199 research outputs found

    Ferritins: furnishing proteins with iron

    Get PDF
    Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins

    Exploring the Higgs Portal with 10/fb at the LHC

    Full text link
    We consider the impact of new exotic colored and/or charged matter interacting through the Higgs portal on Standard Model Higgs boson searches at the LHC. Such Higgs portal couplings can induce shifts in the effective Higgs-gluon-gluon and Higgs-photon-photon couplings, thus modifying the Higgs production and decay patterns. We consider two possible interpretations of the current LHC Higgs searches based on ~ 5/fb of data at each detector: 1) a Higgs boson in the mass range (124-126) GeV and 2) a `hidden' heavy Higgs boson which is underproduced due to the suppression of its gluon fusion production cross section. We first perform a model independent analysis of the allowed sizes of such shifts in light of the current LHC data. As a class of possible candidates for new physics which gives rise to such shifts, we investigate the effects of new scalar multiplets charged under the Standard Model gauge symmetries. We determine the scalar parameter space that is allowed by current LHC Higgs searches, and compare with complementary LHC searches that are sensitive to the direct production of colored scalar states.Comment: 27 pages, 11 figures; v2: references added, correction to scalar form factor, numerical results updated with Moriond 2012 data, conclusions unchange

    A Novel Autosomal Dominant Inclusion Body Myopathy Linked to 7q22.1-31.1

    Get PDF
    We describe a novel autosomal dominant hereditary inclusion body myopathy (HIBM) that clinically mimics limb girdle muscular dystrophy in a Chinese family. We performed a detailed clinical assessment of 36 individuals spanning four generations. The age of onset ranged from the 30s to the 50s. Hip girdle, neck flexion and axial muscle weakness were involved at an early stage. This disease progressed slowly, and a shoulder girdle weakness appeared later in the disease course. Muscle biopsies showed necrotic, regenerating, and rimmed vacuolated fibers as well as congophilic inclusions in some of the fibers. Electron micrograph revealed cytoplasmic inclusions of 15–21 nm filaments. A genomewide scan and haplotype analyses were performed using an Illumina Linkage-12 DNA Analysis Kit (average spacing 0.58 cM), which traced the disease to a new locus on chromosome 7q22.1–31.1 with a maximum multi-point LOD score of 3.65. The critical locus for this unique disorder, which is currently referred to as hereditary inclusion body myopathy 4 (HIBM4), spans 8.78 Mb and contains 65 genes. This localization raises the possibility that one of the genes clustered within this region may be involved in this disorder

    Periodic trends and easy estimation of relative stabilities in 11-vertex nido-p-block-heteroboranes and -borates

    Get PDF
    Density functional theory computations were carried out for 11-vertex nido-p-block-hetero(carba)boranes and -borates containing silicon, germanium, tin, arsenic, antimony, sulfur, selenium and tellurium heteroatoms. A set of quantitative values called “estimated energy penalties” was derived by comparing the energies of two reference structures that differ with respect to one structural feature only. These energy penalties behave additively, i.e., they allow us to reproduce the DFT-computed relative stabilities of 11-vertex nido-heteroboranes in general with good accuracy and to predict the thermodynamic stabilities of unknown structures easily. Energy penalties for neighboring heteroatoms (HetHet and HetHet′) decrease down the group and increase along the period (indirectly proportional to covalent radii). Energy penalties for a five- rather than four-coordinate heteroatom, [Het5k(1) and Het5k(2)], generally, increase down group 14 but decrease down group 16, while there are mixed trends for group 15 heteroatoms. The sum of HetHet′ energy penalties results in different but easily predictable open-face heteroatom positions in the thermodynamically most stable mixed heterocarbaboranes and -borates with more than two heteroatoms

    Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk

    Get PDF
    Coding variants represent many of the strongest associations between genotype and phenotype; however, they exhibit interindividual differences in effect, termed 'variable penetrance'. Here, we study how cis-regulatory variation modifies the penetrance of coding variants. Using functional genomic and genetic data from the Genotype-Tissue Expression Project (GTEx), we observed that in the general population, purifying selection has depleted haplotype combinations predicted to increase pathogenic coding variant penetrance. Conversely, in cancer and autism patients, we observed an enrichment of penetrance increasing haplotype configurations for pathogenic variants in disease-implicated genes, providing evidence that regulatory haplotype configuration of coding variants affects disease risk. Finally, we experimentally validated this model by editing a Mendelian single-nucleotide polymorphism (SNP) using CRISPR/Cas9 on distinct expression haplotypes with the transcriptome as a phenotypic readout. Our results demonstrate that joint regulatory and coding variant effects are an important part of the genetic architecture of human traits and contribute to modified penetrance of disease-causing variants.Peer reviewe

    Speaker- versus listener-oriented disfluency: A re-examination of arguments and assumptions from autism spectrum disorder

    Get PDF
    We re-evaluate conclusions about disfluency production in high-functioning forms of autism spectrum disorder (HFA). Previous studies examined individuals with HFA to address a theoretical question regarding speaker- and listener-oriented disfluencies. Individuals with HFA tend to be self-centric and have poor pragmatic language skills, and should be less likely to produce listener-oriented disfluency. However, previous studies did not account for individual differences variables that affect disfluency. We show that both matched and unmatched controls produce fewer repairs than individuals with HFA. For silent pauses, there was no difference between matched controls and HFA, but both groups produced more than unmatched controls. These results identify limitations in prior research and shed light on the relationship between autism spectrum disorders and disfluent speech

    Systematic review of methods used in meta-analyses where a primary outcome is an adverse or unintended event

    Get PDF
    addresses: Peninsula College of Medicine and Dentistry, St Luke's Campus, University of Exeter, Exeter, UK. [email protected]: PMCID: PMC3528446types: Journal Article; Research Support, Non-U.S. Gov't© 2012 Warren et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Adverse consequences of medical interventions are a source of concern, but clinical trials may lack power to detect elevated rates of such events, while observational studies have inherent limitations. Meta-analysis allows the combination of individual studies, which can increase power and provide stronger evidence relating to adverse events. However, meta-analysis of adverse events has associated methodological challenges. The aim of this study was to systematically identify and review the methodology used in meta-analyses where a primary outcome is an adverse or unintended event, following a therapeutic intervention

    Treatment in advanced colorectal cancer: what, when and how?

    Get PDF
    Treatment of advanced colorectal cancer (CRC) increasingly requires a multidisciplinary approach and multiple treatment options add to the complexity of clinical decision-making. Recently novel targeted therapy against angiogenesis and epidermal growth factor receptor completed a plethora of phase III studies. The addition of bevacizumab to chemotherapy improved the efficacy over chemotherapy alone in both first and second line settings, although the magnitude of benefit may not be as great when a more optimal chemotherapy platform is used. Studies performed thus far did not address conclusively whether bevacizumab should be continued in subsequent lines of treatment. Anti-angiogenesis tyrosine kinase inhibitors have not shown any additional benefit over chemotherapy alone so far. Although some benefits were seen with cetuximab in all settings of treating advanced CRC, K-ras mutation status provides an important determinant of who would not benefit from such a treatment. Caution should be exercised in combining anti-angiogenesis with anti-EGFR strategy until further randomised data become available. In this review, we have focused on the implications of these trial results on the everyday management decisions of treating advanced CRC

    Joining S100 proteins and migration:for better or for worse, in sickness and in health

    Get PDF
    The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel
    corecore