169 research outputs found

    Evidencing the role of plants vs soils in the understanding of 137Cs phyto availability using a coupled experimental and modelling approach

    Get PDF
    International audience137Cs is a radionuclide with a half-life of 30 years that is commonly found in soils after nuclear fallout due to nuclear incidents or atmospheric nuclear weapon testing. Due to their properties of accumulation and retention, soils are key compartments for the transfer of contaminants such as 137Cs in the trophic chain. Ingestion of contaminated agricultural products being one of the main component of human exposure, it is essential to be able to predict the fate of 137Cs throughout the soil-plant continuum.The contaminant mobility into the soil, its transfer to the plant and its final distribution between all components are generally described by simple models (equilibrium-based, linear distributions). These models are operational but are not able to account for the variability of soils and plants encountered.Bioavailability is function of both soil physico-chemical characteristics, that impact the environmental availability, and plant physiology which determines the uptake rate and accumulation. The aim of this work is to highlight the preponderant factors controlling the 137Cs bioavailability in the soil-solution-plant continuum by using a model that account for both soil and plant characteristics. The proposed mechanistic model is based on thermodynamic reactions describing the interactions of Cs with the different soil reactive components, coupled with a physiological model of root absorption.Series of experiments were conducted to produce a contrasted data set of 137Cs soil to plant transfer. For those experiments, 2 different plants with contrasted Cs uptake capacities (Millet, Mustard) and 3 different soils with varying texture and mineralogy have been studied. Three weeks exposure studies were conducted with the RHIZOtest¼ which is a normative device to assess the bioavailability of contaminants in soil. They were completed with batch experiments aiming at characterizing the environmental availability of Cs in soils. A large range of 137Cs soil to plant transfer rates was measured for the different soil/pant combinations. For example a contrasted bioavailability of 137Cs was observed, with the same plant accumulating 10% to 40% of total Cs’s stock depending on the soils. We also observed that during the time of the experiment the plant had absorbed most of the estimated environmental available Cs.Modelling those experiments allowed us to highlight the main soil and plant properties that have a great impact on the contaminant mobility. For example, plant physiological factors were the main driver of bioavailability in condition where environmental availability was not limited (e.g. sandy soils), whereas their roles were reduced in soils with high 137Cs sorption capacity. Such a model may help to reduce uncertainties in the prediction of 137Cs transfer to plants in environmental risk assessment, with a great potential to cover a large range of soils and plants

    Individual based SIS models on (not so) dense large random networks

    Full text link
    Starting from a stochastic individual-based description of an SIS epidemic spreading on a random network, we study the dynamics when the size n of the network tends to infinity. We recover in the limit an infinite-dimensional integro-differential equation studied by Delmas, Dronnier and Zitt (2022) for an SIS epidemic propagating on a graphon. Our work covers the case of dense and sparse graphs, provided that the number of edges grows faster than n, but not the case of very sparse graphs with O(n) edges. In order to establish our limit theorem, we have to deal with both the convergence of the random graphs to the graphon and the convergence of the stochastic process spreading on top of these random structures: in particular, we propose a coupling between the process of interest and an epidemic that spreads on the complete graph but with a modified infection rate. Keywords: random graph, mathematical models of epidemics, measure-valued process, large network limit, limit theorem, graphon.Comment: Acknowledgments: This work was financed by the Labex B\'ezout (ANR-10-LABX-58) and the COCOON grant (ANR-22-CE48-0011), and by the platform MODCOV19 of the National Institute of Mathematical Sciences and their Interactions of CNRS. 32 pages, including an appendix of 6 page

    Catalytic reactivity of surfaces: in recognition of François Gault

    Get PDF
    This special issue of Catalysis Science &amp; Technology pays tribute to the scientific work of François Gault.</p

    Lipid Nanocapsules Loaded with Rhenium-188 Reduce Tumor Progression in a Rat Hepatocellular Carcinoma Model

    Get PDF
    International audienceBACKGROUND: Due to their nanometric scale (50 nm) along with their biomimetic properties, lipid nanocapsules loaded with Rhenium-188 (LNC(188)Re-SSS) constitute a promising radiopharmaceutical carrier for hepatocellular carcinoma treatment as its size may improve tumor penetration in comparison with microspheres devices. This study was conducted to confirm the feasibility and to assess the efficacy of internal radiation with LNC(188)Re-SSS in a chemically induced hepatocellular carcinoma rat model. METHODOLOGY/PRINCIPAL FINDINGS: Animals were treated with an injection of LNC(188)Re-SSS (80 MBq or 120 MBq). The treated animals (80 MBq, n = 12; 120 MBq, n = 11) were compared with sham (n = 12), blank LNC (n = 7) and (188)Re-perrhenate (n = 4) animals. The evaluation criteria included rat survival, tumor volume assessment, and vascular endothelial growth factor quantification. Following treatment with LNC(188)Re-SSS (80 MBq) therapeutic efficiency was demonstrated by an increase in the median survival from 54 to 107% compared with control groups with up to 7 long-term survivors in the LNC(188)Re-SSS group. Decreased vascular endothelial growth factor expression in the treated rats could indicate alterations in the angiogenesis process. CONCLUSIONS/SIGNIFICANCE: Overall, these results demonstrate that internal radiation with LNC(188)Re-SSS is a promising new strategy for hepatocellular carcinoma treatment

    Low Immune Response to Hepatitis B Vaccine among Children in Dakar, Senegal

    Get PDF
    HBV vaccine was introduced into the Expanded Programme on Immunization (EPI) in Senegal and Cameroon in 2005. We conducted a cross-sectional study in both countries to assess the HBV immune protection among children. All consecutive children under 4 years old, hospitalized for any reason between May 2009 and May 2010, with an immunisation card and a complete HBV vaccination, were tested for anti-HBs and anti-HBc. A total of 242 anti-HBc-negative children (128 in Cameroon and 114 in Senegal) were considered in the analysis. The prevalence of children with anti-HBs ≄10 IU/L was higher in Cameroon with 92% (95% CI: 87%–97%) compared to Senegal with 58% (95% CI: 49%–67%), (p<0.001). The response to vaccination in Senegal was lower in 2006–2007 (43%) than in 2008–2009 (65%), (p = 0.028). Our results, although not based on a representative sample of Senegalese or Cameroonian child populations, reveal a significant problem in vaccine response in Senegal. This response problem extends well beyond hepatitis B: the same children who have not developed an immune response to the HBV vaccine are also at risk for diphtheria, tetanus, pertussis (DTwP) and Haemophilus influenzae type b (Hib). Field biological monitoring should be carried out regularly in resource-poor countries to check quality of the vaccine administered

    Genomic history of the seventh pandemic of cholera in Africa.

    Get PDF
    The seventh cholera pandemic has heavily affected Africa, although the origin and continental spread of the disease remain undefined. We used genomic data from 1070 Vibrio cholerae O1 isolates, across 45 African countries and over a 49-year period, to show that past epidemics were attributable to a single expanded lineage. This lineage was introduced at least 11 times since 1970, into two main regions, West Africa and East/Southern Africa, causing epidemics that lasted up to 28 years. The last five introductions into Africa, all from Asia, involved multidrug-resistant sublineages that replaced antibiotic-susceptible sublineages after 2000. This phylogenetic framework describes the periodicity of lineage introduction and the stable routes of cholera spread, which should inform the rational design of control measures for cholera in Africa
    • 

    corecore