. This singlet

is introduced purely to generate a µ-term through its F-term. Therefore it is possible to

take ǫ3 → 0. In that case we see that proton decay operators with positive powers of singlet

vevs are forbidden by the U(1) symmetries. If we also impose the R-parity assignments we

see there is no mixing between the matter and exotics through the mass operators and so

it is not possible to generate negative powers of the singlet vevs in this way. This means

that dimension 4 proton decay is not possible to induce. Dimension 5 proton decay can

only come from the operator14

(

ǫ2

ǫ2
1

)

5̄M10M10M10M , (4.14)

which is forbidden by the R-parity.

However we can also turn on ǫ3 and still no proton decay is induced. We see that the

dimension 4 proton decay operator in the last section of table 10 is forbidden by R-parity.

14This would be induced directly by integrating out the exotic triplets if the coupling ǫ25̄45̄M10M was

not forbidden by R-parity.
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Also because of R-parity ǫ3 only induces mixing in the 10 sector. This means that it is not

possible to generate proton decay operators with negative powers of ǫ1 since in the limit

ǫ1 → 0 no exotic 10 particles become massless. Now the only possible dimension 5 proton

decay operator must involve at least one positive power of ǫ3 (since we know that as ǫ3 → 0

no proton decay is induced) which gives

(

ǫ3

ǫ1

)

5̄M10M10M10M . (4.15)

Since this has a pole in ǫ1 it can not be induced.

As shown in table 10 a Giudice-Masiero term in the Kahler potential can lead to a

µ-term

K ⊃ ǫ1

〈

F †
3

〉

5Hu 5̄Hd
. (4.16)

We now turn to the neutrino scenarios. Interestingly they can both be realised by

N = t1− t5 according to which R-parity charge it is assigned. If we take N to have positive

R-parity we have the superpotential operators15

W ⊃ ǫ25Hu 5̄MN + ǫ2
3NN , (4.17)

which lead to a standard Majorana scenario. Note that in this case we have the phe-

nomenologically attractive feature that ǫ3 only appears in the neutrino masses and so can

be adjusted to fit phenomenology.

If we take N to have negative R-parity charge and also take ǫ3 → 0 then we have a

Dirac scenario with the neutrino masses coming from the operator

K ⊃ (ǫ1ǫ2)
2 5Hd

5̄MN . (4.18)

Note that as usual if we use the Giudice-Masiero mechanism a Majorana mass is also

induced form the Kahler potential
〈

F †
3

〉

(ǫ1ǫ2)
3 NN which suppresses the neutrino masses

too much.

4.3 Models from 3 + 1 + 1 factorisation

For these models, if the bottom Yukawa coupling comes from a renormalisable operator,

it is possible to show that lifting the exotics always generates a µ-term at the same scale.

To see this note that the 5Hu curve has no hypercharge restriction which means it must

have exotics, which in the minimal case are the Higgs triplets. In order to generate a

renormalisable bottom Yukawa coupling we are forced to take

5Hu = −2t1 ,

5̄Hd
= 5̄1 = t1 + t4

5̄M = 5̄2 = t1 + t5 . (4.19)

This means that since we must forbid the couplings 5Hu 5̄Hd
and 5Hu 5̄M the Higgs

triplet must gain a mass by coupling to a vector partner on the 5̄3 curve. Now

15Note that N = −t1 + t3 with negative R-parity charge also gives a Majorana scenario.
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Field Curve NY MU(1) Exotics R-parity

5Hu −2t1 0 +1 (3, 1)−1/3 +

5̄Hd
t4 + t5 -1 0 +

5̄M t1 + t4 0 -3 -

5̄2 t1 + t5 +1 -1 (3̄, 1)+1/3 -

10M t1 +1 +4 (3, 2)+1/6 + 2 × (1, 1)+1 -

1̄02 −t4 -1 -1 (3̄, 2)−1/6 + 2 × (1, 1)−1 -

103 t5 0 0

Singlet Curve vev F-term R-parity

X1 t1 − t4 ǫ1 +

X2 t1 − t5 ǫ2 +

X3 −t1 + t4 ǫ3 Note: X3 = X†
1 +

X4 t4 − t5 ǫ4 -

Induced mass Exotics lifted R-parity

ǫ1ǫ45Hu 5̄2 (3, 1)−1/3(3̄, 1)+1/3 +

ǫ15Hu 5̄M -

ǫ310M 1̄02 (3̄, 2)−1/6(3, 2)+1/6 + 2 × (1, 1)−1(1, 1)+1 +

Operator Charges Super/Kahler potential U(1) Neutrality R-parity

5̄Hd
5̄M10M 2t1 + 2t4 + t5 W ǫ15̄Hd

5̄M10M +

5Hu 5̄Hd
−2t1 + t4 + t5 W ǫ1ǫ25Hu 5̄Hd

+

5̄M 5̄M10M 3t1 + 2t4 W -

10M10M10M 5̄M 4t1 + t4 W +

5Hu 5̄M −t1 + t4 W ǫ15Hu 5̄M -

5̄25̄M10M 3t1 + t4 + t5 W 5̄25̄M10M -

Table 11. Table showing flux restrictions, induced exotics, singlet vevs and induced operators with

positive powers of singlet insertions for a model based on a 3 + 1 + 1 splitting.

5Hu 5̄3 = −2t1 + t4 + t5 which requires two singlets to obtain a vev. Given that the only

singlets available are X1 = (t1 − t4), X2 = (t1 − t5) and X3 = ± (t4 − t5), giving two of

them a vev also generates a µ term.

This problem can be avoided if the bottom Yukawa comes from a non-renormalisable

operator. This is in fact phenomenologically slightly preferable as it can explain the light-

ness of the bottom quark compared to the top quark. The model is presented in table 11

and corresponds to taking N2 = 0 and N1 = −1.

As shown in table 11 the bottom Yukawa coupling is induced by a higher dimension

operator involving X1. This implies that the vev ǫ1 is not too small.

Unlike the other models here the µ-term is induced in the superpotential by a singlet

vev much like in the NMSSM. This forces us to take ǫ2 ∼ 10−13.

Gauge coupling unification works in exactly the same way as the previous two models

since the exotics spectrum is the same: it recreates the accuracy of the MSSM at 1-loop.

We see from table 11 that proton decay operators are forbidden with only positive

powers of singlet insertions. Also the operator 5̄25̄M10M , which could induce proton

decay directly, is forbidden by R-parity. Finally there is no mixing between the matter and

exotics and so no proton decay operators are induced.

We now turn to the neutrinos. It is not possible to realise the Majorana scenario. To

see this note that such a scenario requires a superpotential Dirac mass which must involve
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a cubic interaction 5Hu 5̄N which in turn requires that N has a +t1 factor. However all

the available such singlets are used to give the exotics a mass.16

It is possible to realise a Dirac scenario though it has a problem. We take N = −t1+t5
which gives a Kahler potential Dirac mass 5Hd

5̄MN . As discussed above there is no Dirac

superpotential mass. There is a superpotential Majorana mass but this is of the form

ǫ2
2NN . Since ǫ1ǫ2 ∼ 10−13 the ratios of Dirac to Majorana masses are

M2
D

MW
∼ ǫ2

110
−3eV ,

MD

MW
∼ ǫ2

1

10
. (4.20)

The problem here is that ǫ1 must be taken large to get even close to the required neutrino

masses. However this then implies that the Majorana masses are of the same order as the

Dirac masses which leads to too large disappearance rates into sterile neutrinos.

5 3-curve models

In [12] a study was initiated of models where each of the SM generations resides on a

different matter curve. So 3 5-curves and 3 10-curves for the 3 generations. The motivation

for this is to account for the flavour hierarchies in the SM by using the different U(1)

charges of the generations through the Froggatt-Nielsen mechanism [55]. As shown in [12]

such models have to based on a 2+1+1+1 monodromy splitting. Further there is a unique

choice of matter curves that can reproduce realistic Yukawa couplings while avoiding proton

decay and a µ-term which are the curves given in table 12. Given these matter curves there

is some choice as to which singlets develop a vev and which are assigned to right-handed

neutrinos. In [12] it was shown that the only phenomenologically compatible possibilities

for the singlets that develop a vev are given by

X1 = −t3 + t4 , X2 = t1 − t4 . (5.1)

It is possible for more singlets to develop a vev but at least these 2 are required for the

quark sector.

For these models we find that a dimension 5 proton decay operator is always allowed

by the U(1) symmetries once the exotics are lifted. To see this note that since each

generation comes from a different 10 curve, if we allow any generation indices the proton

decay operator can at most be protected by one U(1) symmetry which we associate to t5.

This means that no singlets with a +t5 factor can obtain a large vev. However once a

non-trivial hypercharge flux is introduced, on any curve, it must be that there are exotics

charged under t5. This can be seen as follows: consider the 10 curves, since on the 3 10

matter curves corresponding to the MSSM we must have net positive chirality, the only

vector partners to the exotics induced on these curves must come from the final 10 curve

and charged as −t5. This means that to lift them we require a singlet with a +t5 factor

which induces proton decay.

16It may be possible to let the right handed neutrino have a TeV scale vev.
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Field Curve NY MU(1) Exotics R-parity

5Hu −2t1 +1 0 - +

5̄Hd
t3 + t5 -1 0 +

5̄b t1 + t4 -1 -1 (1, 2)−1/2 -

5̄s t1 + t3 -1 -2 (3̄, 1)+1/3 + 2 × (1, 2)−1/2 -

5̄d t3 + t4 0 -1 -

53 −t1 − t5 -1 +1 (3, 1)−1/3 -

56 −t4 − t5 +3 0 3 × (1, 2)+1/2 -

10t t1 -1 +2 (3, 2)+1/6 + 2 × (3̄, 1)−2/3 -

10c t4 +2 +3 2 × (3, 2)+1/6 + 4 × (1, 1)+1 -

10u t3 -2 +3 2 × (3, 2)+1/6 + 4 × (3̄, 1)−2/3 -

1̄04 −t5 +1 -5 5 × (3̄, 2)−1/6 + 6 × (3, 1)+2/3 + 4 × (1, 1)−1 -

Singlet Curve vev F-term R-parity

X1 −t3 + t4 ǫ1 +

X2 t1 − t4 ǫ2 +

X3 −t1 + t5 ǫ3 〈F3〉 +

Induced mass Exotics lifted R-parity

ǫ35̄b56 (1, 2)−1/2(1, 2)+1/2 +

ǫ1ǫ2ǫ35̄s53 (3̄, 1)+1/3(3, 1)−1/3 +

ǫ1ǫ35̄s56 2 × (1, 2)−1/2(1, 2)+1/2 +

ǫ310t1̄04 (3, 2)+1/6(3̄, 2)−1/6 + 2 × (3̄, 1)−2/3(3, 1)+2/3 +

ǫ1ǫ2ǫ310c1̄04 2 × (3, 2)+1/6(3̄, 2)−1/6 + 4 × (1, 1)+1(1, 1)−1 +

ǫ2ǫ310u1̄04 2 × (3, 2)+1/6(3̄, 2)−1/6 + 4 × (3̄, 1)−2/3(3, 1)+2/3 +

Operator Charges Super/Kahler potential U(1) neutrality R-parity

5Hu 5̄Hd
−2t1 + t3 + t5 W +

5̄M 5̄M10M . . . W . . . -

10M10M10M 5̄M . . . W . . . +

5Hu 5̄b −t1 + t4 W ǫ25Hu 5̄b -

5Hu 5̄s −t1 + t3 W ǫ1ǫ25Hu 5̄s -

5Hu 5̄d −2t1 + t3 + t4 W ǫ1ǫ225Hu 5̄d -
D

F †
E

5Hu 5̄Hd
−2t1 + t3 + t5 K ǫ1ǫ3

D

F
†
3

E

5Hu 5̄Hd
+

5̄E 5̄M10M . . . W . . . -

Table 12. Table showing flux restrictions, induced exotics, singlet vevs and induced operators with

positive powers of singlet insertions for a 3-curve model based on a 2 + 1 + 1 + 1 monodromy. The

ellipses in the last section of the table denote multiple terms present.

This problem means that it is not possible to forbid proton decay using the mild

version of R-parity acting only on the massless modes (see section 3.2). In this sense it is

on a similar footing to the single U(1) model of [11]. If we impose the stronger version of

R-parity and only consider proton decay operators that are induced from renormalisable

operators by integrating out KK modes then proton decay is forbidden due to the result

of section 3.2. We assume this is the case and study the resulting model.

Up to extra pairs of exotics the matter content of the model is unique and is shown in

table 12. The model has hypercharge flux choices N7 = −2, N8 = +2 and N9 = +1.

Consider gauge coupling unification. The highest mass we can give the exotics is

around 2× 1014GEV since ǫ1ǫ2 ∼ 10−2 from the quark masses [12]. In that case the gauge

couplings read α−1
1 = 11.4, α−1

2 = 11.1 and α−1
3 = 11.7 at 1-loop which is within the

required threshold corrections for the MSSM. Note that this is at 1-loop and also does not

take into account the small mass splitting between the exotic representations.

Note that we require R-parity to forbid the problematic 5Hu 5̄M coupling which in some

of the single curve models was forbidden by the U(1) symmetries. Also note that since the

extra singlet X3 has a factor of t5 it does not alter the Yukawa couplings presented in [12]

and so the quark mass hierarchies are retained.

Finally we turn to the neutrinos scenario. First we note that the scenario presented

in [12] where the right handed neutrinos came from 3 different curves is not possible here
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since one of those neutrino curves corresponds a singlet used to lift the exotics. It is still

possible to realise the scenarios using one curve for all the right handed neutrinos. The

Dirac scenario can be realised by taking N = −t4 + t5. The +t5 factor ensures there is no

superpotential Dirac or Majorana mass while in the Kahler potential we have the operators

ǫ1ǫ25Hd
5̄bN , ǫ25Hd

5̄sN and 5Hd
5̄dN . Again we note there is tension with the Giudice-

Masiero operator. The Majorana scenario can also be implemented with N = t4 − t5 but

the resulting neutrino masses come out too small to be consistent with phenomenology.

5.1 Froggatt-Nielsen and quark-lepton mass splitting

As shown in [12] 3-curve models can recreate realistic quark and lepton mixing at the GUT

level. There is a well known GUT flavour puzzle relating to the quark and lepton masses

at the GUT scale. The problem is that at the GUT scale the quark and lepton masses

read [19]17

mb ≃ mτ , ms ≃
1

3
mµ , md ≃ 3me , (5.2)

whereas a GUT theory would predict the masses to unify since all the representations fill a

single 5 GUT multiplet. In [19] a mechanism to account for this was proposed using higher

SU(5) representations which are not available in string theory. In terms of F-theory GUTs,

since the mass splitting does not respect the GUT symmetries, we expect it to originate

from the hypercharge flux. In this section we show that a natural explanation for the mass

splitting pattern can originate from combining the Froggatt-Nielsen mechanism with the

hypercharge flux GUT breaking.

The Froggatt-Nielsen based 3-curve models rely on higher dimension operators involv-

ing the GUT singlets Xi being generated in the superpotential. These should be induced

by integrating out string and KK modes. Taking the approach of section 3.1 the relevant

terms in the superpotential are

W ⊃ 5̄Hd
5̄KK

b 10t + X5̄s5
KK
b . (5.3)

Integrating out the KK modes gives

X

MKK
5̄Hd

5̄s10t . (5.4)

This is the Froggatt-Nielsen mechanism at the GUT level. More precisely there is not one

KK mode but rather a tower of them and also there are string modes. Also the physical

suppression scale of the operator is not the KK scale but rather the GUT scale which is the

winding scale [43, 46]. Nevertheless the essence of the mechanism is as discussed. In terms

of Feynman diagrams the higher dimensional operator comes from a diagram with X, 5̄s

and 5̄Hd
, 10t exchanging a 5 KK state with a mass insertion in the middle. Note that the

KK state is associated to the heavier generation, so that bottom KK modes contribute to

strange Yukawas and so on.

Now consider the case, as in table 12, where there is non-trivial hypercharge flux

restricted to say the 5b and 5s curves (this is automatic with a non-trivial restriction to

17See [20] for more modern and detailed analysis.
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the 5Hu curve). Then the KK spectrum of these curves will not form complete GUT

multiplets. The heavy modes exchanged will not be full GUT representations but rather

there will be a mass splitting between the doublets exchanged and the triplets exchanged.

This means that there will be a different suppression for the quark Yukawas compared to

the lepton Yukawas. The reason for the mass splitting (5.2) then follows straightforwardly.

We are unable to explain exactly the factors of 3 but this mechanism does explain why

the heaviest generation does not have a mass splitting while the lighter ones do: it is the

light generations masses that are sensitive to KK-scale non-GUT physics induced by the

hypercharge flux.18

6 Summary

We have studied SU(5) F-theory GUT models in a semi-local framework that are based on

small monodromy groups with multiple U(1) factors. We constructed explicit semi-local

geometries and determined the homology classes of the matter curves. We then studied

phenomenological aspects of these constructions. In particular we studied the effects of the

hypercharge flux on the matter spectrum.

Perhaps the most important conclusion from this work is that in these models, after the

exotics are lifted, the U(1) symmetries are not sufficient by themselves to completely forbid

dangerous proton decay operators. Indeed we found that some extra selection principle is

needed which we took to be a version of R-parity. It may be that some other selection

principle can be utilised such as separating curves and using geometric wavefunction sup-

pression. Either way this is an important component of such model building and deserves

further study.

For models where all the generations were localised on a single curve we have given

explicit models, for all the monodromy groups, where all the exotics induced are lifted to a

high mass scale through singlet vevs while proton decay operators are not generated. We

have shown that gauge coupling unification can be maintained to the same accuracy as the

MSSM even with the exotics below the GUT scale due to the particular spectrum induced

by the hypercharge flux. We also presented viable neutrino scenarios for these models. The

case where the generations come from different curves was also successful in these aspects

but gauge coupling unification was not quite as accurate though still within the size of the

required threshold corrections of the MSSM. Finally, for these latter models, we presented

a mechanism that combines the Froggatt-Nielsen approach to flavour with hypercharge flux

GUT breaking and can account for quark-lepton mass splitting at the GUT scale.

We have not commented so far on supersymmetry breaking. There is a non-trivial

problem with the size of the µ-term since in most of our models the µ-term as generated by

the Giudice-Masiero mechanism was suppressed relative to the gravitino mass by factors

of the singlet vevs. Such a suppression is phenomenologically unfavoured for both gravity

18It may be possible to explain why the mass ratios are inverse for the two lighter generations due to

opposite restrictions of the hypercharge flux so that on one curve a doublet is the lightest KK mode while

on the other a triplet is the lightest KK mode. Note however that this is not the case for the model in

table 12.
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and gauge mediation. If the singlet vevs are taken large enough this problem can be eased.

Notice also that exotics discussed in our paper are natural candidates for messenger fields

in gauge mediation of supersymmetry breaking.

The most obvious and important continuation of this work is to attempt to construct

global realisations. It should be expected that such global realisations, if possible to find,

would be much more constrained than the semi-local models studied here. In particular

a global realisation is essential for determining the U(1) fluxes that lead to the chirality

and also for finding any possible geometric symmetries that can play the crucial role of the

R-parity we have imposed by hand.
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A More single curve models

In this appendix we present models where doublet-triplet splitting is performed directly

by the hypercharge flux. These tend to have more exotics than the models presented in

the main text. However since there are no exotics on the Higgs curves we can realise the

R-parity assignments of all the singlets having positive R-parity and all the matter apart

from the Higgs curves having negative parity. As discussed in section 3.2, this assignment

always forbids proton decay if the stronger version of R-parity is imposed.

A.1 Models based on 2 + 1 + 1 + 1 monodromy

A model that realises direct splitting by flux is shown in table 13. We have taken the

hypercharge flux restrictions N7 = −1, N8 = 2 and N9 = 0.

Consider first gauge coupling unification. We find that putting the exotics at a scale

2 × 1015GEV the gauge couplings at the GUT scale read α−1
1 = 20.8, α−1

2 = 20.7 and

α−1
3 = 20.9. This is nearly as good as 1-loop MSSM unification accuracy. The reason

for this is that the exotics of the 10 and the 5 representations, although not complete

GUT representations in themselves, when added act as 2 complete vector pairs of 10

representations, 4 complete vector pairs of 5 representations and one vector pair of doublets

as far as the gauge coupling running is concerned (A.7).

We see from table 13 that a µ-term is forbidden by the U(1) charges, and that a

Giudice-Masiero mass can be induced by an appropriate F-term. Also the problematic

5Hu 5̄M coupling is forbidden by the U(1) charges.

We now turn to proton decay. First we note that dimension 4 and 5 proton decay

operators involving positive powers of singlet vevs are forbidden due to the U(1) symme-

tries. However they could still be potentially induced by integrating out states which is
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Field Curve NY MU(1) Exotics R-parity

5Hu −2t1 +1 0 +

5̄Hd
t3 + t5 -1 0 +

5̄M t1 + t4 -1 -3 (1, 2)−1/2 -

5̄1 t1 + t3 -1 -1 (3̄, 1)+1/3 + 2 × (1, 2)−1/2 -

5̄3 t1 + t5 -1 0 (1, 2)−1/2 -

54 −t3 − t4 +1 +1 (3, 1)−1/3 + 2 × (1, 2)+1/2 -

56 −t4 − t5 +2 0 2 × (1, 2)+1/2 -

10M t1 -1 +4 (3, 2)+1/6 + 2 × (3̄, 1)−2/3 -

102 t3 -1 +1 (3, 2)+1/6 + 2 × (3̄, 1)−2/3 -

1̄03 −t4 +2 -2 2 × (3̄, 2)−1/6 + 4 × (3, 1)+2/3 -

104 t5 0 0

Singlet Curve vev F-term R-parity

X1 −t1 + t4 ǫ1 +

X2 t1 − t3 ǫ2 +

X3 −t1 + t5 ǫ3 〈F3〉 +

Induced mass Exotics lifted R-parity

ǫ35̄M56 (1, 2)−1/2(1, 2)+1/2 +

ǫ15̄154 (3, 1)−1/3(3̄, 1)+1/3 + 2 × (1, 2)−1/2(1, 2)+1/2 +

ǫ15̄356 (1, 2)−1/2(1, 2)+1/2 +

ǫ110M 1̄03 (3, 2)+1/6(3̄, 2)−1/6 + 2 × (3̄, 1)−2/3(3, 1)+2/3 +

ǫ1ǫ21021̄03 (3, 2)+1/6(3̄, 2)−1/6 + 2 × (3̄, 1)−2/3(3, 1)+2/3 +

Operator Charges Super/Kahler potential U(1) Neutrality R-parity

5Hu 5̄Hd
−2t1 + t3 + t5 W +

5̄M 5̄M10M 3t1 + 2t4 W -

10M10M10M 5̄M 4t1 + t4 W +

5Hu 5̄M −t1 + t4 W -
˙

F †
¸

5Hu 5̄Hd
−2t1 + t3 + t5 K ǫ2

D

F †
3

E

5Hu 5̄Hd
+

Table 13. Table showing flux restrictions, induced exotics, singlet vevs and induced operators

with positive powers of singlet insertions for a model based on a 2 + 1 + 1 + 1 splitting where

doublet-triplet splitting is done directly by flux.

why R-parity is required as discussed in section 3.2. It is instructive to see how it acts in

this particular case and how otherwise proton decay would be induced.

In the absence of R-parity there is danger of the proton decay operator being generated

by integrating out charged triplets. The Higgs triplets can not mediate proton decay since

they require a µ-term coupling which is forbidden. Also the massless exotic triplets on the

5̄1 and 54 curves that gain a mass from the singlets can not mediate proton decay because

the coupling 5410M10M is forbidden by the U(1) symmetries. However triplet KK modes

along other exotic curves can mediate proton decay. An example of how such a mediation

can occur is by the operators

W ⊃ 5̄KK
Hd

5̄M10M + ǫ25̄
KK
1 5KK

Hu
+ 5KK

Hu
10M10M + ǫ35̄

KK
1 5KK

Hd
. (A.1)

Integrating out the KK modes gives a proton decay operator

(

ǫ3

ǫ2

)

5̄M10M10M10M . (A.2)
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In this case the R-parity assignment as in table 13 forbids the 2nd and 4th operators

of (A.1). This is an example case of the more general result that such an R-parity forbids

proton decay presented in section 3.2.19

Finally we turn to the neutrino scenarios. Both can be realised by taking the right

handed neutrino curve to be N = −t4 + t5 for Dirac and N = t1 − t4 for Majorana.

However there is the usual compatibility problem between the Dirac scenario and the

Giudice-Masiero mechanism. For example a Dirac scenario would involve a right-handed

neutrino choice of N = −t4+t5. This can not appear in the superpotential and so there are

no superpotential Dirac or Majorana masses which allows for the Kahler potential Dirac

scenario. Indeed such Dirac mass terms are obtained through the Kahler potential operator

ǫ25Hd
5̄MN . However we also have the Kahler potential operator

K ⊃ ǫ2
1ǫ3

〈

F †
3

〉

NN , (A.3)

which leads to TeV scale superpotential Majorana masses that suppress the neutrino masses

too much. Unless this operator is somehow suppressed (perhaps geometrically) or the F-

term is vanishing, in which case we give up on the Giudice-Masiero mechanism, this scenario

is not viable.20

We can also realise a Majorana scenario with charged GUT singlets. For example

taking the right-handed neutrino curve to be N = t1 − t4. The resulting neutrino masses

are given by the operators

W ⊃ 5Hu 5̄MN + ǫ2
1NN , (A.4)

which give the mass scale

Mν ∼ 1

ǫ2
1

10−3eV , (A.5)

which is phenomenologically viable as long as ǫ1 is not too small. Note that, as discussed

in section 4, there is a linear term

W ⊃ ǫ1N , (A.6)

which must be forbidden by R-parity by assigning negative charge to the right handed

neutrino.

Model with different matter curves. Here we present a model which allows for the

Giudice-Masiero term X†5Hu 5̄Hd
which gives a preferably heavier µ-term. However this

model also has dimension 5 proton decay operators induced which should be forbidden by

R-parity. The model is based on a 2+1+1+1 monodromy group and is shown in table 14.

It has hypercharge flux choices N7 = +1, N8 = 0, N9 = 0.

The exotics act as 5 vector pairs of 5 representations 1 vector pair of 10 representations

and one doublet pair (A.7). We find that putting the exotics at a scale 2 × 1015GEV the

gauge couplings at the GUT scale read α−1
1 = 21.2, α−1

2 = 21.0 and α−1
3 = 21.3.

19It is also possible to forbid proton decay using the weaker version of R-parity by assigning ǫ2 negative

charge and 102 positive charge. However then a µ-term is consequently forbidden and it is not possible to

induce it by introducing an extra singlet without also inducing proton decay.
20Note that it is possible to generate the µ-term through a singlet vev, for example X = t3 − t5, directly

at the superpotential level as in the NMSSM. Since the singlet has only a TeV vev it does not induce large

enough dimension 5 proton decay to be a problem.
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Field Curve NY MU(1) Exotics R-parity

5Hu −2t1 +1 0 +

5̄Hd
t1 + t3 -1 0 +

5̄M t4 + t5 0 -3 -

5̄2 t1 + t4 -1 0 (1, 2)−1/2 -

5̄3 t1 + t5 -1 -4 4 × (3̄, 1)+1/3 + 5 × (1, 2)−1/2 -

54 −t3 − t4 +1 +4 4 × (3, 1)−1/3 + 5 × (1, 2)+1/2 -

55 −t3 − t5 +1 0 (1, 2)+1/2 -

10M t1 -1 +4 (3, 2)+1/6 + 2 × (3̄, 1)−2/3 -

1̄02 −t3 +1 -1 (3̄, 2)−1/6 + 2 × (3, 1)+2/3 -

103 t4 0 0

104 t5 0 0

Singlet Curve vev F-term R-parity

X1 −t1 + t3 ǫ1 〈F1〉 +

X2 t4 − t5 ǫ2 +

Induced mass Exotics lifted R-parity

ǫ1545̄2 (1, 2)−1/2(1, 2)+1/2 +

ǫ1ǫ2545̄3 4 × (3, 1)−1/3(3̄, 1)+1/3 + 4 × (1, 2)+1/2(1, 2)−1/2 +

ǫ1555̄3 (1, 2)−1/2(1, 2)+1/2 +

ǫ110M 1̄02 (3, 2)+1/6(3̄, 2)−1/6 + 2 × (3̄, 1)−2/3(3, 1)+2/3 +

Operator Charges Super/Kahler potential U(1) Neutrality R-parity

5Hu 5̄Hd
−t1 + t3 W +

5̄M 5̄M10M 3t1 + 2t4 W -

10M10M10M 5̄M 4t1 + t4 W ǫ110M10M10M 5̄M +

5Hu 5̄M −t1 + t4 W -
˙

F †
¸

5Hu 5̄Hd
−2t1 + t3 + t5 K

D

F †
1

E

5Hu 5̄Hd
+

Table 14. Table showing flux restrictions, induced exotics, singlet vevs and induced operators with

positive powers of singlet insertions for a model based on a 2 + 1 + 1 + 1 splitting.

A.2 Models based on 2 + 2 + 1 monodromy

Since we require doublet-triplet splitting to be done directly by flux rather than by the

singlet vevs, the hypercharge restrictions are fixed to be N1 = −1 and N2 = +3. The

minimal such model is shown in table 15.

Consider first gauge coupling unification. We find that putting the exotics at a scale

2 × 1015GEV the gauge couplings at the GUT scale read α−1
1 = 19.5, α−1

2 = 19.5 and

α−1
3 = 19.4. This is equivalent to 1-loop MSSM unification accuracy. The reason for this

is that the exotics act as 3 complete vector pairs of 10 and 4 complete vector pairs of 5

representations as far as the gauge coupling running is concerned

[10 + 5] =
[

(3, 2)+1/6 + (3̄, 1)−2/3 + (1, 1)+1 + (3, 1)−1/3 + (1, 2)+1/2

]

∼
[

(3, 2)+1/6 + (3̄, 1)−2/3 + (3, 1)+2/3 + (1, 2)+1/2

]

. (A.7)

We find that such combinations arise frequently and naturally in these models.

From table 15 we see that a µ-term is forbidden by the U(1) charges and a Giudice-

Masiero term can be induced by the appropriate F-term. The dangerous term 5Hu 5̄M

is forbidden by the U(1) charges. However as in section 4.1 proton decay operators can

be induced by integrating out KK modes. This problem implies that R-parity must be

imposed by hand as presented in table 15.
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Field Curve NY MU(1) Exotics R-parity

5Hu −2t1 +1 0 +

5̄Hd
t3 + t5 -1 0 +

5̄M t1 + t3 -2 -3 2 × (1, 2)−1/2 -

5̄2 t1 + t5 -1 -1 (3̄, 1)+1/3 + 2 × (1, 2)−1/2 -

54 −2t3 +3 +1 (3, 1)−1/3 + 4 × (1, 2)+1/2 -

10M t1 -1 +4 (3, 2)+1/6 + 2 × (3̄, 1)−2/3 -

1̄02 −t3 +3 -3 3 × (3̄, 2)−1/6 + 6 × (3, 1)+2/3 -

103 t5 -2 +2 2 × (3, 2)+1/6 + 4 × (3̄, 1)−2/3 -

Singlet Curve vev F-term R-parity

X1 −t1 + t3 ǫ1 〈F1〉 +

X2 t3 − t5 ǫ2 +

Induced mass Exotics lifted R-parity

ǫ15̄M54 2 × (1, 2)+1/2(1, 2)−1/2 +

ǫ1ǫ25̄254 (3, 1)−1/3(3̄, 1)+1/3 + 2 × (1, 2)+1/2(1, 2)−1/2 +

ǫ110M 1̄02 (3̄, 2)−1/6(3, 2)+1/6 + 2 × (3, 1)+2/3(3̄, 1)−2/3 +

ǫ21031̄02 2 × (3̄, 2)−1/6(3, 2)+1/6 + 4 × (3, 1)+2/3(3̄, 1)−2/3 +

Operator Charges Super/Kahler potential U(1) Neutrality R-parity

5Hu 5̄Hd
−2t1 + t3 + t5 W +

5̄M 5̄M10M 3t1 + 2t3 W -

10M10M10M 5̄M 4t1 + t3 W +

5Hu 5̄M −t1 + t3 W -
˙

F †
¸

5Hu 5̄Hd
−2t1 + t3 + t5 K ǫ1ǫ2

D

F †
1

E

5Hu 5̄Hd
+

Table 15. Table showing flux restrictions, induced exotics, singlet vevs and induced operators for

a model based on a 2 + 2 + 1 splitting.

We now turn to the neutrinos. It is possible to realise the Dirac scenario with the

right handed neutrino being N = t1 − t5. In this case a Dirac mass is induced through the

Kahler potential operator (ǫ1ǫ2)
25Hd

5̄MN . There is no superpotential Dirac or Majorana

mass because of the −t5 factor. However, as usual, if we induce a Giudice-Masiero mass

the singlet F-term also induces a TeV scale Majorana mass through the Kahler potential

operator ǫ1(ǫ1ǫ2)
2
〈

F †
1

〉

NN . Therefore the two mechanisms are incompatible.

It is possible to realise a Majorana scenario by taking N = t1− t3 which gives neutrino

masses of

Mν ∼ 1

ǫ2
1

10−3eV . (A.8)

Model with different matter curves. In this final section we discuss a model based

on 2 + 2 + 1 monodromy which has different choices for the matter curves than those

determined in section 4.2. As noted such a choice leads to proton decay operators being

allowed by the U(1) symmetries. However if we impose the stronger version of R-parity

such operators are forbidden.

The model is shown in table 16 and has N1 = −1 and N2 = 0. The exotics act as 5

vector pairs of 5 representations, 1 vector pair of 10 representations and 1 pair of doublets.

This means that placing them at 2×1015GeV gives α−1
1 = 21.2, α−1

2 = 21.0 and α−1
3 = 21.3.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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Field Curve NY MU(1) Exotics R-parity

5Hu −2t1 +1 0 +

5̄Hd
t1 + t5 -1 0 +

5̄M 2t3 0 -3 -

5̄1 t1 + t3 -2 -4 4 × (3̄, 1)+1/3 + 6 × (1, 2)−1/2 -

53 −t3 − t5 +2 +4 4 × (3, 1)−1/3 + 6 × (1, 2)+1/2 -

10M t1 -1 +4 (3, 2)+1/6 + 2 × (3̄, 1)−2/3 -

102 t3 0 0

1̄03 −t5 +1 -1 (3̄, 2)−1/6 + 2 × (3, 1)+2/3 -

Singlet Curve vev F-term R-parity

X1 −t1 + t5 ǫ1 +

Induced mass Exotics lifted R-parity

ǫ15̄153 4 × (3̄, 1)+1/3(3, 1)−1/3 + 6 × (1, 2)−1/2(1, 2)+1/2 +

ǫ110M 1̄02 (3̄, 2)−1/6(3, 2)+1/6 + 2 × (3, 1)+2/3(3̄, 1)−2/3 +

Operator Charges Super/Kahler potential U(1) Neutrality R-parity

5Hu 5̄Hd
−t1 + t5 W +

5̄M 5̄M10M t1 + 4t3 W -

10M10M10M 5̄M 3t1 + 2t3 W ǫ110M10M10M 5̄M +

5Hu 5̄M −2t1 + 2t3 W -
˙

F †
¸

5Hu 5̄Hd
−t1 + t5 K

D

F †
1

E

5Hu 5̄Hd
+

Table 16. Table showing flux restrictions, induced exotics, singlet vevs and induced operators for

a model based on a 2 + 2 + 1 splitting.
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