44 research outputs found
Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains
Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry
in the rate function of either the time-averaged entropy production or heat
dissipation of a process. Such theorems have been proved for various general
classes of continuous-time deterministic and stochastic processes, but always
under the assumption that the forces driving the system are time independent,
and often relying on the existence of a limiting ergodic distribution. In this
paper we extend the asymptotic fluctuation theorem for the first time to
inhomogeneous continuous-time processes without a stationary distribution,
considering specifically a finite state Markov chain driven by periodic
transition rates. We find that for both entropy production and heat
dissipation, the usual Gallavotti-Cohen symmetry of the rate function is
generalized to an analogous relation between the rate functions of the original
process and its corresponding backward process, in which the trajectory and the
driving protocol have been time-reversed. The effect is that spontaneous
positive fluctuations in the long time average of each quantity in the forward
process are exponentially more likely than spontaneous negative fluctuations in
the backward process, and vice-versa, revealing that the distributions of
fluctuations in universes in which time moves forward and backward are related.
As an additional result, the asymptotic time-averaged entropy production is
obtained as the integral of a periodic entropy production rate that generalizes
the constant rate pertaining to homogeneous dynamics
Extratropical Impacts on Atlantic Tropical Cyclone Activity
With warm sea surface temperature (SST) anomalies in the tropical Atlantic and cold SST anomalies in the east Pacific, the unusually quiet hurricane season in 2013 was a surprise to the hurricane community. The authors' analyses suggest that the substantially suppressed Atlantic tropical cyclone (TC) activity in August 2013 can be attributed to frequent breaking of midlatitude Rossby waves, which led to the equatorward intrusion of cold and dry extratropical air. The resultant mid- to upper-tropospheric dryness and strong vertical wind shear hindered TC development. Using the empirical orthogonal function analysis, the active Rossby wave breaking in August 2013 was found to be associated with a recurrent mode of the midlatitude jet stream over the North Atlantic, which represents the variability of the intensity and zonal extent of the jet. This mode is significantly correlated with Atlantic hurricane frequency. The correlation coefficient is comparable to the correlation of Atlantic hurricane frequency with the main development region (MDR) relative SST and higher than that with the Niño-3.4 index. This study highlights the extratropical impacts on Atlantic TC activity, which may have important implications for the seasonal predictability of Atlantic TCs
A new estimation of urbanizationâs contribution to the warming trend in China
The extent to which an urbanization effect has contributed to climate warming is under debate in China. Some previous studies have shown that the urban heat island (UHI) contribution to national warming was substantial (10%â40%). However, by considering the spatial scale of urbanization effects, this study indicates that the UHI contribution is negligible (less than 1%). Urban areas constitute only 0.7% of the whole of China. According to the proportions of urban and rural areas used in this study, the weighted urban and rural temperature averages reduced the estimated total warming trend and also reduced the estimated urban effects. Conversely, if all stations were arithmetically averaged, that is, without weighting, the total warming trend and urban effects will be overestimated as in previous studies because there are more urban stations than rural stations in China. Moreover, the urban station proportion (68%) is much higher than the urban area proportion (0.7%)