232 research outputs found

    Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic Oscillator Chains

    Full text link
    We examine the thermal conductivity and bulk viscosity of a one-dimensional (1D) chain of particles with cubic-plus-quartic interparticle potentials and no on-site potentials. This system is equivalent to the FPU-alpha beta system in a subset of its parameter space. We identify three distinct frequency regimes which we call the hydrodynamic regime, the perturbative regime and the collisionless regime. In the lowest frequency regime (the hydrodynamic regime) heat is transported ballistically by long wavelength sound modes. The model that we use to describe this behaviour predicts that as the frequency goes to zero the frequency dependent bulk viscosity and the frequency dependent thermal conductivity should diverge with the same power law dependence on frequency. Thus, we can define the bulk Prandtl number as the ratio of the bulk viscosity to the thermal conductivity (with suitable prefactors to render it dimensionless). This dimensionless ratio should approach a constant value as frequency goes to zero. We use mode-coupling theory to predict the zero frequency limit. Values of the bulk Prandtl number from simulations are in agreement with these predictions over a wide range of system parameters. In the middle frequency regime, which we call the perturbative regime, heat is transported by sound modes which are damped by four-phonon processes. We call the highest frequency regime the collisionless regime since at these frequencies the observing times are much shorter than the characteristic relaxation times of phonons. The perturbative and collisionless regimes are discussed in detail in the appendices.Comment: Latex with references in .bib file. 36 pages, 8 figures. Submitted to J. Stat. Phys. on Sept. 2

    Determination of the Form Factors for the Decay B0 --> D*-l+nu_l and of the CKM Matrix Element |Vcb|

    Get PDF
    We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element Vcb|V_{cb}| and of the parameters ρ2\rho^2, R1R_1, and R2R_2, which fully characterize the form factors of the B0D+νB^0 \to D^{*-}\ell^{+}\nu_\ell decay in the framework of HQET, based on a sample of about 52,800 B0D+νB^0 \to D^{*-}\ell^{+}\nu_\ell decays recorded by the BABAR detector. The kinematical information of the fully reconstructed decay is used to extract the following values for the parameters (where the first errors are statistical and the second systematic): ρ2=1.156±0.094±0.028\rho^2 = 1.156 \pm 0.094 \pm 0.028, R1=1.329±0.131±0.044R_1 = 1.329 \pm 0.131 \pm 0.044, R2=0.859±0.077±0.022R_2 = 0.859 \pm 0.077 \pm 0.022, F(1)Vcb=(35.03±0.39±1.15)×103\mathcal{F}(1)|V_{cb}| = (35.03 \pm 0.39 \pm 1.15) \times 10^{-3}. By combining these measurements with the previous BABAR measurements of the form factors which employs a different technique on a partial sample of the data, we improve the statistical accuracy of the measurement, obtaining: ρ2=1.179±0.048±0.028,R1=1.417±0.061±0.044,R2=0.836±0.037±0.022,\rho^2 = 1.179 \pm 0.048 \pm 0.028, R_1 = 1.417 \pm 0.061 \pm 0.044, R_2 = 0.836 \pm 0.037 \pm 0.022, and F(1)Vcb=(34.68±0.32±1.15)×103. \mathcal{F}(1)|V_{cb}| = (34.68 \pm 0.32 \pm 1.15) \times 10^{-3}. Using the lattice calculations for the axial form factor F(1)\mathcal{F}(1), we extract Vcb=(37.74±0.35±1.25±1.441.23)×103|V_{cb}| =(37.74 \pm 0.35 \pm 1.25 \pm ^{1.23}_{1.44}) \times 10^{-3}, where the third error is due to the uncertainty in F(1)\mathcal{F}(1)

    Study of the Exclusive Initial-State Radiation Production of the DDˉD \bar D System

    Get PDF
    A study of exclusive production of the DDˉD \bar D system through initial-state r adiation is performed in a search for charmonium states, where D=D0D=D^0 or D+D^+. The D0D^0 mesons are reconstructed in the D0Kπ+D^0 \to K^- \pi^+, D0Kπ+π0D^0 \to K^- \pi^+ \pi^0, and D0Kπ+π+πD^0 \to K^- \pi^+ \pi^+ \pi^- decay modes. The D+D^+ is reconstructed through the D+Kπ+π+D^+ \to K^- \pi^+ \pi^+ decay mode. The analysis makes use of an integrated luminosity of 288.5 fb1^{-1} collected by the BaBar experiment. The DDˉD \bar D mass spectrum shows a clear ψ(3770)\psi(3770) signal. Further structures appear in the 3.9 and 4.1 GeV/c2c^2 regions. No evidence is found for Y(4260) decays to DDˉD \bar D, implying an up per limit \frac{\BR(Y(4260)\to D \bar D)}{\BR(Y(4260)\to J/\psi \pi^+ \pi^-)} < 7.6 (95 % confidence level)

    EuFe2_2As2_2 under high pressure: an antiferromagnetic bulk superconductor

    Get PDF
    We report the ac magnetic susceptibility χac\chi_{ac} and resistivity ρ\rho measurements of EuFe2_2As2_2 under high pressure PP. By observing nearly 100% superconducting shielding and zero resistivity at PP = 28 kbar, we establish that PP-induced superconductivity occurs at TcT_c \sim~30 K in EuFe2_2As2_2. ρ\rho shows an anomalous nearly linear temperature dependence from room temperature down to TcT_c at the same PP. χac\chi_{ac} indicates that an antiferromagnetic order of Eu2+^{2+} moments with TNT_N \sim~20 K persists in the superconducting phase. The temperature dependence of the upper critical field is also determined.Comment: To appear in J. Phys. Soc. Jpn., Vol. 78 No.

    Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence

    Get PDF
    In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets (published at https://doi.org/10.5281/zenodo.15639576; Smith et al., 2025a) to produce updated estimates for key indicators of the state of the climate system: net emissions of greenhouse gases and short-lived climate forcers, greenhouse gas concentrations, radiative forcing, the Earth's energy imbalance, surface temperature changes, warming attributed to human activities, the remaining carbon budget, and estimates of global temperature extremes. This year, we additionally include indicators for sea-level rise and land precipitation change. We follow methods as closely as possible to those used in the IPCC Sixth Assessment Report (AR6) Working Group One report. The indicators show that human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the AR6 assessment. For the 2015–2024 decade average, observed warming relative to 1850–1900 was 1.24 [1.11 to 1.35] °C, of which 1.22 [1.0 to 1.5] °C was human-induced. The 2024-observed best estimate of global surface temperature (1.52 °C) is well above the best estimate of human-caused warming (1.36 °C). However, the 2024 observed warming can still be regarded as a typical year, considering the human-induced warming level and the state of internal variability associated with the phase of El Niño and Atlantic variability. Human-induced warming has been increasing at a rate that is unprecedented in the instrumental record, reaching 0.27 [0.2–0.4] °C per decade over 2015–2024. This high rate of warming is caused by a combination of greenhouse gas emissions being at an all-time high of 53.6±5.2 Gt CO2e yr−1 over the last decade (2014–2023), as well as reductions in the strength of aerosol cooling. Despite this, there is evidence that the rate of increase in CO2 emissions over the last decade has slowed compared to the 2000s, and depending on societal choices, a continued series of these annual updates over the critical 2020s decade could track decreases or increases in the rate of the climatic changes presented here

    Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence

    Get PDF
    In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets (published here https://doi.org/10.5281/zenodo.15327155 Smith et al., 2025a) to produce updated estimates for key indicators of the state of the climate system: net emissions of greenhouse gases and short-lived climate forcers, greenhouse gas concentrations, radiative forcing, the Earth's energy imbalance, surface temperature changes, warming attributed to human activities, the remaining carbon budget, and estimates of global temperature extremes. This year, we additionally include indicators for sea-level rise and land precipitation change. We follow methods as closely as possible to those used in the IPCC Sixth Assessment Report (AR6) Working Group One (WGI) report. The indicators show that human activities are increasing the Earth’s energy imbalance and driving faster sea-level rise compared to the AR6 assessment. For the 2015–2024 decade average, observed warming relative to 1850–1900 was 1.24 [1.11 to 1.35] °C, of which 1.23 [1.0 to 1.5] °C was human-induced. The 2024 observed record in global surface temperature (1.52°C best estimate) is well above the best estimate of human-caused warming (1.36°C). However, the 2024 observed warming can still be regarded as a typical year, considering the human induced warming level and the state of internal variability associated with the phase of El Niño and Atlantic variability. Human-induced warming has been increasing at a rate that is unprecedented in the instrumental record, reaching 0.27 [0.2–0.4] °C per decade over 2015–2024. This high rate of warming is caused by a combination of greenhouse gas emissions being at an all-time high of 53.6 ± 5.2 GtCO2e per year over the last decade (2014–2023), as well as reductions in the strength of aerosol cooling. Despite this, there is evidence that the rate of increase in CO2 emissions over the last decade has slowed compared to the 2000s, and depending on societal choices, a continued series of these annual updates over the critical 2020s decade could track decreases or increases in the rate of the climatic changes presented here

    Dalitz plot analysis of the decay B±→K±K±K∓

    Get PDF
    We analyze the three-body charmless decay B-+/-->(KKK -/+)-K-+/--K-+/- using a sample of 226.0 +/- 2.5 million B (B) over bar pairs collected by the BABAR detector. We measure the total branching fraction and CP asymmetry to be B=(35.2 +/- 0.9 +/- 1.6)x10(-6) and A(CP)=(-1.7 +/- 2.6 +/- 1.5)%. We fit the Dalitz plot distribution using an isobar model and measure the magnitudes and phases of the decay coefficients. We find no evidence of CP violation for the individual components of the isobar model. The decay dynamics is dominated by the K+K- S-wave, for which we perform a partial-wave analysis in the region m(K+K-)< 2 GeV/c(2). Significant production of the f(0)(980) resonance, and of a spin zero state near 1.55 GeV/c(2) are required in the isobar model description of the data. The partial-wave analysis supports this observation.This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation

    Measurement of branching fractions and mass spectra of B -> K pi pi gamma (vol 98, art no 211804, 2007)

    Get PDF

    The Physics of the B Factories

    Get PDF

    Prompt and non-prompt J/psi elliptic flow in Pb plus Pb collisions at root S-NN=5.02 TeV with the ATLAS detector

    Get PDF
    The elliptic flow of prompt and non-prompt J/ \u3c8 was measured in the dimuon decay channel in Pb+Pb collisions at sNN=5.02&nbsp;TeV with an integrated luminosity of 0.42nb-1 with the ATLAS detector at the LHC. The prompt and non-prompt signals are separated using a two-dimensional simultaneous fit of the invariant mass and pseudo-proper decay time of the dimuon system from the J/ \u3c8 decay. The measurement is performed in the kinematic range of dimuon transverse momentum and rapidity 9 &lt; pT&lt; 30 GeV , | y| &lt; 2 , and 0\u201360% collision centrality. The elliptic flow coefficient, v2, is evaluated relative to the event plane and the results are presented as a function of transverse momentum, rapidity and centrality. It is found that prompt and non-prompt J/ \u3c8 mesons have non-zero elliptic flow. Prompt J/ \u3c8v2 decreases as a function of pT, while for non-prompt J/ \u3c8 it is, with limited statistical significance, consistent with a flat behaviour over the studied kinematic region. There is no observed dependence on rapidity or centrality
    corecore