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Variable penetrance and variable expressivity are common 
phenomena that often cause individuals carrying the same 
variant to display highly variable symptoms, even in the case 

of Mendelian and other severe diseases driven by rare variants with 
strong effects on phenotype1. For our purposes, we use the term 
‘variable penetrance’ as a joint description of both variable expres-
sivity (severity of phenotype) and penetrance (proportion of car-
riers with phenotype). These phenomena are a key challenge for 
understanding how genetic variants manifest in human traits and 
a major practical caveat for the prognosis of an individual’s disease 
outcomes based on their genetic data. However, the causes and 
mechanisms of variable penetrance are poorly understood. In addi-
tion to environmental modifiers of genetic effects, a potential cause 
of variable penetrance involves other genetic variants with additive 
or epistatic modifier effects2. While some studies have successfully 
mapped genetic modifiers of, for example, BRCA variants in breast 
cancer3 and RETT variants in Hirschsprung’s disease4, genome-
wide analysis of pairwise interactions between variants has proven 
to be challenging in humans. In part, this is because exhaustive 
pairwise testing of genome-wide interactions typically lacks power 
and is easily affected by confounders5, and a targeted analysis of a 
specific variant or gene that is strongly implicated in a rare disease 
typically suffers from a low number of carriers. However, emerging 
large data sets with functional genomic and genetic data from dis-
ease cohorts now enable the genome-wide study of mechanistically 
justified hypotheses of how combinations of genetic variants may 
have joint effects on disease risk.

In this study, we analyzed how regulatory variants in cis may 
modify the penetrance of coding variants in their target genes via 

the joint effects of these variants on the final dosage of functional 
gene product, depending on their haplotype combination (Fig. 1 and 
Supplementary Fig. 1). This phenomenon has been demonstrated 
to affect penetrance of disease-predisposing variants in individual 
loci6–9 and explored in early functional genomic data sets10,11, and 
expression modifiers are known in model organisms12. However, 
genome-wide evidence of regulatory modifiers of disease risk 
driven by coding variants has been lacking, alongside a generally 
applicable theoretical framework and analytical methods to study 
this phenomenon. This means that while potentially important, 
this phenomenon is often not addressed in genome-wide associa-
tion studies of common disease. In this work, we use population-
scale functional genomics and disease cohort data sets to show that 
genetic regulatory modifiers of pathogenic coding variants affect 
disease risk. Furthermore, we use genome editing with CRISPR/
Cas9 to demonstrate an experimental approach to studying the role 
of regulatory variants as modifiers of coding variant penetrance. We 
focus on rare pathogenic coding variants from exome and genome 
sequencing data, which provide the best-characterized group of 
variants with strong phenotypic effects, and common regulatory 
variants affecting gene expression or splicing. Thus, our analysis 
integrates these traditionally separate fields of human genetics by 
considering joint effects that different types of mutations have on 
gene function.

Results
Purifying selection acts on haplotype combinations. First, we 
tested the hypothesis that purifying selection should deplete hap-
lotype combinations that increase the penetrance of pathogenic  
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coding variants from the general population. To accomplish this, we 
analyzed data from the GTEx project, which is representative of the 
general population in that it lacks individuals with severe genetic 
disease13. This consists of genotype and RNA-sequencing (RNA-seq) 
data of 7,051 samples across 44 tissues from the 449 individuals with 
exome sequencing and SNP array data of the GTEx v6p release14. 
Throughout this study, we defined the predicted pathogenicity of 
variants using their Combined Annotation Dependent Deletion 
(CADD) score, which incorporates a wide breadth of annotations, 
including conservation and protein structure15. We used the authors’ 
suggested cutoff of 15 for defining potentially pathogenic variants; 
this is the median CADD score across all possible canonical splice 
site and missense variants in the human genome (see Methods).

We first measured the regulatory haplotype of coding variants 
using allelic expression data, which captures cis effects of both 
expression and splice regulatory variation at the individual level. 
We employed multiple approaches to account for issues of mapping 
bias, which often affect allelic expression studies (see Methods)16. In 
the modified penetrance model, purifying selection should result 
in a depletion of pathogenic variants on higher-expressed or exon-
including haplotypes. For each of the 44 GTEx tissues, we calcu-
lated the expression of coding variant minor alleles using allelic 
fold change (aFC)17 and compared the expression of missense vari-
ants with allele frequency (AF)-matched synonymous controls. 
Supporting our hypothesis, the minor alleles of missense variants 
showed reduced allelic expression, which was proportional to their 
predicted pathogenicity (Fig. 2a). Across tissues, rare (AF < 1%) 
pathogenic (CADD > 15) missense variants showed a significant 
(P =  4.57 ×  10−9) 0.70% reduction of allelic expression compared 
with synonymous controls, but rare benign (CADD < 15) missense 
variants did not (P =  0.388) (Fig. 2b and Supplementary Fig. 2a,b). 
This suggests that in the general population, pathogenic variants are 
depleted from higher-expressed or exon-including regulatory hap-
lotypes. We also performed this analysis using polyPhen alone to 
define coding variant pathogenicity to ensure that our results were 
not biased by the additional features used by CADD, and found that 
they were consistent (Supplementary Fig. 2c).

To study whether this pattern is driven by regulatory variation 
affecting expression or splicing, both of which are manifest in allelic 
expression, we partitioned the coding variants into two groups. To 
accomplish this, we quantified exon inclusion in each GTEx sample 
using RNA-seq reads spanning exon junctions to produce a mea-
sure of percent spliced in (PSI) for each exon in each sample18. To 
isolate the effects of regulatory variation, we analyzed allelic expres-
sion only for variants that were found in an exon with 100% inclu-
sion in that individual. As before, rare pathogenic missense variants 
had significantly reduced expression as compared with synony-
mous controls (P =  5.94 ×  10−6; 1.56% reduction), but rare benign 
variants did not (P =  0.521), suggesting that pathogenic variants are 
less likely to accumulate on higher-expressed regulatory haplotypes 
(Fig. 2c). To isolate the effects of splice regulatory variation, we ana-
lyzed allelic expression of variants in exons where the sample had 
substantial deviation in exon inclusion from the population mean. 
To define these exons, for each exon, a population normalized PSI 
z-score was produced for each sample, allowing exon inclusion at the 
sample level to be compared with others (Supplementary Fig. 2e).  
When measuring allelic expression of variants found in the top 10% 
of sample exons by absolute PSI z-score, we again observed that 
rare pathogenic missense variants had significantly reduced expres-
sion as compared with synonymous controls (P =  1.3 ×  10−3; 2.00% 
reduction), but rare benign variants did not (P =  0.191). This sug-
gests that pathogenic variants are less likely to accumulate on haplo-
types where the corresponding exon is more likely to be included in 
transcripts (Fig. 2d). In all analyses, pathogenic variants had signifi-
cantly reduced expression versus allele frequency-matched synony-
mous controls as compared with benign variants (Supplementary 

Fig. 2d). Altogether, these analyses of allelic expression data suggest 
that in a cohort representative of the general population, pathogenic 
coding variants exist less frequently in high-penetrance regulatory 
haplotype combinations, as would be expected under the modified 
penetrance model.

While allelic expression paired with splice quantification pro-
vides a powerful functional readout of latent regulatory variants 
acting on a gene in each individual, the phenomenon of modified 
penetrance can also be studied from genetic data alone by analyz-
ing phased haplotypes of coding variants and regulatory variants 
identified by expression quantitative trait locus (eQTL) mapping in 
cis. Our hypothesis is that in pathogenic coding variant heterozy-
gotes, eQTL-mediated lower expression of the haplotype carrying 
the ‘wild-type’ (WT) major coding allele increases the penetrance 
of the rare allele, and vice versa (Fig. 3a and Supplementary Fig. 1). 
To study this, we developed a test for regulatory modifiers of pene-
trance that uses phased genetic data (see Methods). Briefly, for each 
rare coding variant heterozygote, we test whether the major coding 
allele is on the lower-expressed eQTL haplotype (Supplementary 
Fig. 3a) and determine whether this occurs more or less frequently 
than would be expected under the null hypothesis based on eQTL 
frequencies in the population studied (Supplementary Fig. 3b). 
Using simulated data, we found that our test was well calibrated 
under the null hypothesis while still being sensitive to changes in 
haplotype configuration (Supplementary Fig. 3c,d).

To analyze whether the distribution of coding variants on 
cis-eQTL haplotypes in GTEx showed signs of selection against 
increased penetrance, we produced a large set of haplotype phased 
genetic data from GTEx v7, where 30×  whole genome sequencing 
of 620 individuals was available. This was obtained from popula-
tion-based phasing paired with read-backed phasing using DNA 
sequencing (DNA-seq) reads19 and RNA-seq reads20 from up to 38 
tissues for a single individual. This allowed us to analyze the haplo-
types of 221,487 rare (minor allele frequency (MAF) < 1%) coding 
variants at thousands of genes with known common (MAF > 5%) 
eQTLs from GTEx v6p14 (Supplementary Table 1). Using our test 
for regulatory modifiers of penetrance, we did not observe any sig-
nificant evidence of reduced penetrance of rare potentially patho-
genic variants when all protein coding genes were analyzed together 
(P =  0.268). However, we hypothesized that genes might be under 
differing selective pressure with respect to this phenomenon, so we 
stratified our analysis based on eQTL effect size, gene conservation 
and coding constraint. We observed a significant negative correla-
tion between the predicted penetrance of rare potentially patho-
genic variants and both eQTL effect size (ρ  =  − 0.229, P =  0.0224) 
and gene conservation (ρ  =  − 0.217, P =  0.0304), while no significant 
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Fig. 1 | Regulatory variants as modifiers of coding variant penetrance. 
The hypothesis of this study is illustrated with an example in which an 
individual is heterozygous for both a regulatory variant and a pathogenic 
coding variant. The two possible haplotype configurations would result in 
either decreased penetrance of the coding variant, if it was on the lower-
expressed haplotype, or increased penetrance of the coding variant, if it 
was on the higher-expressed haplotype. See Supplementary Fig. 1 for a 
quantitative description of the model.
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correlation was observed for benign variants (Supplementary Fig. 4).  
We quantified this effect and found that pathogenic variants in 
genes with strong eQTLs (top 25% by |effect size|) had a significant 
(P =  6.08 ×  10−3) decrease of 1.32% in the frequency of haplotypes 
where the major coding allele was on the lower-expressed haplo-
type expressed than would be expected under the null hypothesis, 
while no effect was seen for benign variants (P =  0.703) (Fig. 3b). 
Similarly, we also observed a significant reduction of predicted 
penetrance of rare potentially pathogenic variants (P =  0.0186) but 
not benign variants (P =  0.412) in conserved genes (top 25% by 
median exon base conservation). Finally, we observed the stron-
gest effect at genes that were defined using the Exome Aggregation 
Consortium (ExAC) as loss of function and missense intolerant  
(− 2.20%, P =  0.0221)21,22, while no effect was seen for benign  
variants (P =  0.333).

Altogether, combined with observations from functional data 
of allelic expression, these results suggest that joint effects between 
regulatory and coding variants have shaped human genetic varia-
tion in the general population through purifying selection depleting 
haplotype combinations whereby cis-regulatory variants increase 
the penetrance of pathogenic coding variants (Supplementary 

Fig. 1). These patterns are significant and consistent, although the 
genome-wide magnitude of their effects is not strong. However, 
since our results indicate that regulatory modifiers of penetrance 
affect primarily pathogenic coding variants, stronger cis-regulatory 
variants, and both conserved and constrained genes, genome-wide 
analysis probably ends up diluting a signal that may be strong and 
phenotypically relevant for a subset of genes and variants.

Regulatory modifiers of penetrance affect disease risk. We next 
sought to investigate whether regulatory modifiers of penetrance 
affect disease risk in patients. This would manifest as patients hav-
ing an overrepresentation of regulatory haplotype configurations 
that increase the penetrance of putatively disease-causing coding 
variants as compared with controls, in whom an enrichment of 
low-penetrance combinations is expected. Importantly, our test is 
calibrated to eQTL allele frequencies separately in case and con-
trol individuals, so that it measures only differences in haplotype 
configurations and not eQTL frequency between the populations. 
To test this hypothesis, we applied our genetic test for regulatory 
modifiers of penetrance to two large disease cohorts in cancer and 
autism. These diseases have a known contribution from rare coding 
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Fig. 2 | Analysis of regulatory effects at the individual level shows that pathogenic coding variants are depleted from higher-expressed and exon-
including regulatory haplotypes in the general population. a, Allelic fold change (aFC) of rare (allele frequency (AF) < 1%) missense and allele frequency-
matched synonymous variants in bins of 5 CADD PHRED with 95% confidence interval across GTEx tissues. N =  1,012,767 independent allele-specific 
expression (ASE) measurements. b, Boxplot of mean aFC across each of the 44 GTEx tissues calculated for rare pathogenic missense (CADD > 15), rare 
benign missense (CADD < 15) and allele frequency-matched synonymous controls. c, Mean aFC across tissues calculated using only variants found in 
exons where the sample has 100% exon inclusion, as measured by percent spliced in (PSI), which removes allelic effects arising from splice regulatory 
variation. d, Mean aFC across tissues calculated using only variants found in exons where the sample has substantial variation in exon inclusion compared 
with the population, as defined by |PSI z-score| > 90th percentile across all exons, which enriches for allelic effects caused by splice regulatory variation. 
The total number (N) of variant aFC measurements across all tissues for pathogenic and benign variants is indicated. P-values are generated by comparing 
mean aFC of missense variants with allele frequency-matched synonymous controls across tissues using a two-sided paired Wilcoxon signed rank test. For 
boxplots, bottom whisker: Q1 −  1.5*interquartile range (IQR), top whisker: Q3 +  1.5*IQR, box: IQR, center: median, and outliers are not plotted for ease of 
viewing. See Supplementary Fig. 2 for related analyses.
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variants in hundreds of disease-implicated genes, as well as large 
accessible genomic data sets that include genome-wide data of rare 
coding variants and common variants.

To study the role of regulatory modifiers of penetrance in 
germline cancer risk, we used population and read-backed phased 
germline variants (Supplementary Fig. 5b) from whole genome 
sequencing of 615 Cancer Genome Atlas (TCGA) individuals 
(Supplementary Table 2)23. Whole genome-sequenced, population 
and read-backed phased genotypes from 620 GTEx v7 individuals 
were used as controls (Supplementary Fig. 5a). We analyzed tumor 
suppressor genes (see Methods) that are known to harbor germ-
line risk variants for cancer, often with a dosage-sensitive disease 
mechanism24. To study autism spectrum disorder (ASD), we used 
transmission phased exome and imputed SNP array genotype data 
(Supplementary Fig. 5c,d) from the Simons Simplex Collection 
(SSC) of 2,600 simplex families with one child with autism, their 
parents and any unaffected siblings25–27. When available, one unaf-
fected sibling per family was used as a control. We analyzed a broad 
set of genes spanning multiple sources that have been previously 
implicated in ASD27,28 (see Methods).

Our genetic test for regulatory modifiers of penetrance was 
applied to these data sets, first separately and then jointly, since 

we were testing the same hypothesis in both the cancer and autism 
cohorts. We stratified our analysis by the sharing of coding vari-
ants between cases and controls, with coding variants observed 
only in cases likely to have the highest proportion of true disease-
contributing variants, and with a decreasing proportion of variants 
contributing to disease among those observed in both cases and 
controls and those only in controls (Fig. 4). Using this approach, 
we found that in disease-associated genes, case-specific rare patho-
genic variants were significantly enriched for haplotype configura-
tions where the major allele was on the lower-expressed haplotype 
(P =  9.53 ×  10−3), with control-specific variants showing no enrich-
ment, as expected (P =  0.597). When analyzing shared variants, we 
found that in control individuals these were enriched for haplotype 
configurations where the major allele was on the higher-expressed 
haplotype (P =  7.28 ×  10−3—suggesting a potentially decreased 
penetrance of some disease-contributing variants—but no con-
sistent or significant effect was observed in cases for this group 
of variants (P =  0.284). No significant haplotype configuration 
enrichment in either cases or controls was found for rare benign 
variants at disease-associated genes (Supplementary Fig. 6a) or 
pathogenic variants at control genes matched for coding variant fre-
quency (Supplementary Fig. 6b). All individual cohort results are  
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presented in Supplementary Table 3, with generally consistent pat-
terns between the autism and cancer cohorts. Altogether, these 
results suggest that individuals with disease have an enrichment of 
harmful expression haplotype configurations that are predicted to 
increase coding variant penetrance, whereas unaffected individu-
als have an enrichment of protective configurations predicted to 
decrease coding variant penetrance. We expect that the true mag-
nitude of the biological effect is diluted in our analysis due to false 
positives in the disease gene sets, only a subset of the potentially 
pathogenic variants studied being disease relevant, and modified 
penetrance affecting only a subset of genes. Nevertheless, the sig-
nificant disease association of specific regulatory and coding variant 
configurations across two independent disease cohorts indicates a 
role for modified penetrance of coding variants by regulatory varia-
tion in both cancer and ASD.

Experimental demonstration of a regulatory modifier effect. Our 
population-scale analyses provide observational evidence that regu-
latory modifiers of penetrance play a role in the genetic architecture 
of human traits. We next sought to demonstrate an experimental 
approach to testing this hypothesis for a specific gene by using 
CRISPR/Cas9 to introduce a coding variant on distinct regulatory 
haplotypes, followed by quantification of its penetrance from a 
cellular readout. Such a framework will be useful for future stud-
ies that aim to validate single candidate genes from genome-wide 
analyses. Our finding that modified penetrance of germline variants 
by eQTLs may be involved in cancer risk led us to study a missense 
SNP (rs199643834, p.Lys508Arg) in the tumor suppressor gene 
FLCN, which codes for the protein folliculin and has a common 
eQTL in most GTEx v6p tissues14. This SNP causes the Mendelian 
autosomal dominant disease Birt–Hogg–Dubé syndrome29, which 
results in characteristic benign skin tumors, lung cysts and cancer-
ous kidney tumors and shows variable penetrance30. We edited the 
SNP in a fetal embryonic kidney cell line (293T), which is triploid 
and harbors a single copy of a common (1000 Genomes AF =  0.428) 

loss of expression eQTL (rs1708629) located in the 5′  UTR of the 
gene14,31. This variant is among the most significant variants for the 
FLCN eQTL signal, overlaps promoter marks across multiple tissues 
and alters motifs of multiple transcription factors32, therefore being 
a strong candidate for the causal regulatory variant of the FLCN 
eQTL (Supplementary Fig. 7a). We recovered monoclonal cell lines, 
genotyped them by targeted DNA-seq and performed targeted 
RNA-seq of the edited SNP (Fig. 5a, Supplementary Fig. 6b, and 
Supplementary Table 4). Allelic expression analysis showed that the 
haplotypes in the cell line are indeed expressed at different levels, 
probably driven by rs1708629 or another causal variant tagged by 
it, and the allelic expression patterns allowed phasing of the coding 
variant with the eQTL (Fig. 5b). In this way, we obtained four clones 
with a single copy of the Mendelian variant on the lower-expressed 
haplotype (snpLOW), three clones with a single copy on the higher-
expressed haplotype (snpHIGH) and two monoallelic clones with 
three copies of the alternative allele of rs199643834 (Supplementary 
Fig. 7d). In addition, four clones that had been exposed to the 
CRISPR/Cas9 machinery but were WT at the FLCN locus were 
included as controls. As a phenotypic readout, we performed RNA-
seq on all monoclonal lines.

Using the transcriptomes of these clones, we carried out differ-
ential expression analysis. Introduction of the Mendelian SNP had 
a genome-wide effect on gene expression, with 664 of 20,507 tested 
genes being significantly (false discovery rate (FDR) < 10%) differ-
entially expressed in clones monoallelic for the SNP versus WT con-
trols (Supplementary Fig. 7c and Supplementary Table 5). Gene set 
enrichment analysis33 of differential expression test results showed 
significant (FDR < 10%) enrichment of pathways related to cell cycle 
control, DNA replication and metabolism, consistently with the 
annotation of FLCN as a tumor suppressor gene and the occurrence 
of tumors in patients with the mutation (Supplementary Table 6). 
To study the joint effect of the eQTL and Mendelian variant, we 
quantified the differential expression of these 664 genes separately 
in clones with low and high expression of the edited SNP (Fig. 5a). 
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and haplotypes were analyzed at ASD-implicated genes. For cancer analysis, haplotype configurations generated from population and read-back phased 
germline whole genomes of 615 TCGA individuals (cases) and 620 whole genomes of v7 GTEx individuals (controls) were used, and haplotypes were 
analyzed at tumor suppressor genes. To enrich for putatively disease-causing variants, results were stratified based on whether variants were restricted 
to cases or controls or shared between both. Median estimates and 95% confidence intervals were generated using 100,000 bootstraps, and two-sided 
empirical P-values were generated from these confidence intervals and combined between cohorts using Fisher’s method to produce meta p-values 
(*P <  0.05, **P <  0.01). See Methods for description of gene sets used, Supplementary Fig. 5 for description of eQTL coding variant haplotypes used for 
the analysis, Supplementary Fig. 6 for results from benign variants and control genes, and Supplementary Table 3 for the full table of results, including 
individual cohort-level P-values. MAF, minor allele frequency.
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As we predicted, clones with higher expression of the SNP showed 
significantly stronger differential expression of both downregulated 
(median =  8.10% increase; 95% confidence interval (CI) =  5.93% to 
10.36%; P =  8.60 ×  10−14) and upregulated (median =  6.52% increase; 
95% CI =  4.76% to 8.22%; P =  4.40 ×  10−11) genes compared with 
clones having lower SNP expression (Fig. 5c,d). Supporting this, 
350 of the 664 genes affected by the Mendelian variant were sig-
nificantly (FDR < 10%) differentially expressed in clones with high 
SNP expression, compared with only 186 in clones with low SNP 
expression. These results provide experimental demonstration that 
an eQTL can modify the penetrance of a disease-causing coding 
variant, and suggest a genetic regulatory modifier mechanism as a 
potential explanation for the variable penetrance of rs199643834 in 
Birt–Hogg–Dubé syndrome. While further animal models or analy-
ses of large patient cohorts would be needed to fully describe how 
the cellular transcriptome effects may translate to modified pen-
etrance at a complex phenotype level, the use of genome editing in 
relevant cell lines and the transcriptome as a molecular phenotype 
will be an important and scalable approach for studying effects at 
individual genes of clinical importance.

Discussion
In conclusion, we have studied the hypothesis that regulatory vari-
ants in cis can affect the penetrance of pathogenic coding variants. 
We used diverse data types from population and disease cohorts, 
and experimental approaches, which together provide strong evi-
dence of modified penetrance due to joint functional effects of  

regulatory and coding variants. Our functional genomic and genetic 
analysis of the general population provides evidence that purifying 
selection is acting on joint regulatory and coding variants haplo-
types. Importantly, this suggests that the combination of an indi-
vidual’s regulatory and coding variant genotypes has an effect on 
phenotype, since purifying selection acts only on traits that affect 
fitness. Notably, we observed a weaker signal when analyzing eQTL 
haplotype configurations from genetic data alone as compared with 
allele-specific expression (ASE) data. This difference could arise 
because the genetic analysis inferred expression haplotypes using 
the top common regulatory variant per gene as opposed to directly 
measuring them using expression data. Such an approach does not 
capture the combinatorial effects of independent common regula-
tory variants or the effects of rare regulatory variation, both of which 
might make significant contributions to modified penetrance.

Our case–control analyses of autism and cancer cohorts provide 
direct evidence that regulatory modifiers of coding variants contrib-
ute to disease risk, which is jointly driven by the combination of an 
individual’s eQTL and coding variant genotypes. Furthermore, our 
experimental approach provides an indication of potential regula-
tory modifiers in the Mendelian Birt–Hogg–Dubé syndrome. The 
approaches developed and introduced in this work can be applied 
to additional disease data sets, with GTEx data providing an essen-
tial resource of regulatory variants to empower these analyses. In 
individual genes, finding regulatory modifiers will require relatively 
large data sets, and studies of large families with segregating coding 
variants may be a particularly powerful approach. Genome editing 
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experiments, as we demonstrated for FLCN, will be important for 
functionally validating results from computational analysis.

A key component of our work was the integrated analysis of rare 
coding variants and common regulatory variants, which are too 
often considered as separate domains in human genetics, despite the 
fact that their interplay is gaining increasing interest34. Currently, 
rare coding variants are studied largely by exome sequencing in 
relatively rare diseases, and common regulatory variant analyses are 
focused on applications in genome-wide association studies of com-
mon diseases. Setting the stage for future studies, our work supports 
one of the few concrete and generalizable models of modified pene-
trance of genetic variants in humans, with a clear biological mecha-
nism based on the net effect of variants on the dosage of functional 
gene product, and is backed by solid empirical analysis of genome-
wide genetic data.

This work opens additional important areas for future research. 
Our results demonstrate that the strength of modified penetrance 
depends on the functional importance and dosage sensitivity of the 
gene, the effect size of the regulatory variants that affect expres-
sion or splicing, and the type of coding variant. Larger data sets 
are needed to uncover this full spectrum at the level of individual 
genes instead of the gene classes analyzed here. In this work, we 
focused on loss-of-function analysis, in which the expression level 
of the non-mutant haplotype matters, but it is likely that for less 
common gain-of-function germline and somatic variants, modi-
fied penetrance may depend on the expression of the mutant haplo-
type instead. This may be an important consideration for potential 
future work on variable penetrance of somatic variants in cancer. 
The dynamics of natural selection on haplotype combinations will 
be an interesting area of population genetic analysis, in which an 
individual’s fitness depends on multiple variants on different homo-
logs as well as linkage disequilibrium between these variants.

Finally, we highlight that while other mechanisms are also likely 
to contribute to variable penetrance of coding variants, analysis 
of cis-regulatory modifiers is particularly tractable, with multiple 
practically feasible approaches introduced in this work. Our find-
ings highlight the importance of considering coding variation in 
the context of regulatory haplotypes in future studies of modified 
penetrance of genetic variants affecting disease risk.

URLs. SFARI gene database, https://gene.sfari.org; Tumor Suppressor 
Gene Database, https://bioinfo.uth.edu/TSGene/; GTEx Portal, 
https://gtexportal.org/; CRISPR Design Tool, http://crispr.mit.edu.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0192-y.
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Methods
Variant annotation. Variant annotations for SNPs were retrieved from CADD 
v1.315. As per guidelines by the CADD authors, missense variants with a CADD 
PHRED score of > 15, which is the median CADD score across all possible 
canonical splice site and missense variants, were defined as potentially pathogenic. 
Synonymous variants with a CADD PHRED score < 15 were used as controls. To be 
considered rare, variants were required to have a MAF < 1% across GTEx v7, 1000 
Genomes Phase 335 and gnomAD r2.0.122.

GTEx allelic expression analysis. GTEx v6p allelic expression data generated 
from whole exome sequencing genotypes were used14. Variants that were in low-
mappability regions (University of California, Santa Cruz (UCSC) mappability 
track < 1), showed mapping bias in simulations36 or had significant (FDR < 1%) 
evidence that the variant was monoallelic in that individual across all GTEx tissues 
were excluded to reduce mapping bias16. Only variants with at least ten reads were 
used. To minimize the probability that the observed allelic imbalance was due to 
effects of the allelic expression variants themselves on splicing, only variants farther 
than 10 base pairs (bp) from an annotated splice site15 were used. Within each 
GTEx tissue, when allelic expression measurements from the same variant were 
present from different individuals, the measurement with the highest read coverage 
was used. Only variants where the alternative allele was the minor allele were 
used to ensure that mapping biases were consistent across variants. For missense 
variants, matched synonymous controls were selected, controlling for allele 
frequency within 25% of missense variants (for example, between 0.75% and 1.25% 
for a 1% frequency missense variant). Allelic fold change (aFC) was calculated as 
log2(alternative allele reads + 1/ reference allele reads + 1)).

GTEx exon inclusion quantification analysis. Individual-level quantifications of 
exon inclusion were generated for all GTEx v6p samples with the VAST-TOOLS 
pipeline, which measures the PSI of each exon in each individual18. Within a 
given tissue, for each exon with at least ten PSI measurements, PSI z-scores were 
generated for each sample. Individuals with substantial variation in exon inclusion 
compared with the population were defined as the top 10% of PSI z-scores across 
all sample exons (Supplementary Fig. 2d).

GTEx expression quantitative trait loci (eQTL). The official set of GTEx v6p top 
significant (FDR < 5%) eQTLs by permutation P-value was used for all analyses, 
such that each gene by tissue had at most a single eQTL14. Those eQTLs for which 
the 95% CI of eQTL effect size overlapped 0, representing weak eQTLs, were 
discarded17. To produce a single set of cross-tissue top eQTLs, the top eQTL by 
FDR across tissues was selected for each eGene, with ties broken by choosing the 
eQTL with the larger effect size. This resulted in a set of 26,942 eGenes, each with a 
single eSNP (Supplementary Table 1).

Genetic data and haplotype phasing. GTEx: GTEx v7 genotypes from whole 
genome sequencing of the 620 individuals who had at least one RNA sample were 
used. These genomes were population and read-back phased using DNA-seq reads 
with SHAPEIT219. Following this, phASER v1.0.0 was used to perform read-backed 
phasing using RNA-seq reads20 from all samples for each individual: a median of 
17 tissues, ranging from 1 to 38. For RNA-seq-based read-backed phasing, only 
uniquely mapping reads (STAR MAPQ 255) with a base quality of ≥ 10 overlapping 
heterozygous sites were used, and all other phASER settings were left as default. 
The resulting phased genotypes were imputed into 1000 Genomes Phase 335 with 
Minimac3 v2.0.137.

SSC: Genotypes of the SSC cohort from Sanders et al. consisting of data 
generated on Illumina 1Mv1, 1Mv3 and Omni2.5 arrays26 were transmission 
phased using SHAPEIT2 with relatedness data38 and then imputed into the 1000 
Genomes Phase 3 panel using the Sanger Imputation Service with the positional 
Burrows–Wheeler transform39,40. Coding variants called from whole exome 
sequencing data in Iossifov et al.27 were transmission phased on a per variant basis 
when possible using the genotypes of both parents. In total, genetic data from 2,304 
ASD-affected probands and 1,712 unaffected siblings were used for the analysis. 
Expression haplotypes of coding variants were annotated on the most significant 
eQTL variant for each gene in GTEx v6p across all tissues. The top GTEx eQTLs 
from across all tissues were used for analysis instead of brain regions only due to 
the substantially lower sample sizes in GTEx brain tissues, which result in fewer 
eQTLs being discovered.

TCGA: Paired tumor and normal WGS reads from 925 individuals across 15 
cancer types were used to call germline and somatic variants with Bambino v1.0641. 
The resulting germline genotypes were population phased with EAGLE2 v2.342 
using the 1000 Genomes Phase 3 panel35 and read-back phased with phASER 
v1.0.020. For read-backed phasing, only reads with mapping quality (MAPQ)  
≥ 30 and with a base quality of ≥ 10 overlapping heterozygous sites were used, and 
all other phASER settings were left as default. The resulting phased genotypes 
were imputed into 1000 Genomes Phase 335 with Minimac3 v2.0.137. Due to the 
highly variable sequencing depth across TCGA whole genome libraries, from 
the 925 individuals, 615 individuals with high-quality genotyping and phasing 
were selected for downstream analysis by filtering the bottom 30% of samples by 
number of variants called and median EAGLE phase confidence across autosomes. 

This resulted in an approximately equal number of TCGA (615) and GTEx (620) 
individuals for analyses. Expression haplotypes of coding variants were annotated 
on the most significant eQTL variant for each gene in GTEx v6p across all tissues.

The TCGA individuals analyzed and GTEx v7 individuals used as a control had 
very similar inferred ancestry compositions, although the TCGA individuals had a 
slightly higher proportion of individuals with Asian ancestry (Supplementary Table 7). 
To ensure that the results were robust to ancestry proportions, we performed our 
analysis after removing these individuals from the TCGA data set. We found that 
while the analysis was less powered, resulting in larger CIs for the TCGA cohort, 
the results were consistent and significant (Supplementary Fig. 6c).

Test for regulatory modifiers of penetrance using phased genetic data. Here we 
test the hypothesis that in loss-of-function coding variant heterozygotes, decreased 
expression of the major, or WT, coding allele mediated by an eQTL can increase 
the penetrance of the mutant allele by decreasing the dosage of functional gene 
transcript, and vice versa (Supplementary Fig. 1). The null hypothesis is that eQTL-
mediated changes of major allele expression have no effect on the penetrance of 
mutant alleles. Since penetrance cannot be easily measured, we instead measure 
the frequency at which the major allele is observed on the lower-expressed eQTL 
haplotype (Supplementary Fig. 3a). Under the null hypothesis, a coding mutation 
would occur in random individuals in the population, and on random haplotypes 
in those individuals, irrespective of their eQTL genotype. Thus, under the null 
hypothesis, the frequency of observed major alleles on lower-expressed haplotypes 
would simply be equal to the frequency of the lower-expressed eQTL allele in 
the population. Alternatively, an increased frequency indicates an enrichment of 
haplotype configurations that increase coding variant penetrance in the population 
studied, and vice versa (Supplementary Fig. 3b). Importantly, the test is calibrated to 
the eQTL frequency in the specific population studied, so it is internally controlled 
for differences in, for example, eQTL allele frequencies between cases and controls.

To perform the test, for each observation of a heterozygous coding variant 
of interest, the phased genotypes of the coding variant and the top GTEx cross-
tissue eQTL for that gene are used to produce a binary measure of whether the 
major coding allele is on the lower-expressed haplotype (Supplementary Fig. 3a). 
Alongside this binary measure, the frequency of the lower-expressed eQTL allele 
is recorded.

For each observation of a heterozygous coding variant in a single individual 
with genotype g, let A and a denote the higher- and lower-expressed eQTL allele, 
respectively, and B and b denote the major and minor coding variant allele, 
respectively. We assume that the minor allele is the non-functional allele. For 
a given haplotype g, we define the indicator function β such that it is 1 if the 
functional allele is on a lower-expressed eQTL haplotype, and 0 otherwise:
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where N is the total number of observed haplotype configurations consisting of an 
eQTL and coding variant, pooled over all individuals, variants and genes.

CIs for ε are generated by bootstrapping genotypes, and the two-sided 
empirical P-value against H0 is calculated as
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where B is the total number of bootstraps.
We ran the test on simulated haplotype data from 1,000 individuals at 500 

genes with 1,000 replicates. The lower-expressed haplotype frequency was set 
to 50% and the coding variant frequencies as observed in GTEx. This was done 
across a range of genes exhibiting a bias of major coding alleles being found 
on lower-expressed haplotypes and strengths of this bias. For the test, 1,000 
bootstrap samples were used. We found that at the 5% significance threshold, 5% 
of simulation replicates were significant, suggesting that the test is well calibrated 
under the null hypothesis. For real-world data, reported in the study, we used 
100,000 bootstrap samples to calculate P-values and derive CIs.
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This is a similar problem to that addressed by the Poisson binomial 
distribution, which describes the sum of successes in a set of independent 
Bernoulli trials with different success rates. However, the bootstrap approach is 
more convenient for calculating CIs and accounting for differences in sample size 
between control genes and genes of interest. We compared P-values derived from 
our test with those derived from a Poisson binomial distribution with parameters 

β β…g gE[ ( )] E[ ( )]N1
. In practice, our P-values are very similar to that generated 

using the Poisson binomial distribution (Pearson correlation =  0.996, slope =  0.997, 
Supplementary Fig. 3e).

A key part of our test is that, as opposed to simple linkage disequilibrium, it 
tests a specific directional hypothesis: the frequency that coding variant functional 
alleles are on lower-expressed regulatory haplotypes. Thus, in the absence of 
selection on regulatory haplotype configurations, differences in recombination 
rates between genes would not be expected to bias the results of our test. However, 
it is possible that the distribution of distances between the coding and regulatory 
variants tested could differ between test sets. To ensure that this was not the case, 
we compared the distance between coding and eQTL variants for each of the 
relevant tests performed and saw no significant difference in distance distribution 
for any of the relevant test pairs (Supplementary Fig. 8).

Gene sets. Genes with strong eQTLs were selected as the top 25% of eGenes by 
absolute eQTL effect size17. A conservation score was calculated for each eGene 
as the median UCSC hg19 placental mammal base conservation across all exons. 
Loss-of-function and missense intolerant genes were selected by requiring ExAC 
pLI ≥ 0.9 and significant missense constraint (FDR < 10%)22. P-values for missense 
constraint were generated from ExAC missense z-scores using the R command 
‘p =  2*pnorm(-abs(mis_z))’ and Benjamini–Hochberg corrected to control for 
FDR. A broad set of genes associated with ASD was produced by combining 
high-confidence Simons Foundation Autism Research Initiative (SFARI) database 
genes (see URLs, categories 1, 2 and S) downloaded on 20 October 2017, genes 
from Krumm et al. with nominally significant (P <  0.05) enrichment of de novo 
single-nucleotide variants (SNVs) in probands versus siblings, and genes with 
recurrent likely gene-disrupting and missense de novo mutations in probands 
but not in unaffected siblings in Iossifov et al.27,28. These were further filtered by 
removing genes that are highly tolerant to genetic variation, as defined by being 
in the top 10% of tolerant genes by Residual Variation Intolerance Score (RVIS) 
(v3_12Mar16)43. In total, this resulted in a list of 455 ASD-associated genes. A list 
of 983 downregulated tumor suppressor genes in tumor samples versus normal 
tissue in The Cancer Genome Atlas (TCGA) expression data was downloaded from 
the Tumor Suppressor Gene Database44 website (see URLs) on 24 August 2017.

CRISPR/Cas9 guide selection and cloning. Before RNA design and editing, we 
verified the genotype at the regions of interest, namely the Mendelian variant 
rs199643834 and eQTL variant rs1708629. Crude extracts prepared from 293T 
cells were used to amplify these regions using forward and reverse genotyping 
primers FLCN_genot and FLCNeQTL_genot, respectively (Supplementary Table 
8). Amplicons were sequenced both by Sanger sequencing and on the Illumina 
MiSeq. The 293T cell genotype was Ref/Ref/Ref at rs199643834 and Ref/Ref/Alt 
at rs1708629. There were no single-nucleotide changes close to rs199643834 that 
might have affected single-guide RNA (sgRNA) activity or required modified 
homologous template.

Using computational algorithms with prioritization for on-target efficiency and 
reduced off-target effects from CRISPR Design tool (see URLs) and E-CRISP45, 
we identified Streptococcus pyogenes Cas9 (SpCas9) guide RNAs that bind near 
variant rs199643834 (A> G). We selected three sgRNA sequences within 50 bp of 
the target SNP (rs199643834), which were predicted to result in maximum cleavage 
efficiency without off-target effects (Supplementary Table 8). Annealed oligomers 
inclusive of guide RNA sequences were sub-cloned into the lentiCRISPRv2 plasmid 
(Addgene plasmid #52961), which contains expression cassettes for the guide RNA, 
a human codon-optimized Cas9 and a puromycin resistance gene46. Plasmids were 
transformed into chemically competent E. coli and grown at 30°C; plasmid DNA 
was extracted and purified. A 150 bp single-stranded DNA template (ssODN) for 
precise editing by homologous recombination (HDR) carrying the rs199643834 A 
allele was designed and obtained from Integrated DNA Technologies (IDT) DNA 
in the form of lyophilized ultramer (Supplementary Table 8).

Transfections and T7 endonuclease I (T7E1) assays. Human 293T cell line 
(ATCC, cat. no. CRL-3216) was adapted to and subsequently routinely grown 
in Opti-MEM/5% CCS (newborn calf serum), 1% GlutaMAX, 1% Penicillin/
Streptomycin and sodium pyruvate. For transfection with Cas9- and sgRNA-
expressing plasmids as well as ssODN template, cells were harvested for seeding 
at a log growth phase (approximately 70% confluency). In a six-well format, 
300,000 293T cells were seeded a day prior to transfection. The next day, 2 μ g of 
each lentiCRISPR v2 plasmid and 0.5 μ g of ssODN HDR template were delivered 
into the cells using Lipofectamine 3000 reagent. At 24 hours post-transfection, 
selective pressure in the form of 5 μ g ml-1 puromycin was applied for 8 hours to 
enrich for transfected cells. The short time-frame reduces the chances of selecting 
monoclonal lines with stable plasmid integration. Following 2 days of cell growth, 
cells were harvested and crude extracts prepared from a small fraction for 

genotyping. The remainder of the cells were frozen for subsequent isolation of cell 
lines containing desired edits.

For T7E1 assays, a 362 bp region flanking rs199643834 was amplified by PCR 
from the crude extracts using FLCN_genot primers and purified using Ampure 
XP beads. Purified products were heteroduplexed, digested with T7 endonuclease 
1 and run on a 2% agarose gel. Cleavage patterns from editing experiments 
conducted with each sgRNA were qualitatively analyzed to determine the cutting 
efficiency of each Cas9/sgRNA to guide further experiments. Subsequently, the 
crude cell lysates were used to prepare amplicon libraries containing ScriptSeq 
adapters, which were sequenced on the Illumina MiSeq instrument with paired-
end 150 bp reads. Rates of indel mutations by non-homologous end joining (NHEJ) 
and precise SNP editing by homology-directed repair (HDR) were determined by 
an in-house analysis pipeline.

Generation and identification of monoclonal cell lines containing desired 
precise edits. The initial screening showed that editing of 293T polyclonal cell 
population at rs199643834 with sgRNA 1 resulted in the highest rate of HDR. 
This population was selected for single-cell sorting in a 96-well format to obtain 
monoclonal edited cell lines. Following 10 days of cell growth, individual wells 
were scored for the presence of healthy colonies, and altogether approximately 
1,920 healthy colonies were screened. At first passage, a third of the cells from each 
well were collected for crude cell extracts and genotyping.

High-throughput genotyping was performed by preparing an amplicon library 
from each crude extract with Nextera adapters enabling differential custom 
dual-indexing. Screening for desired mutations was performed using in-house 
software. In total, four WT (Ref/Ref/Ref), seven heterozygous (Ref/Ref/Alt) and 
two homozygous mutant (Alt/Alt/Alt) clones with each desired mutation were 
expanded for downstream analyses.

Targeted RNA-seq of allelic series and eQTL phasing. Expanded lines 
were grown to 70–80% confluency, and RNA was isolated using the Qiagen 
RNAeasyMini kit. cDNA was synthesized from each RNA sample, and the region 
spanning the Mendelian variant rs199643834 was amplified using primers FLCN_
exon9-10-F and FLCN_exon11-R2, containing Nextera adapters (Supplementary 
Table 8). Targeted amplicons were dual-indexed using custom Nextera indexes and 
sequenced on the Illumina MiSeq with 2 ×  150 bp reads.

For all the 13 lines, the genotype determined by DNA-seq was confirmed 
by RNA-seq reads. For the seven lines with a single copy of the edited SNP, we 
performed allelic expression analysis. Reads were aligned to hg19 using STAR47. 
The number of reads mapping to the reference and alternative alleles was 
quantified using Allele Counter, requiring MAPQ =  255 and base quality  
≥ 10 (Castel et al.16). Across samples, there was a median of 34,870 reads passing 
filters overlapping the site. A binomial test using reads containing the edited 
SNP allele against a null hypothesis of 1/3 (corresponding to a single copy of 
the edited SNP) was performed. Copy number-normalized allelic expression 
(AE) of the edited SNP was calculated as log2((ALT_COUNT/REF_COUNT)/
(1/3)). Samples with AE < 0 and binomial P <  0.01 were categorized as snpLOW 
(edited SNP on lower-expressed eQTL haplotype), and those with AE > 0 
and binomial P <  0.01 were categorized as snpHIGH (edited SNP on higher-
expressed eQTL haplotype).

RNA-seq and gene expression analysis of edited 293T cells. RNA-seq libraries 
were prepared using the TruSeq Stranded mRNA Library Sample Preparation Kit 
in accordance with manufacturer’s instructions. Briefly, 500 ng of total RNA was 
used for purification and fragmentation of mRNA. Purified mRNA underwent 
first and second strand cDNA synthesis. cDNA was then adenylated, ligated to 
Illumina sequencing adapters and amplified by PCR (using ten cycles). Final 
libraries were evaluated using fluorescent-based assays including PicoGreen and 
Fragment Analyzer, and were sequenced on the Illumina NovaSeq Sequencing 
System using 2 ×  100 bp cycles to a median depth of 52.8 million reads. 
Trimmomatic48 v0.36 was used to clip Illumina adaptors and quality trim, and 
reads were aligned to hg19 using STAR47 in two-pass mode. A median of 98% 
of reads mapped to the human genome, with a median of 95.2% reads mapping 
uniquely. featureCounts49 v1.5.3 was used in read counting and strand-specific 
mode (-s 2) with primary alignments only to generate gene-level read counts with 
Gencode v19 annotations used in GTEx v6p14. Differential expression analysis was 
performed using DESeq250 v1.16.1 and R v3.4.0 on genes with a mean of greater 
than five counts across samples. FDR correction of P-values was performed using 
Benjamini–Hochberg. Gene set enrichment analysis on differential expression 
data was performed using the Web-based Gene Set Analysis Toolkit33 with 
Wikipathway enrichment categories.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. GTEx v6p eQTLs are publicly available through the GTEx Portal 
(see URLs). GTEx genotype data, allelic expression data and RNA-seq reads are 
available to authorized users through dbGaP (study accessions phs000424.v6.p1 
and phs000424.v7.p2). TCGA data are available to authorized users through dbGaP 
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(study accession phs000178.v9.p8). 293T RNA-seq data generated in this study are 
available through Gene Expression Omnibus (GEO) under accession GSE116061.
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