167 research outputs found

    Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    Get PDF
    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration

    Reproduction and respiration of a climate change indicator species: effect of temperature and variable food in the copepod Centropages chierchiae

    Get PDF
    The abundance of the calanoid copepod Centropages chierchiae has increased at the northern limits of its distribution in recent decades, mainly due to oceanic climate forcing, suggesting this as a key species in monitoring climate change. Laboratory experiments were conducted to study the combined effect of temperature, food type and concentration on the egg production rate (EPR) and hatching success (HS) of C. chierchiae. Females were fed on two monoalgal diets (Gymnodinium sp. and Phaeodactylum tricornutum) at two food concentrations and at three different temperatures (13, 19, 24C). Respiration rates of both genders were measured at four different temperatures (8, 13, 19, 24C). EPR was significantly different between temperatures and food concentrations, the maximum EPR being attained when the copepods were exposed to high food levels and at 19C. Prey type significantly influenced EPR; feeding on P. tricornutum resulted in higher egg production than Gymnodinium sp. HS was significantly lower at 13C than at 19 and 24C and higher with Gymnodinium sp. Respiration rates were sex independent and increased exponentially with temperature. To maintain basal metabolism, the minimum food intake of P. tricornutum ranged between 0.4 and 1.8 g C and for Gymnodinium sp. between 0.03 and 0.13 g C. Food intake was always higher than the metabolic demands, except for the highest temperature tested (24C). The present results confirm the sensitivity of C. chierchiae to temperature variations and may help in understanding the successful expansion of its distribution towards northern latitudes.Portuguese Science and Technology Foundation (FCT) [PTDC/MAR/098643/2008, PTDC/MAR/111304/2009, PTDC/MAR/0908066/2008]; FCT [SFRH/BD/28198/2006]; [SFRH/BPD/38332/2007

    Analysis of an agent-based model for predicting the behavior of bighead carp (Hypophthalmichthys nobilis) under the influence of acoustic deterrence

    Get PDF
    Bighead carp (Hypophthalmichthys nobilis) are an invasive, voracious, highly fecund species threatening the ecological integrity of the Great Lakes. This agent-based model and analysis explore bighead carp behavior in response to acoustic deterrence in an effort to discover properties that increase likelihood of deterrence system failure. Results indicate the most significant (p \u3c 0.05) influences on barrier failure are the quantity of detritus and plankton behind the barrier, total number of bighead carp successfully deterred by the barrier, and number of native fishes freely moving throughout the simulation. Quantity of resources behind the barrier influence bighead carp to penetrate when populations are resource deprived. When native fish populations are low, an accumulation of phytoplankton can occur, increasing the likelihood of an algal bloom occurrence. Findings of this simulation suggest successful implementation with proper maintenance of an acoustic deterrence system has potential of abating the threat of bighead carp on ecological integrity of the Great Lakes

    Position statement on classification of basal cell carcinomas. Part 1: unsupervised clustering of experts as a way to build an operational classification of advanced basal cell carcinoma based on pattern recognition

    Get PDF
    Background No simple classification system has emerged for 'advanced basal cell carcinomas', and more generally for all difficult-to-treat BCCs (DTT-BCCs), due to the heterogeneity of situations, TNM inappropriateness to BCCs, and different approaches of different specialists. Objective To generate an operational classification, using the unconscious ability of experts to simplify the great heterogeneity of the clinical situations into a few relevant groups, which drive their treatment decisions. Method Non-supervised independent and blinded clustering of real clinical cases of DTT-BCCs was used. Fourteen international experts from different specialties independently partitioned 199 patient cases considered 'difficult to treat' into as many clusters they want (<= 10), choosing their own criteria for partitioning. Convergences and divergences between the individual partitions were analyzed using the similarity matrix, K-mean approach, and average silhouette method. Results There was a rather consensual clustering of cases, regardless of the specialty and nationality of the experts. Mathematical analysis showed that consensus between experts was best represented by a partition of DTT-BCCs into five clusters, easily recognized a posteriori as five clear-cut patterns of clinical situations. The concept of 'locally advanced' did not appear consistent between experts. Conclusion Although convergence between experts was not granted, this experiment shows that clinicians dealing with BCCs all tend to work by a similar pattern recognition based on the overall analysis of the situation. This study thus provides the first consensual classification of DTT-BCCs. This experimental approach using mathematical analysis of independent and blinded clustering of cases by experts can probably be applied to many other situations in dermatology and oncology

    Selection for environmental variance of litter size in rabbits

    Get PDF
    [EN] Background: In recent years, there has been an increasing interest in the genetic determination of environmental variance. In the case of litter size, environmental variance can be related to the capacity of animals to adapt to new environmental conditions, which can improve animal welfare. Results: We developed a ten-generation divergent selection experiment on environmental variance. We selected one line of rabbits for litter size homogeneity and one line for litter size heterogeneity by measuring intra-doe phenotypic variance. We proved that environmental variance of litter size is genetically determined and can be modified by selection. Response to selection was 4.5% of the original environmental variance per generation. Litter size was consistently higher in the Low line than in the High line during the entire experiment. Conclusions: We conclude that environmental variance of litter size is genetically determined based on the results of our divergent selection experiment. This has implications for animal welfare, since animals that cope better with their environment have better welfare than more sensitive animals. We also conclude that selection for reduced environmental variance of litter size does not depress litter size.This research was funded by the Ministerio de Economía y Competitividad (Spain), Projects AGL2014-55921, C2-1-P and C2-2-P. Marina Martínez-Alvaro has a Grant from the same funding source, BES-2012-052655.Blasco Mateu, A.; Martínez Álvaro, M.; García Pardo, MDLL.; Ibáñez Escriche, N.; Argente, MJ. (2017). Selection for environmental variance of litter size in rabbits. Genetics Selection Evolution. 49(48):1-8. https://doi.org/10.1186/s12711-017-0323-4S184948Morgante F, Sørensen P, Sorensen DA, Maltecca C, Mackay TFC. Genetic architecture of micro-environmental plasticity in Drosophila melanogaster. Sci Rep. 2015;5:9785.Sørensen P, de los Campos G, Morgante F, Mackay TFC, Sorensen D. Genetic control of environmental variation of two quantitative traits of Drosophila melanogaster revealed by whole-genome sequencing. Genetics. 2015;201:487–97.Zhang XS, Hill WG. Evolution of the environmental component of the phenotypic variance: stabilizing selection in changing environments and the homogeneity cost. Evolution. 2005;59:1237–44.Mulder HA, Bijma P, Hill WG. Selection for uniformity in livestock by exploiting genetic heterogeneity of residual variance. Genet Sel Evol. 2008;40:37–59.Bodin L, Bolet G, Garcia M, Garreau H, Larzul C, David I. Robustesse et canalisation, vision de généticiens. INRA Prod Anim. 2010;23:11–22.García ML, Argente MJ, Muelas R, Birlanga V, Blasco A. Effect of divergent selection for residual variance of litter size on health status and welfare. In: Proceedings of the 10th World Rabbit Congress. Sharm El-Sheikh; 2012. p. 103–6.Argente MJ, García ML, Zbynovska K, Petruska P, Capcarova M, Blasco A. Effect of selection for residual variance of litter size on hematology parameters as immunology indicators in rabbits. In: Proceedings of the 10th World Congress on genetics applied to livestock production. Vancouver; 2014.García ML, Zbynovska K, Petruska P, Bovdisová I, Kalafová A, Capcarova M, et al. Effect of selection for residual variance of litter size on biochemical parameters in rabbits. In: Proceedings of the 67th annual meeting of the European Federation of Animal Science. Belfast; 2016.Broom DM. Welfare assessment and relevant ethical decisions: key concepts. Annu Rev Biomed Sci. 2008;20:79–90.SanCristobal-Gaudy M, Bodin L, Elsen JM, Chevalet C. Genetic components of litter size variability in sheep. Genet Sel Evol. 2001;33:249–71.Sorensen D, Waagepetersen R. Normal linear models with genetically structured residual variance heterogeneity: a case study. Genet Res. 2003;82:207–22.Mulder HA, Hill WG, Knol EF. Heritable environmental variance causes nonlinear relationships between traits: application to birth weight and stillbirth of pigs. Genetics. 2015;199:1255–69.Ros M, Sorensen D, Waagepetersen R, Dupont-Nivet M, San Cristobal M, Bonnet JC. Evidence for genetic control of adult weight plasticity in the snail Helix aspersa. Genetics. 2004;168:2089–97.Gutiérrez JP, Nieto B, Piqueras P, Ibáñez N, Salgado C. Genetic parameters for components analysis of litter size and litter weight traits at birth in mice. Genet Sel Evol. 2006;38:445–62.Ibáñez-Escriche N, Sorensen D, Waagepetersen R, Blasco A. Selection for environmental variation: a statistical analysis and power calculations to detect response. Genetics. 2008;180:2209–26.Wolc A, White IM, Avendano S, Hill WG. Genetic variability in residual variation of body weight and conformation scores in broiler chickens. Poult Sci. 2009;88:1156–61.Fina M, Ibáñez-Escriche N, Piedrafita J, Casellas J. Canalization analysis of birth weight in Bruna dels Pirineus beef cattle. J Anim Sci. 2013;91:3070–8.Mulder HA, Rönnegård L, Fikse WF, Veerkamp RF, Strandberg E. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models. Genet Sel Evol. 2013;45:23.Janhunen M, Kause A, Vehviläinen H, Järvisalom O. Genetics of microenvironmental sensitivity of body weight in rainbow trout (Oncorhynchus mykiss) selected for improved growth. PLoS One. 2012;7:e38766.Sonesson AK, Ødegård J, Rönnegård L. Genetic heterogeneity of within-family variance of body weight in Atlantic salmon (Salmo salar). Genet Sel Evol. 2013;45:41.Garreau H, Bolet G, Larzul C, Robert-Granie C, Saleil G, SanCristobal M, et al. Results of four generations of a canalising selection for rabbit birth weight. Livest Sci. 2008;119:55–62.Pun A, Cervantes I, Nieto B, Salgado C, Pérez-Cabal MA, Ibáñez-Escriche N, et al. Genetic parameters for birth weight environmental variability in mice. J Anim Breed Genet. 2012;130:404–14.Hill WG, Mulder HA. Genetic analysis of environmental variation. Genet Res (Camb). 2010;92:381–95.Yang Y, Christensen OF, Sorensen D. Analysis of a genetically structured variance heterogeneity model using the Box–Cox transformation. Genet Res (Camb). 2011;93:33–46.Piles M, Garcia ML, Rafel O, Ramon J, Baselga M. Genetics of litter size in three maternal lines of rabbits: repeatability versus multiple-trait models. J Anim Sci. 2006;84:2309–15.Estany J, Baselga M, Blasco A, Camacho J. Mixed model methodology for the estimation of genetic response to selection in litter size of rabbits. Livest Prod Sci. 1989;21:67–75.Box GEP, Tiao GC. Bayesian inference in statistical analysis. New York: Wiley; 1973.Searle SR. Matrix algebra useful for statistics. Toronto: Wiley; 1982.Sorensen D, Gianola D. Likelihood, Bayesian and MCMC methods in quantitative genetics. New York: Springer; 2002.Geyer CM. Practical Markov chain Monte Carlo (with discussion). Stat Sci. 1992;7:467–511.Legarra A. TM threshold model. 2008. http://genoweb.toulouse.inra.fr/~alegarra/tm_folder/ . Accessed 02 May 2017.Blasco A. Bayesian data analysis for animal scientists. New York: Springer; 2017.Rönnegård L, Felleki M, Fikse F, Mulder HA, Strandberg E. Genetic heterogeneity of residual variance—estimation of variance components using double hierarchical generalized linear models. Genet Sel Evol. 2010;42:8.Felleki M, Lee D, Lee Y, Gilmour AR, Rönnegård L. Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models. Genet Res (Camb). 2012;94:307–17.Thompson R. Estimation of realized heritability in a selected population using mixed model methods. Genet Sel Evol. 1986;18:475–84.Sorensen DA, Johansson K. Estimation of direct and correlated responses to selection using univariate animal models. J Anim Sci. 1992;70:2038–44.Popper K. The logic of scientific discovery. London: Hutchinson & Co; 1959.Falconer DS, MacKay TFC. An introduction to quantitative genetics. 4th ed. Harlow: Longman Group Ltd; 1996.Formoso-Rafferty N, Cervantes I, Ibáñez-Escriche N, Gutiérrez JP. Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability. Animal. 2016;10:1770–7.Ibáñez-Escriche N, Moreno A, Nieto B, Piqueras P, Salgado C, Gutiérrez JP. Genetic parameters related to environmental variability of weight traits in a selection experiment for weight gain in mice; signs of correlated canalised response. Genet Sel Evol. 2008;40:279–93.Mulder HA, Hill WG, Vereijken A, Veerkamp RF. Estimation of genetic variation in residual variance in female and male broiler chickens. Animal. 2009;3:1673–80.Ibáñez-Escriche N, Varona L, Sorensen D, Noguera JL. A study of heterogeneity of environmental variance for slaughter weight in pigs. Animal. 2008;2:19–26.Bolet G, Garreau H, Hurtaud J, Saleil G, Esparbié J, Falieres J. Canalising selection on within litter variability of birth weight in rabbits: responses to selection and characteristics of the uterus of the does. In: Proceedings of the 9th World Rabbit Congress. Verona; 2008. p. 51–6.San Cristobal-Gaudy M, Elsen JM, Bodin L, Chevalet C. Prediction of the response to a selection for canalisation of a continuous trait in animal breeding. Genet Sel Evol. 1998;30:423–51.Argente MJ, Santacreu MA, Climent A, Blasco A. Genetic correlations between litter size and uterine capacity. In: Proceeding of the 8th World Rabbit Congress. Valencia; 2000. p. 333–38.Rauw WM. Immune response from a resource allocation perspective. Front Genet. 2012;3:267

    Effects of temperature, food type and food concentration on the grazing of the calanoid copepod Centropages chierchiae

    Get PDF
    Laboratory experiments were conducted to study the combined effect of temperature (8, 13, 19 and 24C), food type and food concentration on the grazing rates of the adult stages of the calanoid copepod Centropages chierchiae. As prey, the diatom Phaeodactylum tricornutum and the dinoflagellate Gymnodinium sp. (both ca. 15 m cell diameter) were used at a range of carbon concentrations similar to the ones experienced in nature (6.4 to 393.8 C L-1). Ingestion rates increased linearly with food concentration and did not differ between prey types. When comparing the effect of temperature, highest clearance and ingestion rates were obtained at 19C, whereas no difference was observed among the other temperatures. Daily rations varied between 1.2 and 183.5 body carbon day(1). Additional experiments were conducted to study the selective feeding behaviour of C. chierchiae when offered a mixture of different prey types. Selective feeding was dependent on food concentration; at low food levels, large cells were selected (Ditylum brightwellii), whereas at medium and high food concentrations no clear selection patterns were observed. In contrast to other studies, no positive selection of dinoflagellates over other algal food was found.Portuguese Science and Technology Foundation (FCT) under project VITAL [PTDC/MAR/111304/2009]; project MODELA [FCT PTDC/MAR/098643/2008]; FCT [SFRH/BPD/38332/2007, SFRH/BD/28198/2006]; Spanish Ministry of Economy and Competitively [CTM2011-23480]; European Community [227799]info:eu-repo/semantics/publishedVersio

    Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical outcomes

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To assess the accuracy of patient repositioning and clinical outcomes of frameless stereotactic radiosurgery (SRS) for brain metastases using a stereotactic mask fixation system.</p> <p>Patients and Methods</p> <p>One hundred two patients treated consecutively with frameless SRS as primary treatment at University of Rome Sapienza Sant'Andrea Hospital between October 2008 and April 2010 and followed prospectively were involved in the study. A commercial stereotactic mask fixation system (BrainLab) was used for patient immobilization. A computerized tomography (CT) scan obtained immediately before SRS was used to evaluate the accuracy of patient repositioning in the mask by comparing the isocenter position to the isocenter position established in the planning CT. Deviations of isocenter coordinates in each direction and 3D displacement were calculated. Overall survival, brain control, and local control were estimated using the Kaplan-Meier method calculated from the time of SRS.</p> <p>Results</p> <p>The mean measured isocenter displacements were 0.12 mm (SD 0.35 mm) in the lateral direction, 0.2 mm (SD 0.4 mm) in the anteroposterior, and 0.4 mm (SD 0.6 mm) in craniocaudal direction. The maximum displacement of 2.1 mm was seen in craniocaudal direction. The mean 3D displacement was 0.5 mm (SD 0.7 mm), being maximum 2.9 mm. The median survival was 15.5 months, and 1-year and 2-year survival rates were 58% and 24%, respectively. Nine patients recurred locally after SRS, with 1-year and 2-year local control rates of 91% and 82%, respectively. Stable extracranial disease (P = 0.001) and KPS > 70 (P = 0.01) were independent predictors of survival.</p> <p>Conclusions</p> <p>Frameless SRS is an effective treatment in the management of patients with brain metastases. The presented non-invasive mask-based fixation stereotactic system is associated with a high degree of patient repositioning accuracy; however, a careful evaluation is essential since occasional errors up to 3 mm may occur.</p
    corecore