11 research outputs found

    Endocannabinoids and cardiovascular prevention: real progress?

    Get PDF
    The prevalence of obesity continues to increase and represents one of the principal causes of cardiovascular morbidity and mortality. After the discovery of a specific receptor of the psychoactive principle of marijuana, the cannabinoid receptors and their endogenous ligands, several studies have demonstrated the role of this system in the control of food intake and energy balance and its overactivity in obesity. Recent studies with the CB1 receptor antagonist rimonabant have demonstrated favorable effects such as a reduction in body weight and waist circumference and an improvement in metabolic factors (cholesterol, triglycerides, glycemia etc). Therefore, the antagonism of the endocannabinoid (EC) system, if recent data can be confirmed, could be a new treatment target for high risk overweight or obese patients. Obesity is a growing problem that has epidemic proportions worldwide and is associated with an increased risk of premature death (1–3). Individuals with a central deposition of fats have elevated cardiovascular morbidity and mortality (including stroke, heart failure and myocardial infarction) and, because of a growing prevalence not only in adults but also in adolescents, it was reclassified in AHA guidelines as a “major modifiable risk factor” for coronary heart disease (4, 5). Although first choice therapy in obesity is based on correcting lifestyle (diet and physical activity) in patients with abdominal obesity and high cardiovascular risk and diabetes, often it is necessary to use drugs which reduce the risks. The EC system represents a new target for weight control and the improvement of lipid and glycemic metabolism (6, 7)

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The potential of critical race theory in decolonizing university curricula

    Get PDF
    This paper critiques our experiences as non-Indigenous Australian educators of working with numerous embedding Indigenous perspectives curricular projects at an Australian university. Reporting on these project outcomes alone, while useful in identifying limitations, does not illustrate ways in which future embedding and decolonising projects can persist and evolve. Deeper analysis is required of the ways in which Indigenous knowledge and perspectives are perceived, and what ‘embedding’ IK in university curricula truly means to various educational stakeholders. To achieve a deeper analysis and propose ways to invigorate the continuing decolonisation of Australian university curricula, this paper critically interrogates the methodology and conceptualisation of Indigenous knowledge in embedding Indigenous perspectives (EIP) in the university curriculum using tenets of critical race theory. Accordingly, we conduct this analysis from the standpoint that EIP should not subscribe to the luxury of independence of scholarship from politics and activism. The learning objective is to create a space to legitimise politics in the intellectual / academic realm (Dei, 2008, p. 10). We conclude by arguing that critical race theory’s emancipatory, future and action-oriented goals for curricula (Dei, 2008) would enhance effective and sustainable embedding initiatives, and ultimately, preventing such initiatives from returning to the status quo (McLaughlin & Whatman, 2008)

    Discovery and Epidemiology of the Human Polyomaviruses BK Virus (BKV) and JC Virus (JCV)

    No full text
    corecore