310 research outputs found

    Influence of chirping the Raman lasers in an atom gravimeter: phase shifts due to the Raman light shift and to the finite speed of light

    Full text link
    We present here an analysis of the influence of the frequency dependence of the Raman laser light shifts on the phase of a Raman-type atom gravimeter. Frequency chirps are applied to the Raman lasers in order to compensate gravity and ensure the resonance of the Raman pulses during the interferometer. We show that the change in the Raman light shift when this chirp is applied only to one of the two Raman lasers is enough to bias the gravity measurement by a fraction of μ\muGal (1 μ1~\muGal~=~10810^{-8}~m/s2^2). We also show that this effect is not compensated when averaging over the two directions of the Raman wavevector kk. This thus constitutes a limit to the rejection efficiency of the kk-reversal technique. Our analysis allows us to separate this effect from the effect of the finite speed of light, which we find in perfect agreement with expected values. This study highlights the benefit of chirping symmetrically the two Raman lasers

    Developing a Relationship Between LIBS Ablation and Pit Volume for In Situ Dating of Geologic Samples

    Get PDF
    In planetary exploration, in situ absolute geochronology is an important measurement. Thus far, on Mars, the age of the surface has largely been determined by crater density counting, which gives relative ages. These ages can have significant uncertainty as they depend on many poorly constrained parameters. More than that, the curves must be tied to absolute ages to relate geologic timescales on Mars to the rest of the solar system. Thus far, only the lost lander Beagle 2 was designed to conduct absolute geochronology measurements, though some recent attempts using MSL Curiosity show that this investigation is feasible (Reference Farley here) and should be strongly encouraged for future flight

    Matter-wave laser Interferometric Gravitation Antenna (MIGA): New perspectives for fundamental physics and geosciences

    Full text link
    The MIGA project aims at demonstrating precision measurements of gravity with cold atom sensors in a large scale instrument and at studying the associated applications in geosciences and fundamental physics. The first stage of the project (2013-2018) will consist in building a 300-meter long optical cavity to interrogate atom interferometers and will be based at the low noise underground laboratory LSBB in Rustrel, France. The second stage of the project (2018-2023) will be dedicated to science runs and data analyses in order to probe the spatio-temporal structure of the local gravity field of the LSBB region, a site of high hydrological interest. MIGA will also assess future potential applications of atom interferometry to gravitational wave detection in the frequency band 0.110\sim 0.1-10 Hz hardly covered by future long baseline optical interferometers. This paper presents the main objectives of the project, the status of the construction of the instrument and the motivation for the applications of MIGA in geosciences. Important results on new atom interferometry techniques developed at SYRTE in the context of MIGA and paving the way to precision gravity measurements are also reported.Comment: Proceedings of the 50th Rencontres de Moriond "100 years after GR", La Thuile (Italy), 21-28 March 2015 - 10 pages, 5 figures, 23 references version2: added references, corrected typo

    X-Ray Microanalysis of Calcium Containing Organelles in Resin Embedded Tissue

    Get PDF
    The localization of calcium in cell organelles at the electron microscope level is often achieved through cytochemical techniques, and verified by X-ray microanalysis. Various methods have been used to cytochemically detect calcium or calcium-binding sites : calcium loading, calcium substitution by strontium, barium, or even lead, and calcium precipitation by oxalate, phosphate, fluoride, or pyroantimonate. Their results may have heuristic value, particularly in preliminary studies of poorly known cell types. A complementary and more physiological approach is offered by quantitative measurement of the total calcium content of organelles after cryofixation. Resin embedding is less demanding than cryomicrotomy and gives better images : it can be used after cryosubstitution in the presence of oxalic acid. This technique was tested, and applied to several cell types

    Effects of Ionomycin on Egg Activation and Early Development in Starfish

    Get PDF
    Ionomycin is a Ca2+-selective ionophore that is widely used to increase intracellular Ca2+ levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca2+ levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca2+ increase. The ionomycin-induced Ca2+ rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca2+ response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation

    Cytogenetic analysis of Astylus antis (Perty, 1830) (Coleoptera, Melyridae): Karyotype, heterochromatin and location of ribosomal genes

    Get PDF
    Cytogenetic analysis of Astylus antis using mitotic and meiotic cells was performed to characterize the haploid and diploid numbers, sex determination system, chromosome morphology, constitutive heterochromatin distribution pattern and chromosomes carrying nucleolus organizer regions (NORs). Analysis of spermatogonial metaphase cells revealed the diploid number 2n = 18, with mostly metacentric chromosomes. Metaphase I cells exhibited 2n = 8II+Xyp and a parachute configuration of the sex chromosomes. Spermatogonial metaphase cells submitted to C-banding showed the presence of small dots of constitutive heterochromatin in the centromeric regions of nearly all the autosomes and on the short arm of the X chromosome (Xp), as well as an additional band on one of the arms of pair 1. Mitotic cells submitted to double staining with base-specific fluorochromes (DAPI-CMA3 ) revealed no regions rich in A+T or G+C sequences. Analysis of spermatogonial mitotic cells after sequential Giemsa/AgNO 3 staining did not reveal any specific mark on the chromosomes. Meiotic metaphase I cells stained with silver nitrate revealed a strong impregnation associated to the sex chromosomes, and in situ hybridization with an 18S rDNA probe showed ribosomal cistrons in an autosomal bivalent
    corecore