4 research outputs found

    Leibniz, Acosmism, and Incompossibility

    Get PDF
    Leibniz claims that God acts in the best possible way, and that this includes creating exactly one world. But worlds are aggregates, and aggregates have a low degree of reality or metaphysical perfection, perhaps none at all. This is Leibniz’s tendency toward acosmism, or the view that there this no such thing as creation-as-a-whole. Many interpreters reconcile Leibniz’s acosmist tendency with the high value of worlds by proposing that God sums the value of each substance created, so that the best world is just the world with the most substances. I call this way of determining the value of a world the Additive Theory of Value (ATV), and argue that it leads to the current and insoluble form of the problem of incompossibility. To avoid the problem, I read “possible worlds” in “God chooses the best of all possible worlds” as referring to God’s ideas of worlds. These ideas, though built up from essences, are themselves unities and so well suited to be the value bearers that Leibniz’s theodicy requires. They have their own value, thanks to their unity, and that unity is not preserved when more essences are added

    Generalizing the Copula

    No full text

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore